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Abstract The mammalian circadian clock regulates day–

night fluctuations in various physiological processes. The

circadian clock consists of the central clock in the

suprachiasmatic nucleus of the hypothalamus and periph-

eral clocks in peripheral tissues. External environmental

cues, including light/dark cycles, food intake, stress, and

exercise, provide important information for adjusting clock

phases. This review focuses on stress and exercise as potent

entrainment signals for both central and peripheral clocks,

especially in regard to the timing of stimuli, types of

stressors/exercises, and differences in the responses of

rodents and humans. We suggest that the common signal-

ing pathways of clock entrainment by stress and exercise

involve sympathetic nervous activation and glucocorticoid

release. Furthermore, we demonstrate that physiological

responses to stress and exercise depend on time of day.

Therefore, using exercise to maintain the circadian clock at

an appropriate phase and amplitude might be effective for

preventing obesity, diabetes, and cardiovascular disease.

Keywords Mammalian circadian clock � Liver � Muscle �
Oxidative stress

Introduction

Numerous physiological phenomena in the human body,

such as sleep–wake cycles, hormonal and nervous activity,

and body temperature, exhibit rhythmic changes over the

course of 24 h (Fig. 1) [1, 2]. These oscillations are regu-

lated by an internal circadian clock system, of which the

central pacemaker is located in the suprachiasmatic nucleus

(SCN) of the hypothalamus [3, 4]. Peripheral tissues also

contain circadian clocks that regulate local physiological

functions, and essential core clock genes such as Clock,

Bmal1, Per1/2, and Cry1/2 have been shown to cooperate

with each other to generate cell-autonomous oscillations

with circadian rhythm accuracy [1].

In addition, approximately 8–10 % of all genes exhibit

rhythmic mRNA expression, which is produced by several

important circadian transcriptional factors, including

RORs, PPARs, REV-ERBs, SREBPs, DBP, TEF, and HLF

[5, 6]. Recent microarray analysis demonstrated an overlap

of these genes in various tissues; however, there are also

large disparities in the expression of specific rhythmic

genes in each tissue, suggesting that each peripheral clock

regulates tissue-specific functions [7]. Moreover, post-

transcriptional and post-translational modifications, which

have been observed using recently developed sequencing

techniques, are also important factors that affect molecular

clocks and clock-regulated functions [8, 9].

Circadian clocks are invariably either fixed or are

adjusted by external stimuli, including sunlight for ‘‘photic

entrainment’’, and food/nutrition, temperature, arousal,

stress, and exercise for ‘‘non-photic entrainment’’ (Fig. 1)
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[1, 2]. In the case of photic entrainment, light stimuli are

conveyed directly to the SCN and transmit principal

information to master clocks [10, 11]. Furthermore, light

stimuli at the beginning of the active period cause phase

delays in the SCN and its associated activity rhythms [10],

whereas light stimuli at the end of the active period induce

a phase advance of the associated rhythms. Therefore, the

effects of external stimuli on the circadian system depend

on the time of day (this phenomenon is discussed further in

‘‘Time-of-day dependency of non-photic entrainment’’).

Food also has the potential to entrain peripheral clocks

but only has small effects on the master clock, since the light

signal is the most important stimulus in the SCN [12, 13].

Furthermore, scheduled feeding during the inactive period in

mice produces changes in sleep–wake cycles, hormonal and

temperature rhythms, and the expression of clock genes in

peripheral tissues. In addition to light and food, scheduled

stress or exercise stimulations have also been reported to be

important entrainment factors in mammals.

In this review, we focus on the entrainment of the

mammalian circadian clock and discuss the type of stress

(e.g., restraint, social defeat, sleep deprivation, or oxidative

stress) or exercise (e.g., endurance or resistance exercise),

timing of stimulation (e.g., morning or evening), duration

of stimulation (e.g., acute or chronic), and signaling path-

ways (e.g., sympathetic nerve activation or glucocorticoid

release). We also review circadian variation in responses to

stressor stimuli at different times of the day, as well as the

relationship between stress and exercise-induced entrain-

ment. Because both stress and exercise activate the

hypothalamic–pituitary–adrenal (HPA) and sympathetic–

adrenal–medullary (SAM) axes [14], we suggest that these

pathways could be involved in entrainment. In addition, we

discuss the beneficial effects of exercise on circadian

disturbances.

Stress-induced entrainment of the circadian clock

Effects of stress and sleep deprivation on the SCN

and behavior

Several studies have shown the phase-resetting effects of

acute stress stimuli such as sleep deprivation and social

defeat on the sleep–wake cycle of hamsters [15, 16]. For

example, in constant darkness, phase-shifts in locomotor

activity rhythms were strongly induced by 3 h of sleep

deprivation that was maintained using gentle handling [15,

16]. In addition, 3 h of wheel running also caused clear

phase entrainment of the behavioral rhythms in hamsters

[17], and 3 h of social defeat stress also caused a phase

shift. However, 3 h of restraint stress did not affect the

behavior of hamsters [16], and the treatments that did

induce acute phase-shift effects were comparatively small,

or not observed in rats [18]. Thus, the type of stimuli and

species affected are both important in phase entrainment of

the sleep–wake cycle.

The sleep–wake cycle is thought to be the main output

rhythm controlled by the SCN clock. In hamsters or mice,

for example, sleep deprivation causes rapid reduction in the

expression of C-FOS and PER1 proteins and Per1/2

mRNA in the SCN, although the phase entrainment after

these changes was not examined [15, 19]. However, in

mice, we demonstrated that, under normal light–dark

cycles, the SCN clock remains unchanged following 3 days

of 2-h restraint stress [20], which suggests that short-term

stressors have little effect on the SCN and SCN-regulated

activity rhythms in mice. This could be because the glu-

cocorticoid receptor is not expressed in the SCN [21].

However, the SCN clock is sometimes affected by long-

term stressors [22–25]. Kinoshita et al. [23], for example,

demonstrated that 3 h of restraint stress at Zeitgeber time
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Fig. 1 Schematic diagram of the mammalian circadian clock.

a External cues, such as light, food, stress, and exercise, entrain the

central (suprachiasmatic nucleus; SCN) and peripheral (peripheral

tissues) clocks. Light directly entrains the SCN, whereas other stimuli

reset the peripheral clocks, and entrainment depends on the timing of

stimulation. b The molecular clock is regulated by transcriptional

feedback loops of core clock genes, and oscillations of clock-

regulated genes in each tissue are controlled by various transcriptional

factors, including CLOCK/BMAL1, RORs, PPARs, REV-ERBs,

SREBPs, DBP, TEF, and HLF
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(ZT)6–9 for 7 consecutive days produced elevated glyco-

gen synthase kinase (GSK)-3b phosphorylation and blun-

ted PER2 rhythms in the SCN of mice (ZT0 and 12 are

defined as the start and end of the light period, respec-

tively). In addition, 19 days of social defeat stress during

the day or night induced changes in the expression of Per2

and Cry1 in the SCN of mice [22]. Moreover, chronic

(4 weeks) mild stress caused decreased amplitude of PER2

rhythms in the SCN of rats, whereas 7 days of mild stress

caused no alterations [25]. Thus, the sleep–wake cycle and

the SCN clock could be entrained or manipulated by

stressful stimuli; however, the effects are dependent on the

duration and type of stimuli, as well as on the animals

affected.

Effect of stress on peripheral circadian clocks

We recently reported that both acute and sub-acute

physiological/psychological stress have tremendous

potential to entrain the phases of peripheral circadian

clocks in mice, similar to food-induced entrainment

(Fig. 2) [20]. We demonstrated that several days of

restraint stress or social defeat stress could cause strong

phase changes in the PER2::LUC bioluminescence

rhythms of the liver, kidney, and submandibular gland in

mice and that the effects of the stimuli depended on the

time of day and varied with the length (number of days) of

stimulation [20]. In fact, we demonstrated that 3 days of

restraint stress at ZT4–6 caused a phase advance (4–6 h)

of peripheral PER2::LUC rhythms (Fig. 2) [20]. Further-

more, we also determined the stress-induced entrainment

of the adrenal gland, cortex, and hippocampus and found

that, in contrast to peripheral tissues, the SCN was not

affected [20].

Other previous studies have attempted to identify the

effect of stressful stimuli on the peripheral clocks in

depression models of mice and rats; however, only small

phase changes were observed, with no reduction in

amplitude. For example, Takahashi et al. [25] demon-

strated that 7 days of chronic mild stress induced phase
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Fig. 2 Stress-induced phase shift of peripheral PER2::LUC rhythms.

a Experimental schedule; 2-h restraint stress was performed for

3 days at Zeitgeber time (ZT)4–6 in PER2::LUC mice and, subse-

quently, the rhythm of in vivo bioluminescence was monitored.

b Representative images of in vivo PER2::LUC bioluminescence in

kidney (upper panels), liver, and submandibular gland (sub gla)

tissues (lower panels). c Normalized PER2::LUC oscillations in

control and stress groups show phase advancement in the stressed

group. Values are expressed as mean ± SEM. The P values shown on

the lower right side of the graphs indicate the results of two-way

ANOVA (with Tukey post hoc test) between the control and stress

groups. *P\ 0.05, ***P\ 0.001 (modified from [16])
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advancement of the rhythmic expression of liver clock

genes in BALB/c mice; however, the phenomenon was

not observed in C57BL/6 mice. Chronic (2-week) day-

time social stress was also shown to cause phase

advancement (1–2 h) in the PER2::LUC rhythms of

cultured adrenal and pituitary glands [24], and in our

most recent study, we found that 4 weeks of restraint

stress (3 days week-1) elicited habituated responses in

the phase entrainment of peripheral PER2::LUC

rhythms, with no reductions in amplitude [20]. Thus, it

seems that the phases of peripheral clocks could gener-

ally be changed by acute or sub-acute stressful stimuli,

although habituation to chronic stressful stimuli can

reduce these effects.

Entrainment pathways of stress-induced phase

changes

The pathways involved in stress-induced entrainment of

peripheral clocks have also been investigated, and along

the HPA axis, glucocorticoids, which are secreted from the

adrenal gland in response to stressful stimuli, have been

identified as powerful factors, both in vitro and in vivo

[21]. Functional glucocorticoid response elements (GREs)

in the promoter regions of Per1, Per2, and E4bp4 have also

been reported as possible factors in the signaling mecha-

nisms of molecular clocks [26, 27], and the expression of

Rev-erba in the liver has been reported to decrease in

response to glucocorticoid treatment via GREs [28]. In our

most recent study, we also confirmed that dexamethasone

(an analog of corticosterone) induced phase entrainment of

peripheral PER2 rhythms in the liver, kidney, and sub-

mandibular gland [20]. Restraint stress-induced Per1

expression in the liver through GRE has also been reported

[29], and the ablation of glucocorticoid effects via

adrenalectomy was shown to disrupt PER2 oscillations in

the bed nucleus of the stria terminalis (BNST) [30], sug-

gesting that adrenal hormones play an important role in

maintaining appropriate circadian rhythms in peripheral

tissues in vivo.

Furthermore, sympathetic activation of the SAM axis

during stressful stimulation also causes phase changes in

peripheral clocks [20], and the administration of adrenaline

or noradrenaline induces Per1 and Per2 expression through

the cAMP response element-binding protein (CREB) sig-

naling pathway [31–33]. Thus, the SAM axis is another

pathway involved in stress-induced peripheral clock

entrainment.

In addition, restraint stress also induces strong

expression of the HO-1 gene and causes oxidative stress

by reducing levels of superoxide dismutase (SOD), glu-

tathione-S-transferase (GST), and catalase [34]. Because

cellular oxidative stress from the administration of H2O2

has been reported to reset the expression of clock genes

in vitro [35], it is also likely that oxidative stress, as a

consequence of physiological stress, could be one of the

important pathways in stress-induced phase shifts

in vivo. Therefore, several pathways, including the HPA

and SAM axes and oxidative stress, may all be involved

in the regulation of stress-induced peripheral clock

entrainment.

Time-of-day dependency of non-photic entrainment

The construction of phase response curves (PRCs), in

which phase shift values are plotted against the timing of

stimuli, is helpful for understanding the properties of

entraining stimuli. In a previous study [20], for example,

we constructed the PRC of restraint stress-induced

peripheral PER2::LUC entrainment and found that phase

and amplitude changes were dependent on time of day

(Fig. 3): stress at ZT4–6 caused phase-advancement (pos-

itive shifts) and stress at ZT18–20 caused phase-delay

(negative shifts).

Interestingly, we also found that stress at ZT0–2 caused

desynchronization of PER2::LUC among tissues and

decreased PER2::LUC amplitude in the kidney (Fig. 3b).

This phenomenon in the kidney has been previously

attributed to singularity behavior, which constitutes a

potent entraining stimulus delivered at the critical transi-

tion from phase-delay to phase-advancement, resulting in

desynchronization of individual cellular clocks [36–38].

Ukai et al. [37] also observed this phenomenon (i.e.,

stopping the oscillation of clock gene expression) in mel-

anopsin-transfected NIH3T3 cells in vitro and in SCN

clocks in vivo, in response to light perturbation. The PRC

of stress entrainment follows a similar trend to that of light-

induced singularity, since ZT0–2 is the transition phase of

the PRC (Fig. 3).

In addition, we recently constructed the PRC of caf-

feine-induced peripheral PER2::LUC phase entrainment

in vivo and demonstrated that similar singularity behav-

iors occur in the liver, kidney, and submandibular gland,

as a result of caffeine injections at ZT1 (Fig. 4) [39].

Administration of caffeine induces potent arousal through

adenosine receptors. Thus, non-photic entrainment might

be induced by caffeine injections. However, for dexam-

ethasone-induced entrainment, Balsalobre et al. [21]

constructed the PRC of liver Dbp expression rhythms and

found no singularity phenotypes at the transition phase,

since singularity could be shown by an infinitesimal

range of perturbation strengths and timing [37]. There-

fore, the construction of PRCs that represent various

timings and strengths of stimuli will be necessary to

further understand the entraining stimuli of the circadian

clock system.
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Fig. 3 Time-of-day dependence of circadian changes in response to

restraint stress. a Phase-response curves of the response of peripheral
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Circadian clock regulation in the stress response

Circadian regulation of the HPA axis

The HPA axis is regulated by the circadian clock system

[40]. Elevated levels of circulating glucocorticoids have

been observed at the end of the resting phase and are

thought to be released in preparation for waking up in the

morning. The HPA axis comprises endocrine negative

feedback loops that involve the neuropeptides corti-

cotropin-releasing hormone and arginine vasopressin in the

paraventricular nucleus (PVN), adrenocorticotropic hor-

mone (ACTH) from the pituitary, and glucocorticoids from

the adrenal glands. Each phase of the HPA axis is con-

trolled by circadian rhythms. For example, the expression

of c-Fos (a marker of neural activity) in the PVN exhibits

circadian changes, with high expression levels at the

beginning of the dark phase in mice [41, 42]. In addition,

serum ACTH and corticosterone concentrations exhibit

similar circadian oscillations. Moreover, since these

rhythms were not observed in animals with SCN lesions

[43, 44] or in knockout (KO) mice with clock gene muta-

tions [45, 46], the HPA axis may be regulated by the master

clock.

However, Son et al. [47] demonstrated that knockdown

of the adrenal-specific Bmal1 in mice resulted in disrupted

rhythms of corticosterone production, via rhythmic

expression of the StAR gene in the adrenal gland, sug-

gesting that local clock genes are also important regulators

of the circadian cycle of the HPA axis. Furthermore, these

mice exhibited abnormal locomotor activity and abnormal

expression of clock genes in other peripheral tissues, which

suggests that the adrenal clock moderates time-related

communication among tissues [47]. However, adrenalec-

tomized mice exhibit no alteration in the expression of

clock genes in the liver [48, 49].

Although circadian rhythms of basal corticosterone

circulation exist, restraint stress-induced corticosterone

levels are similar, whether in response to daytime or

nighttime stress [42]. Therefore, the ratio of corticosterone

release in response to stress is higher at the beginning of

the light phase than at the onset of the dark phase. In

addition, Bmal1 KO mice exhibit lower levels of corti-

costerone induction in response to restraint stress and lower

feedback activity of dexamethasone-induced suppression

of corticosterone secretion than wild type (WT) mice.

Bmal1 KO mice also display manic-like behavior in the

forced swim test [45]. Thus, the hypothalamic and adrenal

clocks regulate both the HPA axis and the stress response.

Furthermore, dysfunction of the HPA axis induces mood

spectrum disorders, such as major depression [50]. Rotat-

ing nighttime shift work, for example, increases the risk of

depressive symptoms [51, 52], and in the mouse model of

chronic jet lag, exposure to a 7-h light–dark cycle

(3.5 h:3.5 h = light:dark) caused depressive behavior with

increased serum corticosterone, demonstrating that dis-

rupted sleep–wake cycles are linked to mood disorders.

However, in rodents, clock gene mutations (e.g., Bmal1

KO mice and Per2 or Clock mutants) cause hyperactivity,

manic-like behavior, and low anxiety that could be attrib-

uted to an increase in the dopaminergic activity of the

ventral tegmental area (VTA) via changes in the genes for

tyrosine hydroxylase and monoamine oxidase A [45, 53–

55]. In addition, changes in the genes for tyrosine

hydroxylase and monoamine oxidase A also increase the

risk of cocaine addiction [56]. Therefore, impairments in

the expression of clock genes are, in turn, linked to anti-

depressive behavior.

On the other hand, there are many reports of single-

nucleotide polymorphisms (SNPs) found in clock genes

of patients with mood spectrum disorders, such as bipolar

disorder, unipolar disorder, and seasonal affective dis-

order [57]. Thus, further research is required to investi-

gate the relationship between moods and the circadian

clock.

Circadian regulation of oxidative stress

Responses of the antioxidant pathway to oxidative stress

also exhibited day–night differences. For example, the

severity of bleomycin-induced lung fibrosis in mice

exhibited an association with the timing of treatment;

fibrosis was more severe in mice treated at ZT12 than in

those treated at ZT0 [58]. This was owing to circadian

variation of a key antioxidant regulator, nuclear factor

erythroid-derived 2-like 2 (Nrf2), which is regulated by

CLOCK/BMAL1 through the E-box [58, 59]. Miura

et al. [60] also demonstrated that cadmium-induced

mortality is affected by circadian variations, since the

toxicity of cadmium was higher at ZT8 than at ZT20,

and hepatic glutathione (GSH) was lower at ZT8 than at

ZT20.

In addition to Nrf2 and GSH, many other antioxidants

and antioxidant genes exhibit day–night fluctuations as

well, including glutathione S-transferases, cyclooxygenase-

2, catalase, and hepatic metallothionein [61–63]. However,

the disruption of circadian systems in Bmal1 KO mice

results in increased levels of reactive oxygen species in

peripheral tissues, compared to the levels in WT mice, and

accelerates aging [64]. Thus, the circadian clock system

regulates the responses of oxidative stressors by regulating

antioxidant pathways.
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Exercise and the circadian clocks

Exercise and the entrainment of the circadian clocks

Exercise represents another non-photic phase-shifting cue

that entrains circadian clocks. Some studies have shown

that exercise shifts the phase of circadian rhythm of wheel

running behavior in rodents under constant dark conditions

[17, 65]. For example, Maywood et al. [19] reported that,

under constant dark conditions, the expression of Per1 and

Per2 in the SCN was changed by wheel running.

In addition, the timing of exercise is also involved the

regulation of circadian clocks. Wheel running at the onset

of the active phase decreases the amplitude of Per2 in the

SCN more than that at the end of the active phase [66], and

scheduled exercise can entrain the molecular clocks of

skeletal muscle and lungs, but not the SCN, under light–

dark conditions [67]. Recently, we also demonstrated

scheduled exercise-induced entrainment of Per2 in the

submandibular gland [68]. These results suggest that

scheduled exercise entrains the molecular clock in both the

SCN and peripheral tissues, although exercise-induced

entrainment of the master clock is limited under non-light

conditions.

Similar to the studies in mice and rats, exercise-induced

phase shifts of the circadian rhythm have also been

observed in humans [69–74]. For example, Barger et al.

[69] reported that exercise accelerated forced sleep-in-

duced phase delays of circadian rhythms in humans. Dur-

ing their study, the daily rhythm of plasma melatonin levels

was used as a parameter of circadian rhythms, and the 9-h

sleep schedule-induced phase delay of the circadian

melatonin rhythm was facilitated by bicycle ergometer

exercise under dim light conditions.

Yamanaka et al. [75] also reported that exercise had

differential effects on the circadian melatonin rhythm and

the sleep–wake cycle. Apparently, exercise accelerated the

re-entrainment of the sleep–wake cycle, but not the mela-

tonin rhythm, under dim light and a restricted phase-ad-

vanced sleep schedule [75]. Moreover, Yamanaka et al.

[74] investigated the effects of exercise on the circadian

melatonin rhythm and sleep–wake cycle under bright light

and 8-h phase-advance shifted sleep–wake schedule. The

sleep–wake cycle was entrained by the sleep schedule,

regardless of the presence of exercise, but phase-ad-

vancement of the circadian rhythm of melatonin was

dependent on exercise. Thus, the combination of light and

exercise is a strong entrainment cue for circadian rhythms

in humans.

Zambon et al. reported that resistance exercise changed

the expression of the molecular clock in human skeletal

muscle [76]. The resistance exercise (ten sets of eight

repetitions of isotonic knee extension at 80 % of the pre-

determined one-repetition maximum) changed the gene

expression of circadian clocks in the skeletal muscle of

humans, suggesting that both resistance and endurance

exercise are capable of producing phase shifts in circadian

genes of skeletal muscle.

Entrainment pathways of exercise-induced phase

changes

The potential pathways involved in exercise-induced

entrainment of peripheral clocks includes the HPA and

SAM axes, since several studies have reported their acti-

vation by both exercise and stress [77–81]. However,

plasma corticosterone levels exhibit day-to-night fluctua-

tions and are highest at the end of the resting phase. Some

reports have demonstrated that wheel running only

increases corticosterone levels at the end of the resting

phase [82, 83], and Fediuc et al. [78] reported that sus-

tained exercise gradually reduced both corticosterone

releases.

It is thought that central and peripheral catecholamines

regulate the exercise-induced elevation of plasma corti-

costerone [84]. Although the stress-induced elevation of

plasma corticosterone is thought to involve ACTH secre-

tion, the elevation of ACTH is not observed during vol-

untary exercise, such as wheel running. However, stressful

exercise, such as treadmill running, has been shown to

increase both ACTH and stress levels in rodents. These

findings suggest that the mechanisms of exercise-induced

elevations in corticosterone levels differ depending on the

type and intensity of the exercise.

Exercise and circadian disturbance

Some studies have demonstrated beneficial effects of

exercise on circadian disturbance. For example, skeletal

muscle in Clock mutant mice exhibits decreased mito-

chondrial content and exercise intolerance [85]; however,

endurance exercise for 8 weeks increases skeletal muscle

mitochondrial levels and exercise tolerance. Schroeder

et al. [66] also reported that the rhythmic deficits observed

in vasointestinal polypeptide (VIP)-deficient mice were

improved by wheel running. The VIP-deficient mice dis-

played advanced phases in activity, heart rate, and body

temperature rhythms, and a decreased amplitude of Per2

expression in the SCN.

However, the VIP-deficient mice only improved in

response to wheel running at the end of the active phase,

not at its onset [66], and we recently demonstrated that

wheel running at the end of the active phase controlled

high-fat diet-induced obesity in mice more than at the onset
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of the active phase [86]. Therefore, although much research

has focused on the beneficial effects of exercise itself, the

work of Schroeder et al. and ourselves has demonstrated

the importance of exercise timing in the resolution of cir-

cadian disturbance and metabolic disorder [66, 86].

Conclusions and perspectives

Based on recent findings, stress and exercise are potent

entraining cues for peripheral clocks and sometimes for the

central clock. The disturbance of circadian rhythms occurs

in several disorders such as cardiovascular disease, obesity,

and diabetes [87]. Recent studies have also shown that

scheduled feeding can enhance the circadian oscillations of

clock genes and metabolic genes, potentially conferring

tolerance to high-fat diet-induced obesity and age-related

cardiovascular failure [88, 89]. These findings suggest that

the timing of meals is an important factor for good health.

In addition, exercise may also be a beneficial and powerful

tool for the maintenance of circadian rhythms and good

health. However, further evidence is needed.
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