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Cancer cells are metabolically vigorous and are superior in the uptake of nutrients and in
the release of the tumor microenvironment (TME)-specific metabolites. They create an
acidic, hypoxic, and nutrient-depleted TME that makes it difficult for the cytotoxic immune
cells to adapt to the metabolically hostile environment. Since a robust metabolism in
immune cells is required for optimal anti-tumor effector functions, the challenges caused
by the TME result in severe defects in the invasion and destruction of the established
tumors. There have been many recent developments in NK and T cell-mediated
immunotherapy, such as engineering them to express chimeric antigen receptors
(CARs) to enhance tumor-recognition and infiltration. However, to defeat the tumor and
overcome the limitations of the TME, it is essential to fortify these novel therapies by
improving the metabolism of the immune cells. One potential strategy to enhance the
metabolic fitness of immune cells is to upregulate the expression of nutrient transporters,
specifically glucose and amino acid transporters. In particular, the amino acid transporters
SLC1A5 and SLC7A5 as well as the ancillary subunit SLC3A2, which are required for
efficient uptake of glutamine and leucine respectively, could strengthen the metabolic
capabilities and effector functions of tumor-directed CAR-NK and T cells. In addition to
enabling the influx and efflux of essential amino acids through the plasma membrane and
within subcellular compartments such as the lysosome and the mitochondria,
accumulating evidence has demonstrated that the amino acid transporters participate
in sensing amino acid levels and thereby activate mTORC1, a master metabolic regulator
that promotes cell metabolism, and induce the expression of c-Myc, a transcription factor
essential for cell growth and proliferation. In this review, we discuss the regulatory
pathways of these amino acid transporters and how we can take advantage of these
processes to strengthen immunotherapy against cancer.
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INTRODUCTION

Tumorigenesis, or the formation of a tumor, arises from
multiple genetic alterations, mostly of oncogenes and tumor-
suppressive genes, in normal cells that cause them to transform
into neoplastic cells. These genetic alterations lead to major
changes in the metabolism of cancer cells. The tumor
microenvironment (TME), consisting of cellular and non-
cellular elements, provides support for the growth and
survival of tumor cells, and contribute to the resistance
against the invasion of non-supportive cells, including
cytotoxic lymphocytes. Tumor cells become metabolically
hyperactive and increase their uptake of the nutrients within
the TME. In addition, they release specific immunosuppressive
cytokines such as transforming growth factor-b (TGF-b),
which inhibits the metabolism of immune cells (1, 2).
Altogether, the crosstalk between tumors and the TME
elements, as well as the reduction in the availability of
nutrients and oxygen, and the release of immunosuppressive
metabolites such as lactate, generate a hostile environment (3–
5). The combined immunosuppressive conditions of the TME
are detrimental to tumor-infiltrating lymphocytes (TILs),
which need to compete with cancer cells for nutrients to
support their anti-tumor functions (1).

There are many recent advances in the development of
novel immunotherapies to treat cancer, with a particular focus
in enhancing the ability of immune cells to infiltrate and
recognize the tumor. Promising results were obtained through
immune checkpoint blockades, enhancing antibody-
dependent cellular cytotoxicity (ADCC), as well as the
adoptive transfer of genetically engineered NK or T cells (6,
7). Currently, numerous research teams aim to engineer NK
or T cells to express chimeric antigen receptors (CARs), which
combines the specificity of antibodies with the signaling
capability of activating receptors, to redirect anti-tumor
specificity and enhance homing to the tumor site (6, 7).
Despite the generation of novel immunotherapies, immune
cells remain at a disadvantage in the nutrient deficient and
hostile TME, especially in solid tumors. To maintain their
effector function as activated immune cells, avoid exhaustion,
and continue protein synthesis for expansion in the TME, the
expression of nutrient transporters on immune cells,
specifically glucose and amino acid transporters, need to be
increased and sustained to support the enhanced anabolic
pathways. In humans, there are 458 members of the Solute
Carrier (SLC) membrane-bound transporter in 65 families
(8). They have important physiological roles since they
allow for the transport of nutrients, drugs, and other
small molecules. Among numerous nutrient transporters
and chaperones, SLC1A5, SLC3A2, and SLC7A5 play a
major role in driving the uptake of glutamine and leucine,
which are critical for metabolic activation and cellular
function (9–11). Thus, understanding the molecular
regulation of these SLC transporters will provide insight
into novel strategies to potentiate the metabolic capabilities
and effector functions of tumor-directed engineered-NK and
T cells in the TME.
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THE TUMOR MICROENVIRONMENT: A
BATTLEFIELD WITH LIMITED NUTRIENTS

Nutrient Depletion in the TME
Despite their heterogeneity, most cancers are uniformly
characterized by an increase in metabolism and mitochondrial
respiration (1). Metabolic changes seen in tumors are driven by
either oncogenic mutations in cell signaling genes, changes in
metabolic enzymes, or environmental factors (1, 12, 13). Since
cancer cells constantly proliferate, they undergo Warburg
metabolism or aerobic glycolysis, where they reduce the
majority of the pyruvate into lactate instead of metabolizing to
carbon dioxide in the mitochondrial tricarboxylic acid (TCA)
cycle. By doing so, excess carbons may be used for the synthesis
of lipids, proteins, and nucleotides and the production of new
cells (1, 14). Furthermore, cancer cells strengthen their resistance
to TILs partly through the metabolites released into the TME,
contributing to its hostility. For example, numerous cancer cells
and tumor-associated cells in the TME secrete or express factors
like prostaglandin E2 (PGE2) and indoleamine 2,3-dioxygenase
(IDO), which can inhibit the activation and metabolism of NK
and T cells (1, 10). For instance, the increased expression of IDO
and tryptophan-2,3-dioxygenase (TDO) by tumor cells, tumor-
associated macrophages (TAMs) and tumor-associated dendritic
cells and fibroblasts, which catalyze the conversion of tryptophan
to kynurenine, results in tryptophan depletion and contributes to
the dysfunction of TILs. The produced kynurenine is secreted by
these cells, enters the TILs through the System L transporter,
SLC7A5, and inhibits NK cell and T cell proliferation and
effector function. It is a double-edged sword, as it suppresses
NK cell and T cell activity as well as enhances the function of
Tregs and myeloid-derived suppressor cells (MDSCs) (10,
14, 15).

Solid tumors lack a proper supply of nutrients and oxygen
from blood vessels. As the tumor mass grows, newly formed
blood vessels are generated to provide the cancer cells with
oxygen and essential nutrients. However, tumor vascularization
is disorganized in comparison to normal vasculature and, as a
consequence, cells in the TME that are more distant from a blood
vessel will be subjected to limited nutrients and reduced oxygen
supply (1, 10, 14). The activation of aberrant metabolic pathways
and stress response genes in cancer cells allows them to increase
their uptake of major carbon sources, especially glucose and
glutamine, and essential amino acids while maintaining energy
production under hypoxic conditions to support their
proliferation and anabolic requirements. Hypoxia-inducible
factor (HIF)-1-mediated metabolic transformation is critical
for the adaptation to hypoxia by increasing the expression of
nutrient transporters, even though its activation is also induced
by TCR and cytokine stimulation (16, 17). Several reports
indicate that HIF-1 activation in T cells leads to enhanced
control of persistent LCMV infection and neoplastic growth
(18–20). However, in mice studies with conditional HIF-1a
deficiency, HIF-1a suppresses the NF-kB signaling pathway in
NK and T cells, affecting their effector functions (21, 22).
Moreover, HIF-1a knock-down in CD8+ T cells improved the
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polyfunctionality of tumour-infiltrating CD8+ T cells and
delayed tumor progression when these cells were adoptively
transferred into tumor-bearing mice (23). Therefore, these data
suggest that the role of HIF-1-mediated metabolic adaptation in
the anti-tumor functions of NK and T cells is not fully elucidated
and remains an important issue that needs to be addressed.

Since the metabolic processes in immune cells are linked to
their effector functions, the harsh conditions in the TME limit
the metabolic fitness of TILs, which can negatively impact their
immune response against the cancer cells (1, 10, 24). For
example, in ovarian cancer, glucose restriction was shown to
impair CD8+ T cell survival and function due to the high
expression of miR-101 and miR-26a, which repressed the
methyltransferase EZH2 (25). EZH2 is important for the anti-
tumor function of T cells by inducing cytokine expression and
enhancing survival. Glucose addition was able to rescue the
expression of EZH2 and reverse this phenotype (25).
Interestingly, CD4+ T cells exposed to ovarian cancer ascites
had severely reduced levels of the glucose transporter GLUT1,
leading to reduced glucose uptake and defective N-linked protein
glycosylation (26). The resulting defect in N-linked protein
glycosylation caused endoplasmic reticulum (ER) stress by
activating the unfolded protein response (UPR) via the IRE1a–
XBP1 pathway. Upon ER stress, IRE1a induces the splicing of
XBP1 mRNA, and the resulting isoform, XBP1s, activates genes
that participate in protein folding. The IRE1a–XBP1 pathway
was upregulated in T cells within ovarian cancer ascites,
demonstrating that T cells undergo ER stress in the TME.
Interestingly, a study in mice demonstrated that XBP1
induction in CD4+ T cells inhibited the expression of the
glutamine transporters SLC1A5, SNAT1, and SNAT2 under
glucose deprivation, leading to reduced glutamine uptake and
oxidative phosphorylation, which limited IFNg production.
These results suggest that stress-inducing conditions in the
TME can force the immune cells to reduce their expression of
nutrient transporters and inhibit their nutrient uptake, therefore
paralyzing them from accomplishing their effector functions
(1, 26).

Lack of glutamine and glucose in the TME may shift ratios of
T cell subsets by supporting the development of regulatory T
cells (Treg) rather than effector T cells such as T helper 1 (Th1)
cells and Th17 cells (1, 27, 28). For example, the overexpression
of SLC1A5, SLC3A2, and SLC7A5 in breast cancer is
significantly associated with the existence of Foxp3+ Tregs and
poor patient survival (29). Treg cells and other infiltrating
regulatory cells, such as highly anabolic tolerogenic dendritic
cells, also compete for the nutrients and contribute to the
nutrient-limited TME. In addition, Treg cells produce
adenosine from ATP, which suppresses immune cell activity
via A2A, an adenosine receptor that suppresses IL-2 production
(1, 30).

SLC1A5, SLC3A2 and SLC7A5
Numerous studies have investigated the amino acid exchangers
comprised of SLC1A5 and SLC7A5 with the ancillary subunit
SLC3A2; these three proteins are among the highest
Frontiers in Immunology | www.frontiersin.org 3
differentially expressed genes in activated lymphocytes and
cancerous cells (1, 13, 31–35). SLC3A2, also known as CD98
or 4F2 heavy chain (4F2hc), is a type II membrane protein.
SLC3A2 dimerizes with several light chains of nutrient
transporters, such as SLC7A5, also known as LAT1, to act as
a chaperone and allow their localization to the plasma
membrane (33, 36). A report demonstrated that the SLC3A2/
SLC7A5 heterodimer is an amino acid exchanger that functions
in conjunction with SLC1A5, a sodium dependent antiporter
also known as ASC amino acid Transporter 2 (ASCT2) (35). In
this model, glutamine serves as a major substrate of the
SLC3A2/SLC7A5 bidirectional transport for the uptake of
essential amino acids (EAAs) such as L-leucine and L-
tryptophan. However, glutamine is a substrate with a very
low affinity for SLC3A2/SLC7A5 reconst i tuted on
proteoliposomes (37), therefore the critical role of glutamine
in driving the transport of L-leucine and EAAs in vivo remains
to be determined. Notably, in addition to the role of amino
acids as cellular building blocks or fuels, some of these EAAs
like L-leucine and L-arginine can function as signaling
molecules for mTORC1 activation (33). It has been shown
that the abrogation of these nutrient transporters negatively
impacts the effector functions of NK and T cells. For instance,
the deletion of SLC3A2 prevented T cell expansion, while the
deletion of SLC7A5 prevented T cell effector differentiation,
mTORC1 activation, and c-Myc expression (38–40). Deletion
of SLC7A5 also prevented the expansion of CD4 T cells and the
release of certain proinflammatory cytokines in mouse models
of skin inflammation (40). In addition, SLC7A5 and SLC1A5
deficient mice have defective metabolism and activation of
mTORC1 (34, 41). Moreover, pharmacological inhibition of
SLC1A5 and SLC3A2 was found to abrogate the effector
functions of NK cells, and inhibition of SLC7A5 in cytokine-
activated NK cells resulted in reduced c-Myc protein levels and
mTORC1 signalling (24, 31).
MOLECULAR REGULATION OF SLC1A5,
SLC3A2, AND SLC7A5

mTOR
The signaling pathways that regulate the metabolism of immune
cells, specifically NK and T cells, are a major focus of research
because they are linked to and are essential for their effector
functions. mTOR, a conserved serine/threonine kinase, is a
central metabolic regulator that promotes cellular growth,
proliferation, and survival. There are two main mTOR
complexes, mTORC1 and mTORC2, which participate in
distinct cellular processes. mTORC1 is essential for the
metabolic reprogramming that is critical for NK and T cell
effector functions (42–44). mTORC1 increases the expression
of SLC1A5, SLC3A2, and SLC7A5 by regulating the translation
and stability of the mRNA encoding the transcription factor
ATF4 (45, 46). ATF4 controls the expression of several amino
acid transporters, including SLC1A5, SLC3A2, and SLC7A5, as
April 2021 | Volume 12 | Article 624324
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well as other metabolic enzymes. It was shown that mTOR
inhibition reduces ATF4 levels as well as the levels of mRNAs
targeted by ATF4 (Figure 1), leading to a reduction in SLC3A2
and SLC7A5 expression (45).

The mTOR signaling pathway is a two-way street because
mTOR activity is affected by SLC1A5, SLC3A2, and SLC7A5
expression in a feed-forward fashion in addition to regulating
their expression (Figure 1). Since certain EAAs are important for
the induction of mTOR (35, 47), the expression of nutrient
transporters is critical to ensure proper nutrient uptake required
for optimal mTORC1 activation. It has been shown that the
upregulation of both the System L amino acid transporter
SLC7A5, and the glutamine-transporter SLC1A5, is essential
for mTORC1 activity (34, 35, 48, 49). These transporters allow
for the influx of amino acids such as leucine, which in turn
activates the nutrient-sensing Rag GTPases, enzymes upstream
of mTORC1 (48, 50–52). It is important to note that leucine,
arginine and other EAAs are sensed by both cytosolic and
lysosomal sensors and play a key role in mTORC1 activation
(50, 52–56). Under glucose restriction, mTORC1 activity is
negatively regulated by adenosine monophosphate-activated
protein kinase (AMPK) (47). Hence, in the TME, the reduced
availability of nutrients predisposes cytotoxic immune cells to
sub-optimal activation of mTORC1, which can negatively impact
Frontiers in Immunology | www.frontiersin.org 4
the metabolic fitness of the cells and reduce their anti-
tumor activity.

c-Myc Expression
c-Myc was shown to bind the promoters of SLC1A5 and SLC7A5
genes and upregulate their expression in cancer cells (Figure 1),
indicating that c-Myc acts to sustain amino acid uptake through
these transporters (57–59). c-Myc is essential for NK cell
metabolism and effector function upon IL-2/IL-12 stimulation
as well as for CD3/CD28 mediated metabolic reprogramming
and activation of T cells (24, 60). NK cells lacking c-Myc have
reduced metabolic activation upon cytokine stimulation,
characterized by reduced glycolysis and mitochondrial
respiration, accompanied by reduced IFNg production and
granzyme B expression (24). In T cells, c-Myc expression is
required for activation-induced glycolysis and glutaminolysis,
and glutamine uptake is crucial for T cell proliferation (59).
Interestingly, amino acid transport through SLC7A5 and
glutamine uptake through SLC1A5 were a requirement for c-
Myc induction in cytokine-stimulated NK cells, however the
presence of leucine was not required (24). The glutaminolysis
pathway converts the imported glutamine into glutamate and
then into a-ketoglutarate to feed into the TCA cycle and support
oxidative phosphorylation. In NK cells, glutaminolysis was not
FIGURE 1 | (A) Positive and (B) negative molecular regulations of SLC1A5, SLC3A2, and SLC7A5. SLC3A2, a type II membrane protein, dimerizes with the nutrient
transporter SLC7A5 to allow their localization to the plasma membrane. SLC1A5, the sodium dependent antiporter exchanges neutral amino acids (NAA) such as
threonine, asparagine or serine for glutamine and the SLC3A2/SLC7A5 heterodimer exchanges glutamine for essential amino acids (EAAs), most importantly L-
leucine. While the mTOR signaling pathway regulates the expression of SLC1A5, SLC3A2, and SLC7A5, these proteins can activate mTOR in a feed-forward
mechanism through the influx of essential amino acids (EAAs), especially leucine. (1) mTORC1 regulates the translation and stability of the mRNA encoding the
transcription factor ATF4, which in turn controls the transcription of SLC1A5, SLC3A2, and SLC7A5. (2) mTORC1 and the influx of EAAs regulate the expression of
the transcription factor c-Myc, which binds the promoters of SLC1A5 and SLC7A5 genes and upregulates their expression. (3) HIF-2a, a transcription factor that is
activated in response to hypoxic conditions, binds to the promoter of SLC1A5 and SLC7A5 and activates their transcription. (4) YAP1 and TAZ bind to the promoter
of SLC7A5 and activate its transcription. (5) The DNA- and RNA-binding protein YBX3 enhances the stability of SLC7A5 and SLC3A2 transcripts by binding directly
to their 3’ UTRs and prevents their degradation. (6) Under nutrient stress, LLGL2 forms a trimeric complex with SLC7A5 and a regulator of membrane fusion, YKT6,
allowing for the surface localization of SLC7A5 and thereby promoting cellular proliferation. (7) MARCH1 and MARCH8 ubiquitin ligases lead to the direct
ubiquitination of SLC3A2 and its degradation by endosomes and lysosomes.
April 2021 | Volume 12 | Article 624324
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required for the upregulation of c-Myc, even though glutamine
uptake was necessary for c-Myc upregulation (24). This suggests
that glutamine induces c-Myc expression through its exchange
with essential amino acids other than leucine via the system L
transporter. In summary, amino acid transport upregulates c-
Myc, which then stimulates the expression of the nutrient
transporters SLC1A5 and SLC7A5, as well as the ancillary
subunit SLC3A2 (Figure 1), in a positive feedback fashion,
enhancing the uptake of EAAs to sustain mTORC1 activity
and further support c-Myc expression (59). Notably, mTORC1
was required for the early induction of c-Myc in NK cells, but
was not necessary to maintain a sustained expression of
c-Myc (24).

Regulation in Hypoxic Conditions
Another transcription factor that binds to the promoter of
SLC7A5 is HIF-2a, a factor that regulates transcriptional
responses during hypoxic conditions in most mammalian cells
(Figure 1). Through the upregulation of SLC7A5, HIF-2a is able
to increase mTORC1 activity (61). This confers an advantage to
tumor cells in the hypoxic, nutrient-deficient TME and supports
their proliferation and growth. HIF-2a has also been shown to
induce the expression of a mitochondrial variant of SLC1A5
under hypoxic conditions (62). This variant of SLC1A5,
transcribed from a different transcription initiation site and
carrying an N-terminal signal for localization to the
mitochondria, was recently discovered in pancreatic cancer
cells (62). Overexpression of this variant enhanced cellular
metabolism and ATP production and increased gemcitabine
resistance, which would otherwise have a significant impact on
cancer cell growth in normoxia (62, 63). Consistently,
knockdown of the mitochondrial variant of SLC1A5 variant in
cancer cells leads to drastic tumor inhibition in vivo. It is
important to note that HIF-2a is also involved in the
regulation of other amino acid transporters, such as SLC1A1,
SLC1A3 and SLC38A2 as shown in certain tumor cells, that may
impact cell activity in hypoxic environments (64–66).

Cytokine-Mediated Upregulation
Pro-inflammatory cytokines that activate the effector functions
of lymphocytes tend to induce the upregulation of proteins
involved in amino acid transport, including SLC1A5, SLC3A2,
and SLC7A5. For instance, IL-2 stimulation of CD8 T cells was
shown to increase SLC7A5 expression, which was sustained with
continuous cytokine exposure (39, 67). Moreover, IL-2
upregulates SLC1A5 and SLC3A2/SLC7A5 in NK cells, and
these transporters are needed for IFNg production and
degranulation (31). IL-15 is one of the most potent cytokines
in enabling NK cell homeostasis and activation through the
mTOR pathway. During microbial infections, NK cells
stimulated with IL-15 display enhanced responses as well as
increased IFNg production. SLC1A5, SLC7A5, and SLC3A2
expression were increased upon treatment with IL-15 and, to a
lesser extent, upon IL-12 treatment. IL-2 and IL-15 induce
SLC1A5 and SLC3A2/SLC7A5 expression via the JAK3/STAT5
pathway (31, 68–70). Stimulation with IL-7 also resulted in
increased SLC1A5 and SLC7A5 expression in CD8+ T cells
Frontiers in Immunology | www.frontiersin.org 5
(41). Recently, we have shown that IL-18 is a key cytokine that
can induce a robust upregulation of these three amino acid
transporters in NK cells, consequently inducing leucine-driven
mTORC1 activation and metabolic transformation, leading to
enhanced proliferation and effector function (9).

Ubiquitination
One mechanism by which cells regulate their expression of
nutrient transporters is the process of ubiquitination-mediated
protein degradation. SLC3A2 trafficking is ubiquitin-dependent,
and multiple residues within SLC3A2 and SLC7A5 were identified
as ubiquitination sites (33). Ubiquitination is the addition of the
small protein ubiquitin or a chain of ubiquitin to substrates via
enzymatic processes . MARCH1 and MARCH8 are
transmembrane proteins that are mostly limited to immune cells
and that catalyze the ubiquitination of certain substrates; however,
MARCH8was also shown to be expressed in esophageal squamous
cell carcinoma and is associated with tumor growth (71–73). The
surface expression of SLC3A2 is downregulated when MARCH1
and MARCH8 are overexpressed (Figure 1). Those ubiquitin
ligases lead to the direct ubiquitination of SLC3A2 and its
degradation by endosomes and lysosomes (71). It was shown
that when a ubiquitination-resistant-mutant form of SLC3A2 was
expressed in T cells, cell proliferation and clonal expansion
increased (74), although this might be due to the role of SLC3A2
not directly linked to its transport function (75). Moreover,
knockdown of MARCH8 in HepG2 cells, a human liver cancer
cell line, enhanced the expression of SLC3A2 and the iron
transporter CD71 (76). A recent study showed that a deficiency
in MARCH1 causes heightened NK cell activation and production
of proinflammatory cytokines upon stimulation with LPS (72, 77).
The expression of MARCH proteins can be regulated by
extracellular stimulation. For example, TNFa stimulates the
upregulation of MARCH1 and results in further downregulation
of the SLC nutrient transporters (72). Thus, the expression of
MARCH1 and MARCH8 may contribute to maintaining the
homeostasis of immune cells during inflammation.

Other enzymes are also involved in the ubiquitination of the
nutrient transporters and their downregulation. For example, the
Nedd4-2 ubiquitin ligase was found to ubiquitinate the N-
terminal tail of SLC7A5 and elicit its downregulation and
endocytosis upon activation of protein kinase C by phorbol 12-
myristate 13-acetate (PMA) (78). Another example is the
ubiquitin-editing enzyme A20, which has been shown to
regulate mTOR activity in NK and T cells. Upon deletion of
A20, mTOR activity increased in both NK and T cells and
SLC3A2 expression was shown to be elevated in NK cells.
However, whether only SLC3A2 is regulated by A20 or if
transporters such as SLC1A5 and SLC7A5 are also targets of
A20 is unknown (79).

Regulation Observed in Non-Immune Cells
The Y-box (YBX) protein family, comprised of the three genes,
YBX1, YBX2, and YBX3, is associated with cellular processes like
cell proliferation and inflammatory diseases (80). In a recent
study, the DNA- and RNA-binding protein YBX3 was required
to maintain physiological levels of SLC7A5 and SLC3A2mRNAs.
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Knockdown of YBX3 in HeLa cells decreased the levels of
transcripts encoding SLC7A5 and SLC3A2, leading to reduced
protein expression. These reductions in amino acid transporter
expression resulted in a reduced influx of EAAs at a steady state.
YBX3 was shown to enhance the stability of SLC7A5 and SLC3A2
transcripts by binding directly to the 3’ UTR (Figure 1). A
SLC7A5 transcript that lacks the 3’UTR was stable in the absence
of YBX3, suggesting that the 3’ UTR contains a sequence that
guides the mRNA for degradation and that YBX3 protects the
sequence to prevent the transcript from degradation (80).

Another example of a protein that regulates the expression of
nutrient transporters is LLGL2. The mammalian homologues of
Drosophila Lgl, LLGL1, and LLGL2, are proteins that regulate
scaffolding and epithelial cell polarity. In estrogen receptor (ER)
positive breast cancers, LLGL2, but not LLGL1, is overexpressed,
and its high expression correlates with poor patient survival (81).
Notably, estrogen signaling induces LLGL2 expression, and
LLGL2 was required for estrogen-mediated proliferation of
breast cancer cells in low nutrients conditions (limited
concentrations of glutamine and leucine). Under nutrient
stress, as is the case in the TME, LLGL2 was shown to form a
trimeric complex with SLC7A5 and a regulator of membrane
fusion, YKT6. Indeed, LLGL2 was required for the surface
localization of SLC7A5, suggesting that LLGL2 promotes
tumor growth by upregulating nutrient transporters to enhance
nutrient uptake within a nutrient-limited microenvironment
(Figure 1). It is believed that ER+ patients develop resistance
to tamoxifen treatment because of the LLGL2/SLC7A5-
dependent adaptation to nutrient stress (81). Whether these
regulatory pathways also operate in immune cells remains to
be determined.

Finally, YAP1 and TAZ, downstream effector proteins of the
Hippo tumor suppressor pathway, are also examples of proteins
that upregulate SLC7A5 expression. The Hippo pathway is seen
to be downregulated in many cancer cells and when suppressed,
the downstream proteins YAP1 and TAZ promote transcription
of genes, like SLC7A5, that enhance cell proliferation. It has been
shown that YAP1 and TAZ bind directly to the SLC7A5 promoter
to upregulate its transcription and inhibition of SLC7A5 blocks
YAP1/TAZ-mediated tumorigenesis of hepatocellular carcinoma.
Through the upregulation of SLC7A5, YAP1/TAZ are able to
increase mTORC1 activity and tumor proliferation and
survival (82).
MANIPULATING THE AMINO ACID
TRANSPORTERS FOR CANCER
IMMUNOTHERAPY

Inhibiting the SLC Transporters for the
Treatment of Cancers
Since SLC1A5, SLC3A2, and SLC7A5 are important for the
metabolism, growth, and proliferation of cancer cells, these
transporters have been targeted pharmacologically to block
cancer cell growth and survival (46, 83–88). One inhibitor that
Frontiers in Immunology | www.frontiersin.org 6
has shown a favorable safety profile and modest evidence of anti-
tumor activity in phase I clinical trial for acute myeloid leukemia
(NCT02040506) is IGN523, a humanized anti-CD98 (anti-
SLC3A2) monoclonal antibody (89). Preclinical studies have
demonstrated that IGN523 exhibits potent anti-tumor activity in
vivo in several xenograft models such as patient-derived
lymphoma and non-small-cell lung carcinoma (90, 91).
Moreover, the LAT-1 (SLC7A5) inhibitor JPH203 showed
encouraging results in phase I clinical trial to treat advance solid
tumors (UMIN000016546) and is currently used in a placebo-
controlled randomized phase II study (UMIN000034080). The
study showed that treatment with JPH203 could achieve partial
response in one patient with biliary tract cancer who continued
treatment for two years without showing signs of disease
progression (91). In addition, SLC7A5 deletion in human colon,
lung, and kidney cancer cell lines resulted in mTORC1 inhibition
leading to tumor growth arrest in vitro and in vivo. Interestingly,
SLC3A2 deletion in the same cell types showed intact mTORC1
activity and tumor growth rate, but the cells were sensitive to
SLC7A5 inhibition via treatment with JPH203. Double knockout
of SLC3A2 and SLC7A5 in these cells resulted in a greater
reduction of mTORC1 activity and in vitro proliferation. This
indicates that residual SLC7A5 activity may allow normal cell
function in SLC3A2-deficient tumor cells. Also, this shows that
treatment of cancers with a SLC7A5 inhibitor or a combination of
SLC7A5 and SLC3A2 inhibitors would be more effective than
treatment with SLC3A2 inhibitor alone (92).

Although there is currently no SLC1A5 inhibitor being tested
in clinical trials, a few SLC1A5 inhibitors have shown promising
results in preclinical studies (93). One example is V-9302, which
was shown to increase cell death and abrogate cancer cell growth
in vitro and in vivo (94). Interestingly, other studies have shown
that SLC1A5 suppression or deletion fails to prevent tumor
growth, but this discrepancy could be due to the effect of the
mitochondrial variant of SLC1A5, which was previously
overlooked (62, 63, 95). Altogether, developing inhibitors that
target nutrient transporters, including the mitochondrial
SLC1A5 variant, is a promising new approach to weaken the
cancer cell metabolism and reduce tumor growth. However, such
inhibitors would likely target the nutrient transporters on
immune cells and thereby weaken the immune response
simultaneously; therefore, developing inhibitors that target the
nutrient transporters specifically on cancer cells would be ideal.
One exceptional example is that pharmacological inhibition of
glutamine uptake using the glutamine transporter inhibitor, V-
9302, selectively blocked glutamine uptake by triple-negative
breast cancer cells but not CD8+ T cells. Interestingly, CD8+ T
cells use a compensatory pathway to upregulate an alternative
glutamine transporter, SLC6A14, and sustain glutamine uptake
and effector function in V-9302-treated tumors (96).

Targeting Immune Cells for the
Upregulation of SLCs
The adoptive transfer of genetically engineered T cells or NK
cells expressing chimeric antigen receptors (CARs) that increase
the specificity of immune cells against the tumor is an attractive
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treatment plan in cancer therapy. However, these cells are still at
a disadvantage because they need to compete with cancer cells
for nutrients within the TME. Moreover, these CAR-modified
immune cells lack efficacy against solid tumors. A large area of
research is currently focused on enhancing the function and
maximizing the efficacy of CAR-NK and T cells by navigating the
metabolic barriers involved (14). For example, one study looked
into engineering the CAR-T cells to also express 4-1BBL, a ligand
that enhances T cell persistence by stimulating dendritic cells to
release supportive cytokines (14, 70, 97, 98). Another example is
engineering CAR-NK cells to secrete IL-15 to support NK cell
function in an autocrine fashion (99–101). A novel way to
enhance CAR-NK and T cell function is to upregulate the
SLC1A5, SLC3A2, and SLC7A5 transporters (Figure 2). Since
their upregulation is needed for immune cell proliferation and
effector function, engineering NK or T cells to overexpress these
amino acid transporters could be a promising direction in
immunotherapy. Such manipulations could potentially
strengthen the metabolic fitness of NK and T cells and become
a new approach to cope with the nutrient stress suffered in the
TME, thereby improving anti-tumor immunotherapies.
According to the mechanisms of regulation of the nutrient
transporters expression as discussed above, potential strategies
to enhance the expression of SLC proteins in immune cells also
include the overexpression of positive regulators and the deletion
or knockdown of negative regulators (Figure 2). Proteins to
overexpress include c-Myc and HIF-2a to activate the promoters
of SLC1A5 and SLC7A5, YAP1/TAZ to activate the promoter of
SLC7A5, the RNA-binding protein YBX3 to stabilize SLC3A2
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and SLC7A5 transcripts, and LLGL2 to increase surface
localization of SLC7A5. Genes to delete or knockdown include
those encoding the ubiquitination proteins like MARCH1 and
MARCH8 to upregulate SLC3A2, or XBP1 to upregulate the
glutamine transporters SLC1A5, SNAT1 and SNAT2. Moreover,
cytokine stimulation can be used to upregulate SLC transporters
expression. Many important cytokine receptors, including those
for IL-15, IL-12 or IL-18 are predominantly expressed on immune
cells and are absent on non-hematopoietic cells. Therefore,
cytokines can be harnessed to specifically enhance SLC
transporters expression and immune cell effector functions,
while having little effect on cancer cells of non-hematopoietic
origin. Arming the CAR-NK and T cells by engineering them to
upregulate SLC1A5, SLC3A2 and SLC7A5, or to secrete cytokines
in a controlled manner, could be a potential solution to
overcoming the nutrient deficiency in the TME. By doing so,
NK and T cells will have a metabolic advantage through their
increased ability to uptake glutamine, leucine and other amino
acids essential for their growth, proliferation and effector functions.
OF INTEREST – POSSIBLE ROLES IN
COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is the novel virus that is causing the mayhem of the COVID-19
pandemic worldwide. The SARS-CoV-2 invades cells through its
Spike Protein (SP), which binds to ACE2 or the recently
discovered CD147 on the host cell (102, 103). CD147 is
FIGURE 2 | Potential strategies to utilize SLC1A5, SLC3A2, and SLC7A5 to enhance the metabolic fitness of NK and T cells and thereby strengthen anti-tumor
immunotherapy. CAR-NK/T cells exhibit enhanced tumor recognition but are often metabolically disadvantaged in the TME. Upregulation of the SLC transporters in
CAR-NK/T cells using the proposed tactics could enhance their function, survival, and persistence in vivo. Possible strategies are (1) to genetically engineer CAR-
NK/T cells to overexpress these transporters, (2) to overexpress specific proteins that increase the expression of SLCs, (3) to knockdown genes that decrease the
expression of SLCs, and (4) to engineer CAR-NK/T cells to co-express cytokines, specifically IL-15, IL-12, or IL-18.
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expressed on the surface of immune cells, including NK cells and
CD4+ and CD8+ T cells, and the SARS-CoV-2 can invade these
cells through the SP-CD147 route (102, 104–106). In a recent
clinical trial, meplazumab, a humanized antibody targeting
CD147, was used to treat coronavirus patients, resulting in
improved clinical outcomes (107). Interestingly, CD147 forms
a super-complex with CD98hc (SLC3A2) and thus is associated
with the system L amino acid transporter. Moreover, knockdown
of CD98hc caused a depletion of CD147 (108). Therefore,
perhaps manipulating CD98 levels may provide other methods
to treat the new SARS-CoV-2.
CONCLUSION

In conclusion, the amino acid exchangers, SLC1A5 and SCL3A2/
SLC7A5 heterodimeric complex, are necessary for efficient
uptake of essential amino acids and immune cell metabolism.
They can also activate mTORC1, a metabolic regulator that
promotes cell metabolism and c-Myc, which promotes cell
growth, proliferation, and survival. Cancer cells have a
metabolic advantage and are superior in the uptake of
nutrients. They also create a hostile TME that makes it difficult
for the cytotoxic immune cells to adapt, infiltrate the tumors,
survive and defeat cancerous cells. Current anti-tumour
immunotherapies like CAR-NK/T cells, which enhance tumor
recognition, are often metabolically disadvantaged in the
nutrient deficient and hostile TME. Manipulating such
therapies to increase SLC1A5, SLC3A2, and SLC7A5
Frontiers in Immunology | www.frontiersin.org 8
expression in the immune cells could enhance anti-tumor
immunotherapy and lead to developments in the field.
Engineered NK and T cells could be modified to overexpress
these nutrient transporters or to co-express immune-stimulatory
cytokines. Upregulation of the SLC transporters in engineered
NK and T cells using the proposed tactics could increase their
effectiveness, function and survival in vivo, leading to better
prognoses in patients.
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