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Abstract: Vertically aligned zinc oxide (ZnO) nanowires were hydrothermally synthesized on
a glass substrate with the assistance of a pre-coated ZnO seeding layer. The crystalline structure,
morphology and transmission spectrum of the as-synthesized sample were characterized by X-ray
diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and ultraviolet-visible
(UV-Vis) spectrophotometry, respectively, indicating a wurzite ZnO material of approximately 100 nm
wire diameter and absorbance at 425 nm and lower wavelengths. The photocatalytic activity of
the sample was tested via the degradation of methyl orange in aqueous solution under UV-A
irradiation. The synthesized nanowires showed a high photocatalytic activity, which increased up to
90% degradation in 2 h as pH was increased to 12. It was shown that the photocatalytic activity of
the nanowires was proportional to the length to diameter ratio of the nanowires, which was in turn
controlled by the growth time and grain size of the seed layer. Estimates suggest that diffusion into
the regions between nanowires may be significantly hindered. Finally, the reusability of the prepared
ZnO nanowire samples was also investigated, with results showing that the nanowires still showed
97% of its original photoactivity after ten cycles of use.
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1. Introduction

Industrial effluents, as well as household wastewater, have been major sources of residual dye
pollutants that enter the environment and are not readily biodegradable. Traditional ways of treatment,
such as adsorption on activated carbon, chemical precipitation and separation, and coagulation
are non-destructive methods and only transfer dyes from one phase to another, causing secondary
pollution and requiring further treatment [1-3]. In recent years, extensive research has been done
on semiconductor-based heterogeneous photocatalysis, which has been found to be very effective
in degrading a wide range of organic pollutants into non-hazardous non-toxic byproducts under
ultraviolet (UV) or visible light irradiation. The semiconductors such as titanium dioxide (TiOy),
zinc oxide (ZnO) and zinc sulfide (ZnS) act as a photosensitizer to generate electron-hole pairs
upon irradiation with a suitable wavelength. These can either recombine or react with other species
separately to produce strong oxidizing agents like hydroxyl or super oxide radicals [4,5].

Although TiO, has been widely used for many environmental applications due to a faster electron
transfer rate [6], large-scale application of TiO, in industrial wastewater treatment has generally not
proven to be economical. ZnO, with a similar band gap energy and photodegradation mechanism
as TiO, appears to be a suitable alternative [7,8]. In fact, ZnO absorbs a larger fraction of the solar
spectrum than TiO; due to the existence of a larger number of inherent active surface defect sites,
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and hence exhibits a higher photoactivity under visible light [9]. It has also been reported that ZnO
has a higher quantum efficiency and photocatalytic efficiency than TiO, [10-13] due to its effectiveness
in generation and separation of photon-induced electron-hole pairs [14,15]. ZnO is also abundant in
nature, non-toxic, has a variety of production methods [16] and is easier to grow either in the form of
powder [17] or on top of various substrates [18-20].

Up to now, much effort has been done to prepare the photocatalytic materials including ZnO and
TiO; in the form of fine powders, as a high surface area generally gives a high photocatalytic efficiency.
However, these fine powders tend to aggregate in the solution leading to severely reduced effective
surface area. Most importantly, the separation and recovery of the nanosized photocatalysts from
the reaction suspension is highly difficult, which limits its practical use in industry [21]. One way to
eliminate this issue is to immobilize the photocatalysts onto a fixed substrate, using various thin film
deposition techniques [22,23].

Compared to the nanoparticles deposited on a flat surface, one-dimensional nanostructures,
such as nanowires grown on a substrate, offer a larger surface-to-volume ratio, and hence a higher
photocatalytic activity through enhanced adsorption of target organic molecules onto the catalyst
surface [24]. Moreover, the recombination rate of photon-induced electron-hole pairs is much lower
in 1D nanowires compared to the 0D nanoparticles [25], which further contributes to the enhanced
photocatalytic efficiency of nanowires over nanoparticles. There are also other advantages in stabilized
nanowire structures, such as a wide choice of substrate materials and geometries, which make them
a good candidate as photocatalysts.

Therefore, it is of practical use to fabricate well-aligned ZnO nanowires on flat substrates, to
avoid aggregation of the photocatalysts and to eliminate the difficulty of separation and recovery
of the photocatalysts from the reaction mixture. To date, there are several methods available to
synthesize ZnO nanostructures, such as vapor liquid solid (VLS) growth [26], chemical or physical
vapor deposition (CVD/PVD) [27,28], pulsed laser deposition (PLD) [29]. However, most of these
methods use severe conditions such as high temperature, high pressure, expensive materials and
complex procedures [30]. Hydrothermal methods, on the other hand, have many advantages such
as low cost, ease of handling, low energy consumption and scalability, and hence have recently
received attention for the synthesis of 1D nanostructures [24,30]. In photocatalytic applications,
hydrothermal methods are even more advantageous as hydrothermally grown ZnO nanowires have
more inherent crystalline defects, primarily due to oxygen vacancies [31], which give the structures
high photocatalytic activity under visible light even without doping with transition metals [32].

In this work, we prepared the well-aligned ZnO nanowires on glass substrates pre-coated with
ZnO seeding layers, by adapting a hydrothermal method reported by Joo et al. [33]. The crystallinity,
structure, and morphology of the ZnO nanowire arrays were characterized by X-ray diffraction
(XRD) and field-emission scanning electron microscopy (FE-SEM). The photocatalytic efficiency of the
prepared ZnO nanowires was investigated based on the photodegradation rates of methyl orange (MO)
solution. The effects of pH and initial dye concentration of the reaction solution on the photocatalytic
efficiency of the ZnO nanowire arrays were also explored.

2. Materials and Methods

2.1. Synthesis of ZnO Nanowires

In this work, all materials except deionized (DI) water and ethanol were used as received from
Sigma-Aldrich (Oakville, ON, Canada) unless otherwise noted. DI water was used to make all the
aqueous solutions. ZnO nanowires were synthesized using a hydrothermal method adapted from
Joo et al. [33], in which two steps were involved. The first step was the fabrication of zinc oxide seed
layers, which were deposited onto glass substrates with size of 25 by 51 mm. The glass slides were
first cleaned using isopropanol, and then rinsed with DI water and dried. A sol-gel solution for ZnO
seed layers were prepared using 0.7 M zinc acetate dihydrate [Zn(CH3COO),-2H,0)] as the precursor,
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0.7 M monoethanolamine as the stabilizer and ethanol as the solvent. The resultant solution was stirred
for 10 min to yield a clear, homogeneous and transparent solution. The seeding layer was fabricated by
spin coating of a sol-gel solution (0.7 M zinc acetate dehydrate and 0.7 M monoethanolamine in 100 mL
ethanol) onto pre-cleaned glass substrates (2 x 1 x 1 mm) at 3000 rpm for 40 s. This was followed
by curing on a 250 °C hotplate for 10 min to evaporate the solvent, remove the organic residuals,
and improve ZnO particle adhesion onto the substrate.

The seeded substrate was then placed upside down in a 100 mL solution in a closed jar
containing 10 mM zinc sulfate and 300 mM ammonium chloride, with pH adjusted to 11 by diluted
sodium hydroxide solution. The jar was placed in a convection oven and held at 60 °C for 6 h.
The hydrothermally treated samples were then rinsed with DI water several times to eliminate residual
salts or amino complexes, and air dried.

2.2. Characterization

The crystalline structure of the synthesized ZnO nanowire arrays was analyzed by XRD using
XPERT-PRO diffractometer system (PANalytical, St. Laurent, QC, Canada) with Cu K« radiation
(A = 1.54056 A) at 45 kV and 35 mA, by scanning from 20° to 90° (20) using a step size of 0.05° and
1.0 s per step. The morphology and size of the grown ZnO nanowires were characterized by FE-SEM
(LEO 1550, Zeiss, Toronto, ON, Canada). Finally, the ultraviolet-visible (UV-Vis) transmission spectra
of the synthesized ZnO nanowire arrays were recorded by the HP Hewlett Packard 8452A Diode Array
Spectrophotometer (HP, Mississauga, ON, Canada) over the wavelength range of 200-800 nm.

2.3. Photocatalytic Activity Test

The photocatalytic performance of the samples was evaluated by measuring the photocatalyzed
discoloration rate of the test dye MO in aqueous solution. A glass substrate with nanowires grown on
top of it was placed in a Petri dish with a diameter of 60 mm and a depth of 15 mm, to which 10 mL of
a 5 mg/L MO solution was added. The UV light source used was comprised of three 40 W Philips
low-pressure UV-A fluorescent lamps with main emission wavelength at 365 nm and an incident light
intensity of about 70 mW /cm?. The light intensity was measured without MO solution, while in the
photocatalytic tests MO solution would absorb a part of the light flux. A blank test was carried out
with the same photon flux and no ZnO photocatalysts, where degradation wasn’t observed. Therefore,
even though the UV absorption of MO may initiate reaction and photosensitization, the degradation
of MO is mainly caused by the presence of photocatalysis which will be shown in the following results.
Prior to irradiation, the solution was stirred in dark for 10 min to ensure adequate adsorption of the
dye onto the catalyst surface, as determined in preliminary tests where the change in concentration
during this period was approximately 0.5 mg/L. The first sample was taken right after the dark
adsorption period to determine the absorbance at 464 nm (Aj), which was regarded as the initial
concentration of MO (Cp). Constant stirring of the solution was achieved by using a magnetic stirrer,
and the petri dish was covered with a UV-A transparent cover to minimize evaporation of solvent.
Samples were taken from the solution at regular time intervals and immediately analyzed to determine
its instantaneous absorbance (A) at 464 nm, which is the maximum absorption wavelength of MO.
After absorbance measurement, the samples were returned to the reaction solution and the irradiation
continued. The degradation efficiency was calculated using Equation (1):

Co=C 1o = A=A
0 0

Degradation = x 100% €))]

where Cy and C are the initial and post-irradiation concentration of the dye, respectively; while Ay and
A are the initial and post-irradiation absorbance of the MO solution at 464 nm, respectively.



Nanomaterials 2017, 7,9 40f 13

3. Results and Discussion

3.1. Characterization of ZnO Nanowires

Figure 1 depicts the XRD patterns of the as-prepared ZnO nanowire arrays grown on the glass
substrate pre-seeded with ZnO nanoparticles using the hydrothermal method. It is observed that all
the diffraction peaks are in good agreement with the standard ZnO hexagonal wurtzite crystalline
structure on the JCPDS card, with measured lattice constants (2 = b = 3.2498 A, ¢ = 5.2066 A) being
the same as the indexed ones [33]. A dominant diffraction peak for the (002) plane at 26 = 34.43°
indicates a high degree of anisotropic growth of ZnO nanowires along the c-axis vertical to the glass
substrate surface. The peak is very strong and narrow, demonstrating a high degree of crystallinity of
the prepared ZnO nanowires. Moreover, there are no other distinct peaks from impurities detected,
indicating that the product is very pure. The results obtained from the XRD analysis are similar to the
results reported by Joo et al. [33] and other groups [32,34-36].
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Figure 1. X-ray diffraction (XRD) patterns of the synthesized ZnO nanowire arrays.

Figure 2 shows the SEM images of the prepared ZnO nanowire arrays, with both the top view and
cross-sectional view. It can be easily seen that the nanowires are very well vertically aligned and closely
packed onto the substrate, with an average diameter and length of approximately 100 nm and 1.5 um,
respectively. From the higher magnification image inserted in Figure 2A, it can also be observed that
the synthesized nanowires demonstrate the hexagonal wurtzite structure, which confirms the XRD
results in Figure 1, and are in good agreement with other publications about hydrothermal synthesis
of ZnO nanowires [20,32,33,37].

Figure 2. Scanning electron microscopy (SEM) images of the as-synthesized ZnO nanowire arrays:
(A) top view; (B) cross-sectional view.

The UV-Visible transmittance spectra of the prepared ZnO nanowire arrays and the glass substrate
are presented in Figure 3, which shows that the glass substrate is highly transparent (92% transmittance)
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in the visible region (400-700 nm) while the ZnO nanowires are capable of absorbing a small amount
of visible light (86% transmittance). Both the ZnO nanowires and their glass substrate exhibit a sharp
absorption band in the UV region (transition is 350-400 nm for ZnO nanowires, and 260-350 nm for
glass slides). In this experiment, under the light source with main emission wavelength of 365 nm,
96% of the incoming light is absorbed by ZnO nanowire arrays for photocatalytic reactions, while the
absorption by the glass substrate is negligible (8%).
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Figure 3. Ultraviolet-visible (UV-Vis) transmittance spectra of the prepared ZnO nanowire arrays and
the standard glass substrate.

3.2. Photocatalytic Activity of ZnO Nanowires

Since some dyes can be degraded by direct UV irradiation without the assistance of catalysts [38],
a blank experiment was carried out in the absence of the ZnO nanowire catalysts, while holding all
other parameters the same. It can be seen from Figure 4 that in the presence of ZnO nanowires, 96% of
dye was degraded after 4 h of irradiation; while in the presence of the ZnO seed layer, 86.7% of dye
was degraded after 4 h. In contrast, there was no significant degradation of MO observed after 4 h for
the same experiment performed in the absence of any ZnO material.

Reproducibility of the nanowire synthesis and photoreaction was tested using three replicate
preparations. The MO degradation rates of the three samples were consistent throughout the
experiment varying by only a maximum value of 3% over the 4 h reaction period, indicating that the
synthesis method used in this study gives a very consistent result.
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Figure 4. Photodegradation rates of methyl orange (MO) solutions in the presence of ZnO nanowires,
ZnO seed layer, and without both.
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3.3. Effect of pH and Initial MO Concentration

Due to the amphoteric property of many semiconductor oxides, it is very important to investigate
the effect of pH in the dye solution on the reactions that take place on the semiconductor surfaces,
as pH is a main factor that influences the surface charge profile of the photocatalysts [39]. Experiments
were carried out in the pH range 4-12 in the aqueous dye solution. Figure 5 depicts the degradation
rates of MO solutions with different pH values photocatalyzed with the prepared ZnO nanowire arrays.
It is observed that the extent of photocatalysis increases with increasing pH, exhibiting a maximum rate
of degradation at pH 12. Kansal et al. [40] observed similar results in their studies on pararosaniline
chloride dye. A control experiment was also conducted using the same MO solution at pH 12 but
without ZnO nanowire catalysts, to investigate the possibility of alkaline hydrolysis of MO. It was
observed that no significant change occurred, indicating that the observed fast degradation rate of MO
under pH 12 is only due to photocatalysis.
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Figure 5. Photodegradation rates of MO solutions with different pH values catalyzed by ZnO nanowires
prepared at the same conditions.

In an acidic environment, photodecomposition of ZnO takes place according to Equation (2):
ZnO+2H" — Zn** + H,O 2)

The photocorrosion of ZnO is most rapid in a strong acidic environment (pH lower than 4) [41].
In an alkaline environment, photocorrosion of ZnO is less severe with increasing pH and no
photocorrosion takes place at pH higher than 10 [41]. More importantly, in alkaline solution,
large quantities of OH™ ions are present on the catalyst surface and in the reaction medium,
which promotes the formation of hydroxyl radicals (-OH) [42,43], the species which have been widely
accepted as a primary cause of organic dye degradation in photocatalytic reactions [3,11,12,44].

Successful application of the photocatalytic degradation system requires investigation of the
effect of initial dye concentration of the dye solutions on the photocatalytic efficiency, as industrial
or household waste water comes in different concentrations. Figure 6 shows the photocatalytic
degradation rates of MO solutions with different initial concentrations following the same treatment
process. Since the reaction half-life (50% degradation) is not constant, it can be concluded that the
system does not follow apparent first order kinetics.

The photocatalytic kinetics of many dyes has been studied with the Langmuir-Hinshelwood
equation. With also considering the adsorption of the dye on the photocatalysts, this model is expressed
as the following [45]:

r= KreactionKadsoptionC/ 1+ KadsoptionCO) =KC 3)
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The kinetic constant K relates to reaction constant, adsorption constant and initial MO
concentration, and thus is specific to each experimental system. From Equation (3), it is recognized that
the kinetic constant increases with the decline of initial concentration, which agrees with the results in
Figure 6, as a higher kinetic constant corresponds to a higher degradation at the same irradiation time.
As the dye concentration increases, the consumption rate of highly active species including hydroxyl
radicals (-OH) and superoxide anions (O, ) also increases [46]. However, the generation of the active
species on the photocatalyst surface actually decreases with increasing dye concentrations, as a result
of the reduction transmittance of the light at 365 nm shown in Figure 7. Moreover, slow diffusion of
the generated intermediates from the catalyst surface can lead to the deactivation of the active sites on
the photocatalyst surface, and may contribute to the reduction in the photodegradation efficiency with
increasing dye concentrations [4].
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Figure 6. Photodegradation rates of MO solutions with different initial dye concentrations catalyzed
by ZnO nanowires prepared at the same conditions.
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Figure 7. UV-Vis transmission spectra of MO solutions with different concentrations.

3.4. Effect of Nanowire Growth Time

Figure 8 shows the effect of growth time of the ZnO nanowires (6, 12, and 18 h) in the hydrothermal
precursor solution on their photodegradation efficiency. It can be observed that with longer growth
times, the obtained nanowire arrays exhibited decreasing photocatalytic reaction rates. As reported
by Joo et al. [33], there is a rapid growth of ZnO nanowires in the first 4 h (initial stage), and then
a low growth rate for up to 20 h (growth stage). The growth rate is slowed down after the initial
stage due to a depletion of the precursors in the growth solution. With increasing growth duration
time, it is reported that both length and diameter of the prepared nanowires are increased but the
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overall aspect ratio (L/D) is reduced [47]. In this experiment, the aspect ratios of the nanowires grown
for different durations are found to be 15 for 6 h, 10 for 12 h and 8 for 18 h. Hence, with longer
growth duration, the aspect ratio of the nanowires decreases, which gives a smaller photocatalytic
surface-to-volume ratio.
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Figure 8. Photodegradation rates of MO solutions catalyzed by ZnO nanowires prepared for different
growth durations (6, 12, and 18 h) in the precursor solutions at the same conditions.

On a simple surface area basis, the enhanced area can be estimated as follows. From the SEM
micrographs, assume that an area of 1 um x 1 um contains approximately 49 vertical nanowires,
with approximate dimensions of 50 nm diameter by 1500 nm height. Treating that the nanowire as
cylinders, the total surface area of the 49 cylinders is approximately 23.5 um?, versus the 1 um? of the
base without nanowires. However, as indicated in Figure 4 there was not a 23.5 times enhancement of
photocatalytic reaction rate for a nanowire surface over that of the ZnO seed layer alone. It is apparent
that the effect of enhanced surface area by the nanowire geometry is complicated by mass and photon
transfer issues.

To assess the magnitude of possible mass transfer effects, the influence of the nanowires on the MO
reactant diffusivity along the nanowires was estimated by considering it as a pore diffusion problem
and employing Ternan’s method [48] to find the ratio of the effective diffusivity in a liquid-filled pore
(Deg) to the diffusivity of MO in bulk solution (Dg), given as:

Desr _ (1-M)* @
Dy _ 1+PA

where A is the ratio of the molecular radius over the pore radius, and P is a parameter accounting for
solution-wall interactions. The parameter P is given by the following:

P=[2-A+B/A2-21— p)| ke ©)
KB

where 3 = ;—’;’ and A = rrﬂ To estimate ry,, the radius of the MO, the molar volume (321 cm3/ mol)
was estimated using Le Bas additive volumes [49], which was then used to estimate the volume per
molecule, and from that a radius of 0.5 nm, assuming a spherical molecule. The approximate distance
between nanowires (200 nm) was chosen to represent a pore diameter (2 X r,), resulting in a value of
A of 5.0 x 1073. For B, the distance from the pore wall in which solvent has enhanced viscosity, 74,
was assumed to be one molecular diameter of water (i.e., 0.28 nm) [50], resulting in a value of 3 of 0.56.
The ratio of AHLB“’ is uncertain for this system, but a value of 95.6 was estimated for glucose diffusion
in water-filled alumino-silicate pores [50], and this value was used here. With these assumptions,
the value of D/ Dg was estimated to be approximately 0.4.
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It seems likely, therefore, that the enhanced surface area due to the presence of nanowires is not
entirely useable due to diffusion limitations, partially explaining the lack of proportional increase
in photocatalytic rates. Longer growth periods for the nanowires, which resulted in lower length
to diameter ratios, reduce the apparent “pore diameter” between nanowires, resulting in increased
diffusion resistance and the decreasing photocatalytic activity shown in Figure 8. Additionally,
for photocatalytic rate enhancement, penetration and distribution of UV light across all the surface area
is also required [51]. For small scale nanowire features, where the dimensions are similar in magnitude
to the UV wavelengths, geometric optics are not directly applicable [52] and solution of Maxwell’s
equations is required, which was beyond the scope of this work. The work by Hu and Chen [52] for
silicon nanowires suggests that these arrays have higher absorbance than thin films, which implies
some distribution of the UV energy over the surface. Therefore, the combination of reduced mass
transfer of molecules to the surfaces, and a spread of UV energy over a larger surface area, is a likely
rationale for the lack of more significant rate enhancement when nanowire arrays are present.

3.5. Reusability of ZnO Nanowires

To evaluate the reusability of the synthesized ZnO nanowire arrays for photocatalytic applications,
the glass substrate with aligned ZnO nanowires was collected after each photodegradation of a 10 mL
MO solution (10 mg/L) for two hours, cleaned with DI water several times and blow-dried with
air. The dried-catalyst sample was used again for degradation of a fresh dye solution following
the same experimental conditions. The process was repeated up to ten times, and the percentage
degradation data after two hours of irradiation was calculated based on the change in absorbance,
as shown in Figure 9. It can be observed that the photocatalytic efficiency of the ZnO nanowire arrays
only exhibited a small reduction in activity after each cycle (approximately 3%). The photocatalytic
nanowires continued to show considerable photocatalytic activity even after ten cycles, which reveals
the photostability of the synthesized photocatalyst and its potential for recycle and reuse. The chemical
stability of ZnO nanowires (dissolution) was studied by other researchers. ZnO can be partially
dissolved by DI water, ammonia, and NaOH solution, and smaller particles show a greater dissolution
than the larger ones [53,54]. The presence of dye and UV markedly accelerates the corrosion rate of
ZnO [55]. Thinner ZnO film shows a higher corrosion rate [55,56]. Etching pits on the surface of ZnO
photocatalysts would commonly appear due to dissolution after photocatalytic reactions [55,57,58].

It is worth mentioning that the products of the degradation of MO were monitored in others’
studies [59,60]. The MO was decomposed to inorganic end products (carbon dioxide, S042~,NO; ™,
NH, ") through the formation of intermediates. Major intermediate species included hydroxylated
derivatives, naphthoquinone, aromatic amines, and phenolic compounds.
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Figure 9. Percentage degradation values of MO solutions after 2 h of irradiation using the same ZnO
nanowire sample after multiple cycles.
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4. Conclusions

Vertically-aligned ZnO nanowires were grown using a facile hydrothermal method, onto a glass
substrate pre-coated with a thin ZnO seed layer deposited via spin-coating and annealing.
The hydrothermally grown ZnO samples showed a hexagonal wurtzite structure with a high degree of
anisotropy along the c-axis and a good crystallinity. The nanowires had an average diameter and length
of approximately 100 nm and 1.5 um, respectively, and were capable of absorbing 96% of a 365 nm
light source. The ZnO nanowire samples exhibited a superior photocatalytic activity in terms of
photodegradation of MO in aqueous solution, and the photoefficiency was found to be very consistent
for samples prepared separately using the same method. The photodegradation rates of MO increased
with higher pH of reaction solution, possibly due to a larger rate of formation of hydroxyl radicals.
For different initial dye concentrations, the photodegradation rates were found to follow apparent
Langmuir-Hinshelwood kinetics. Furthermore, with longer growth duration time, the synthesized
ZnO nanowires showed a reduction in their photocatalytic efficiency due to a lower aspect ratio of the
resulting nanowires, and the possible effects of mass transfer limitations. The ZnO nanowire samples
were also reused for multiple cycles to test their reusability, and a high degree of photocatalytic activity
was still present after ten cycles, which reveals the stability of the ZnO nanowire samples.
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Nomenclature

C concentration (mg/L) of methyl orange

k rate constant (mg/L-h)

K kinetic constant (L/mg)

Dy effective diffusivity in liquid-filled pore

Dp diffusivity in bulk solution

P parameter in Equation 6 (dimensionless)

'm radius of solute molecule (nm)

Tp radius of pore (nm)

Tw distance from pore wall where solvent has enhanced viscosity (nm)
Aug enhanced viscosity of solvent near the pore wall (kg/m-s)
LB viscosity of bulk solvent (kg/m-s)

B 1w/ 1p (dimensionless)

A m/7p (dimensionless)
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