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Abstract

The development of industrial agriculture has enabled a sharp increase in food trade at the

global scale. Worldwide trade underpins food security by distributing food surpluses to food

deficient countries. The study of agricultural product flows can provide insights on the com-

plex interactions between exporting and importing countries and the resulting network struc-

tures. Commercial partnerships between countries can be modelled using a complex

network approach. Based on the detailed trade matrices from FAO covering the period from

1986 to 2013, we present an analysis of the world cereal trade in terms of weighted and

directed networks. The network nodes are the countries and the links are the trades of agri-

cultural products in mass. We reveal the changing topology and degree distribution of the

world network during the studied period. We distinguish three entangled subnetwork struc-

tures when considering the temporal stability of the trades. The three subnetworks display

distinct properties and a differential contribution in total trade. Trades of uninterrupted activ-

ity over the 28-year study period compose the backbone network which accounts for two

thirds of all traded mass and is scale-free. Inversely, two thirds of the trades only have one

or two consecutive years of activity and define the transient subnetwork which displays ran-

dom growth and accounts for very little traded mass. The trades of intermediate duration dis-

play an exponential growth both in numbers and in traded mass and define the intermediate

subnetwork. The topology of each subnetwork is a time invariant. The identification of invari-

ant structures is a useful basis for developing prospective agri-food network modelling to

assess their resilience to perturbations and shocks.

Introduction

The outbreak of large-scale agricultural trade networks is a turning point in history. Advances

in technology during the 19th century laid the basis of a rapid growth in long-distance trade

triggered by the 1950s by agricultural intensification [1] [2] and decreasing transportation

costs [3]. In particular, increasing grain production in Northern America and Europe by the

60’s opened the way to the integration of numerous new markets largely contributing to trade

globalization [4]. Today, about 5.1 billion people are estimated to live in a net food importing

country [5] and about 23% of total agricultural production is subject to international trade [6].
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Cereals are the most traded agricultural products with 50% total mass traded (FAOstat [7],

Food and Agriculture Organization) and account for more than half of the global average

direct human intake [8] with 1292kcal/cap/day and for two thirds of the feed intake of live-

stock with 873 million tons (FAOstat [7]).

Climate change including warming, drought and weather extremes is highly likely to

impact agricultural yields [9] [10] [11] and, thereby, the distribution of food availability.

Because trade plays a key role in reallocating food production [12], addressing food security

issues requires understanding the structure of trade networks. Depending on the structure,

perturbing shocks will have different effects on the total network. Graph mathematical theory

is a network science modelling approach that studies the graphs made by the nodes and links

identified as relevant for describing a system. It defines metrics to capture the topology of

empirical networks and tackle complex patterns of change [13] [14] [15]. The topology in

graph theory describes the arrangement of nodes and links in networks and gives important

information on the pattern of nodes connectivity. Here, we study the world cereal trade net-

work, including all grain and grain-derived products based on the FAOstat database (1986-

2013) and use the countries as nodes and the mass of international cereals flows as links.

Network science has been previously applied on food trade for several commodities at

various scales and time points but little focus has been given on the complex time dynamics of

networks. A branch of literature assesses the dependency of countries on food trade by quanti-

fying net imports and exports of agricultural products [6] [5]. These studies do not intend to

explicit food trade topology but provide insights on worldwide food availability and distribu-

tion [16], rarely on a dynamical basis [17]. Other studies focus on network properties at a sin-

gle date or a limited set of years, providing a static view of the network topology and its basic

metrics. Such studies have mainly focused on the connectivity structure of regional ([18] [19]

[20]) or world trade for a set of agricultural products in terms of virtual water equivalent [21]

[22] [23], land acquisition [24] or monetary volumes [25]. Other studies have identified and

analyzed the community structures of different food product categories in terms of virtual

water [26] and through multi-layer food networks [27].

Dynamical views on the world food trade network are less explored. A handful of studies

have recently analyzed the changing topology of the world food network for seafood [28] and

for several other commodities aggregated in terms of virtual water [29] [30] [31] [32] but the

results lack a comprehensive analysis of the changing network properties. They reveal the

dynamical behaviour of trades [29] and report a time-variable network structure by examining

the network as a whole. Network evolution can however embed underlying structural invari-

ants which attest for specific networks dynamics. Their detection is precious in complex sys-

tem modelling for capturing prospective network evolution. Here, we explore the topology

and changing properties of the world cereals trade network by detecting distinct trade sub-

structures according to the trades temporal stability and reveal their structural invariants. The

observed features are mainly driven by techno-economical and geopolitical factors.

Main contributions

We show that the world cereal network has a topology that changes during the studied period

(1986-2013). It transforms progressively from a scale-free network to an exponential degree

distribution network. However, by considering the time duration of the trades, we reveal the

existence of three entangled subnetwork structures with invariant topology. Only the parame-

ters of the topology may change in time but not their nature.

We present the topology of each subnetwork and the evolution of their properties. Most of

the trades are ephemeral with only one or two consecutive years of activity but contribute very
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little to the total mass traded. They constitute what we call the “transient” subnetwork. The

trades that contribute the most in total traded mass have no interruptions during the studied

period. They constitute what we call the “backbone” subnetwork. Trades that are neither tran-

sient nor continuous during the studied period display an exponential degree distribution and

form what we call the “intermediate” network. The increasing number of intermediate trades

changed the topology of the total network from a scale-free to an exponential degree distribu-

tion with increasingly small-world properties. The identification of these three invariant struc-

tures contribute to build prospective complex system modelling of food networks.

The singular structure of the backbone subnetwork shows the dominance of few occidental

countries, the hubs, which are either large cereals producers or key redistribution countries of

the world food resources thanks to their geographical position and powerful infrastructures.

However, the emergence of the intermediate network reflects the increasing contribution of

new actors in world cereal trade. These new actors can increase cereals availability and

improve food security. The decreasing dominance of hubs in total trade could make the world

network less vulnerable to local crisis.

Materials and methods

Data description

We analyze the world cereals trade network for the period covering 28 years from 1986 to

2013 based on the FAOstat detailed trade matrices [7]. The datasets provide the product flow

quantities per origin and destination by country. Each country reports the traded quantity

with every partner country. Hence, there are two reported values per trade (one of the import-

ing country and one of the exporting country) which are not always in agreement. We built a

unique trade matrix by averaging the values reported by the trading partners. In the case of

missing data on behalf of one country, we considered the trade value reported by the partner

country. We provide a detailed assessment of the data discrepancies in the supporting infor-

mation (Part D in S1 Appendix). The resulting trade matrix is a bi-directional set of flows,

meaning that trades of opposite directions do not cancel out. Each country can export to

another country a product that it also imports from them.

The list of countries and territories in FAOstat varies in time due to national frontier

changes. The number of nodes increased in 1991 from 200 to 221 nodes mainly due to the dis-

solution of the Soviet Union (Table C in S1 Appendix). Changes also concern several islands

which change from independent territories to parts of mainland. Almost all countries are part

of the network throughout the study period with at least one trade per year. The number of

trades almost tripled from 3265 in 1986 to 8700 in 2013.

Products. We study the case of cereals which are the most traded products worldwide and

constitute the basis of human diets. At the global scale, cereals represent around 1000 kcal/cap-

ita/day that is 50% of the daily diet per capita [33]. We aggregated data on cereals trade for

wheat, rice, barley, maize, millet, fonio, buckwheat, sorghum, rye and oats considering both

grain and product derivates. Overall, the matrices comprise 61 commodities out of which 15

are primary products and 46 are secondary products (Table A in S1 Appendix).

Network description

A graph G is a pair of sets (V, E), where V is the set of nodes (i.e. the countries) and E is the set

of links (i.e. the traded mass) between two nodes. Each country is labelled by its ISO code

(Table B in S2 Appendix). The graph is described by a square matrix called adjacency matrix

A. Aij is equal to one if a trade exists between two nodes i and j and is zero if there is no trade

between the nodes.
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We describe the cereals trade network as a directed graph, therefore the matrix A is asym-

metric and directional. The cereals trade network is weighted, therefore, the matrix W is a

square matrix where Wij is equal to the traded mass (metric tons) between nodes i and j. The

resulting graph is a bi-directed network, i.e. a node i can have an import from a country j, and

also an export to the country j. Hence, matrices A and W do not sum up. We consider individ-

ually all import and export trades (i.e. every physical flow) between two countries. The diago-

nal of matrices A and W are zero (trades from a node to itself).

Definition of subnetworks: Backbone, intermediate and transient networks

We analyze the cereals trades according to their temporal stability. A trade between two coun-

tries can appear in several years. For each trade we determine the number of years of continu-

ous activity. We define three categories.

Firstly, the trades which are active throughout the study period (28 years) are considered as

permanent and compose the backbone subnetwork. The backbone subnetwork includes, in

addition, the trades resulting from the break-up or merger of countries, provided that these

trades remain active throughout the period. As an example, this is mainly the case of the disso-

lution of the USSR and the emergence of 15 new nodes in Europe by 1992. The trades that

resulted from this dissolution are included in the backbone subnetwork if they remain active

from 1992 onward and if a trade between the partner country and the USSR existed before

1992. Secondly, the trades which are active for only 1 or 2 consecutive years, are considered as

ephemeral and are defined as the transient subnetwork. Thirdly, the trades which are active

between 3 and 27 consecutive years are considered as intermediate and compose the interme-

diate subnetwork.

Network analysis

We analyze the basic metrics of the cereals trade network such as network density, average

path length, degree distribution, assortativity coefficient, centrality coefficients, clustering

coefficients as defined in the graph theory [14] [34]. The network density is the probability

that two randomly chosen nodes in the network are connected. If the density is equal to 1, all

nodes are connected, and if it is zero there is no network.

The node degree is the number of trading partners of a node and defines the node connec-

tivity. In a directed network, the node degree is composed by the in-degree kin (i.e. the number

of imports of a country) and the out-degree kout (i.e. the number of exports of a country). The

degree distribution is the probability that a node has k connections. The distributions are fitted

using the powerlaw library [35] in Python. The parameters α and kmin of the power law func-

tion are those that minimize the Kolmogorov-Smirnov distance Dn between the data and the

fit. The network is weighted by the mass traded per link to define the node strength. The node

strength is the total mass imported and exported per country. The in-strength of a node is the

total imported mass and the out-strength is the total exported mass. The connectivity distribu-

tion of nodes is shown for an unweighted network as the degree distribution P(k). The degree

distribution P(k) represents the fraction of nodes with a number of degree equal to k. The

cumulative density function P(K> k) of the network is the fraction of nodes with a number of

degree higher than k.

Two additional measures to capture the connectivity between two nodes are the assortativ-

ity coefficient and the neighbor connectivity [36] [34]. The assortativity coefficient is the met-

ric that corresponds to the Pearson correlation of the degrees of each pair of nodes. The value

of this coefficient is between −1 and 1. A negative value means that the network is disassorta-

tive, and a positive value that the network is assortative. The neighbor connectivity is the
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PLOS ONE | https://doi.org/10.1371/journal.pone.0216318 May 22, 2019 4 / 21

https://doi.org/10.1371/journal.pone.0216318


average degree of the nearest neighbours of a given node, defined as:

knn;i ¼
1

ki

X

j2Vi

kj ð1Þ

with ki the degree of the node i and Vi the set of neighbors of the node i. In an assortative net-

work, the degree of nearest neighbour knn follows an increasing function of the node degree k.

Conversely, disassortative networks have a decrease in the degree of nearest neighbour knn in

function of the node degree k.

To find the triads that are representative of a directed network, we used four clustering

coefficients. Each coefficient is representative of a triad and is comprised between 0 and 1. If

the coefficient is 0 then there is no such triad in the network. The motifs are defined by Fagiolo

[37] considering both weighted or unweighted networks. For a node i, the “In” coefficient Cin

represents the probability that import neighbors are connected with each other; by analogy,

the “Out” coefficient Cout represents the probability that export neighbors are connected with

each other. These two coefficients do not consider the direction of flows between the two

partners.

The Cin and Cout are defined as follows:

Cin
i ¼

X

j;h2Vin
i

ðAji þ AhiÞAjhjhi

2� kini ðkini � 1Þ ð2Þ

Cout
i ¼

X

j;h2Vout
i

ðAji þ AhiÞAjhjhi

2� kouti ðkouti � 1Þ
ð3Þ

where A is the unweighted matrix of the graph, kini is the in-degree of the node i, kouti is the out-

degree of the node i, Vin
i is the set of neighbors from which node i imports, and Vout

i is the set

of neighbors from which node i exports. We computed these coefficients for an unweighted

directed network with Python and Networkx package [38].

The shortest path length is the minimum number of steps required to go from a given node

to another node randomly chosen in the network. In directed networks, it is not always possi-

ble to define the shortest path for any pair of node. For instance, for isolated clusters, the short-

est path length is infinite. Infinite path lengths are not taken into account in the calculation of

the average path length of the network. In 1986, 27% of the pairs of nodes have a infinite path

length against 11% in 2013.

The measure of node centrality can be calculated by several algorithms. We focus on the

shortest path property of nodes by quantifying the betweenness centrality and the closeness

centrality for the directed network. The betweenness centrality is the ratio between the number

of shortest paths that go across a node and the sum of all shortest paths. The closeness central-

ity is the inverse of the sum of distances of the shortest paths that go across a node. The sum is

normalized by the sum of the minimum possible distances n − 1.

Results

General evolution patterns of the world cereals network

The density of the total world cereals network has increased over the study period as a result

of the increase in the number of trades with a constant number of nodes. In 1986, almost all

countries were already active nodes in the network with an average of 34 trades per node, com-

pared with 83 in 2013. This translates into a normalized density of 8.8% in 1986 against 19.8%
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in 2013 compared to a theoretical density of 1 in a network where all nodes are directly con-

nected with each other. Accordingly, one fifth of the theoretical number of links (n2 − 1) were

present in 2013.

The total traded mass more than doubled from 186 million tons in 1986 to 405 million tons

in 2013, but the network density increased even faster. As a result, the average weight of links

decreased faster than the average path length of trades, meaning that the world network is

increasingly displaying “small-world” properties [39]. Small-world are networks where nodes

can reach other nodes with a very few steps. In the world cereals trade network, any node of

the network can be reached through an average of 1.8 steps in 2013, against 2.1 in 1986.

The topology of the total network has changed. Fig 1 shows that the node degree distribu-

tion in the total network followed a power law distribution in 1986 and an exponential distri-

bution in 2013. The topology transition is shown by the increase in the Kolmogorov Smirnov

distance of the power law fit and the decrease in the Kolmogorov Smirnov distance of the

exponential fit (Fig 1C). The Kolmogorov Smirnov test is a statistic metric that computes the

distance between the fit and the data. The parameters of the fitted functions are optimized by

minimizing this distance. Thus, over time, the fit of the power law becomes less accurate and

Fig 1. Evolution of the degree distribution of the world cereals trade network. A. Degree distribution in 1986.

The cumulative density function follows a power law of type P(K> k)/ k−α) with kmin = 15 and α = 2.02. The

Kolmogorov-Smirnov statistic is: Dn = 0.0857. The power law property is a characteristic of a scale free network, the

degree of a few nodes greatly exceeds the average degree of nodes. The highest-degree nodes are the “hubs”, and serve

specific purposes in the networks, here they are major exporting countries. B. Degree distribution in 2013. The

cumulative density function fits with an exponential function of type PðK > kÞ / expð� k
<k>Þ where< k> = 82.85 is

the average degree of nodes. C. Kolmogorov-Smirnov distance. The distance, Dn, is represented over time for the fit

with a power law distribution (blue line) and with an exponential distribution (black line). The Kolmogorov-Smirnov

statistic, Dn, gives the distance between the data and the fit. Minimizing this value equates to optimizing the fit. Until

1996, the Dn value was lower for the power law fit than for the exponential fit; the inverse is true after 1997. Thus, the

fit of the power law becomes less accurate and the fit of the exponential distribution becomes more accurate. These two

trends confirm the evolution of the degree distribution from scale free to exponential.

https://doi.org/10.1371/journal.pone.0216318.g001
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the fit of the exponential distribution becomes more accurate. The power law distribution (Fig

1A) is specific to a scale-free network.

The topology transition from a scale-free to an exponential distribution (Fig 1B) highlights

that the links added after 1986 did not follow a model of preferential attachment. This transi-

tion is due to the emergence of new powerful nodes, mostly corresponding to developing

countries which agricultural potential has previously been largely under-exploited such as Tur-

key, India and Malaysia. In these three countries, the cereal yields doubled since 1986 (Figs

N10 & N11 & N12 in S4 Appendix).

Decomposition of the world cereals network according to the trades

duration

Fig 2 shows the distribution of total trades and their associated mass according to the trade

duration. The duration distribution follows a power-law relationship highlighting the high het-

erogeneity in the trades temporal stability as seen in the inset of Fig 2. Considering the differ-

ences in the continuous duration among trades, we can divide the total network into three

subnetworks with distinct properties and dynamics (see Sec. Materials and methods). In con-

trast to previous studies, we show that rather than a single network structure under change,

the world cereals trade network is a composite structure resulting from the entanglement of

three subnetworks, each one characterized by a distinct and time-invariant topology.

The transient subnetwork, comprising trades of short duration i.e. 1 or 2 years, gathers

about two thirds of all trades but only accounts for 1.7% of the cumulative traded mass over

Fig 2. Distributions of the trades duration and their associated traded mass. The distribution of the number of

trades (grey) and their associated traded quantities (red) is represented as a function of the number of consecutive

years of activity in the period from 1986 to 2013 (28 years). The inset figure shows that, for the world network, the

distribution of the number of trades over time fits with a power law with an alpha parameter equal to −1.44 and a

correlation coefficient equal to 0.98. According to the duration distribution of trades we can distinguish three zones.

The first zone corresponds to trades of 1 or 2 consecutive years of activity and define the transient subnetwork. The

second zone corresponds to trades of 3 to 27 consecutive years of activity and define the intermediate subnetwork.

The third zone corresponds to trades that are continuous throughout the 28-years study period and define the

backbone network. Most of the traded mass (bars in red) belongs to the backbone subnetwork.

https://doi.org/10.1371/journal.pone.0216318.g002
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the study period. The trades with a duration of between 3 and 27 years define the intermediate

subnetwork. The stability of the intermediate trades increases over time (Fig 3). The interme-

diate subnetwork accounts for 36% of the cumulative traded mass over the study period. The

third and last trade class contains the uninterrupted trades throughout the study period (trades

lasting for 28 years or more). This class defines the backbone subnetwork and accounts for

62% of the cumulative traded mass. Carr et al. [29] have also defined a backbone food subnet-

work as the trades that make up 80% of the total traded mass. The backbone subnetwork

defined here points out the long-lasting commercial partnerships worldwide. The three sub-

networks are visualized in Fig 4.

Distinct structural properties of the three subnetworks

General metrics of each subnetwork. Fig 5A shows the traded mass per subnetwork and

the total traded mass over time. From the three subnetworks, the backbone subnetwork

accounts for most of the traded mass both in cumulative terms and per year, with an average

annual traded mass of 234 million tons and a steady annual increase of about 2.25 million

tons/yr. However, its share of the world traded mass decreased over time in favor of the inter-

mediate subnetwork. In 1986, the backbone subnetwork accounts for 83% of all traded mass,

and in 2013 it accounts for 58% (Fig F in S1 Appendix).

The intermediate subnetwork is an emerging structure. It includes trades which stability

increases over time. It is the one that grew the most significantly during the study period,

from about 1047 links in 1986 to 5422 links in 2013 (Fig F in S1 Appendix). The traded mass

increased even more rapidly from 29 million tons in 1986 to 168 million tons in 2013 (Fig 5A)

accounting respectively for 15% and 42% of all cereals trade (Fig F in S1 Appendix). In 2013,

the largest intermediate trades are from Ukraine to Egypt (5.97 million tons), from Brazil to

the Republic of Korea (3.90 million tons) and from Russia to Turkey (3.50 million tons). The

average mass of trades is 31035 tons and the median value is 221 tons which are sensibly lower

than the trades in the backbone network with an average mass of 113106 tons and a median

value of 3586 tons.

Fig 3. Time series of trades in the intermediate subnetwork. This graph shows the activity for the 9858 trade

exchanges belonging to the intermediate subnetwork i.e. trades with duration comprised between 3 and 27 consecutive

years. If the blue line is continuous then the trade has no interruption. Trades are sorted according to their cumulative

lifetime starting from the shortest cumulative periods. The distribution of the continuous duration of trades is

heterogeneous and only a minority of trades last during the maximum duration of 27 consecutive years.

https://doi.org/10.1371/journal.pone.0216318.g003
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Fig 4. The total world cereals trade network and its decomposition in the three subnetworks in 2013. The countries are ranked by continent and the

size of nodes is weighted by the total number of trades ktot. The color code indicates the continent group: grey, Africa, green Oceania, blue to yellow

Europe, orange to red America, pink Asia. The edges are weighted by the traded mass and the colour corresponds to the country of destination. A.

World cereal network. The graph is limited to the 50 most important countries and their trades. The total network counts 210 nodes and 8700 links.

The total traded mass is 405.7 million tons. The degree distribution is of type exponential. B. Backbone subnetwork. This network counts 202 nodes

and 2135 links. The traded mass is 276 million tons, which represents 68% of the world trade in 2013. The degree distribution follows a power law

indicating that the network is scale-free. C. Intermediate subnetwork. This network counts 208 nodes and 4685 links. The traded mass is 121 million

tons, which represents 29% of total trade in 2013. The degree distribution is of type exponential. D. Transient subnetwork. This network counts 207

nodes and 1880 links. The traded mass is 8 million tons, which represents about 2% of total trade in 2013. The degree distribution is of type exponential.

https://doi.org/10.1371/journal.pone.0216318.g004
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The transient subnetwork is defined by trades that only last 1 or 2 consecutive years. Tran-

sient trades are very numerous but very weak in mass both in 1986 and 2013 with respectively

4 and 3.5 million tons (Fig 5A). Nonetheless, the number of trades doubled from 597 in 1986

to 1210 in 2013 (Fig F in S1 Appendix). This doubling implies high economic opportunities

for trading low cereals mass. The share of the transient subnetwork in total traded mass

dropped from 2.1% to 0.8% (Fig F in S1 Appendix). In addition, the average mass of trades is

2920 tons and the median value is 15 tons in 2013.

Invariant topology of the three subnetworks.

• Node degree distribution.

The degree distribution (for a definition see Sec. Materials and methods) of each subnetwork

is shown by the cumulative density function of the nodes degree and differs among the three

subnetworks and the total network (Fig 6A, 6B & 6C). For the backbone subnetwork (Fig 6A),

the cumulative density function of the degree distribution is fitted with a power law function

P(K> k)/ k−α). The scaling property highlights that no particular scale characterizes the sys-

tem. Only a few nodes are highly connected, the “hubs”, and the majority of peripheral nodes

are preferentially connected to them.

Fig 5. Evolution of the metrics of the total cereal network and the three subnetworks. A. Total traded mass. B. Assortativity coefficient.

C. Clustering coefficient of type In. D. Clustering coefficient of type Out.

https://doi.org/10.1371/journal.pone.0216318.g005
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Fig 6. A, B, C: Degree distribution of the three subnetworks. A’, B’, C’: Node strength distribution of the three

subnetworks. The distribution of the nodes strength follows a stretched exponential function of type P(K> k) = exp

((−λk)α). The inset figures show the evolution of the average degree< k> (B and C) and the α parameter evolution of

the stretched exponential equation (A’,B’,C’). A. Degree distribution of the backbone subnetwork. The degree

distribution follows a power law of type P(K> k)/ k−α). The values for 2013 are kmin = 7 and α = 1.83 and the

Kolmogorov-Smirnov statistic is: Dn = 0.077. As the α parameter is less than 2.0, the standard deviation and the mean

(< k>) are undefined. The hubs are Belgium, USA, France, The Netherlands, Italy, Germany and United Kingdom.

A’. Node strength distribution of the backbone subnetwork. The stretched exponential distribution and its α
parameter are stable in time. B. Degree distribution of the intermediate subnetwork. The cumulative density

function fits with an exponential function of type PðK > kÞ / exp � k
<k>

� �
. In 2013, the average nodes degree is

< k> = 51.67 and the correlation coefficient is R2 = 0.99. B’. Node strength distribution of the intermediate

subnetwork. The stretched exponential distribution changes over time as shown by the decrease and stabilization of

the α parameter. C. Degree distribution of the transient subnetwork. The degree distribution of the transient

subnetwork fits with an exponential function. In 2013, the average node degree is< k> = 11.98. The correlation

coefficient is R2 = 0.97. C’. Node strength distribution of the transient subnetwork. The evolution in time of the

stretched exponential distribution is erratic as shown by the random changes in the α parameter.

https://doi.org/10.1371/journal.pone.0216318.g006
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The degree distribution of the intermediate subnetwork is of type exponential [40]

PðK > kÞ / exp � k
<k>

� �
with average degree of nodes of< k> = 51.67 in 2013. This type of

graph can correspond to a random growth throughout the study period indicating no prefer-

ential attachment of trades to nodes. The growth of the intermediate subnetwork has driven

the observed densification and the change in the degree distribution of the total network from

a power law function in 1986 to an exponential function in 2013.

The transient subnetwork has a random structure and displays no preferential attachment

to highly connected nodes. The amplitude of the node degrees is quite narrow (0-60 degrees)

indicating a rather uniform degree distribution (Fig 6C’). The average node degree is of 6.67

links per node in 1986 against 11.98 links per node in 2013. This subnetwork most likely cap-

tures the existence of random but still profitable commercial opportunities for trading little

mass of cereals over long-distances based on low-cost transportation.

• Assortativity analysis.

The assortativity coefficient (Fig 5B) (for a definition see Sec. Materials and methods) of the

backbone subnetwork is negative, meaning that nodes attach preferentially to nodes of differ-

ent connectivity and that only a few nodes, the hubs, are highly connected. The disassortativity

property relates to the scale-free structure [41] observed with the degree distribution. It is also

highlighted by the fact that the neighbours of hubs in the backbone subnetwork have low node

degrees. This features is stable in time (Fig J in S2 Appendix).

In the intermediate subnetwork, the assortativity coefficient is higher than in the backbone

subnetwork, indicating that the intermediate subnetwork is more homogeneous in terms of

connectivity, i.e. there is less differentiation between highly connected and poorly connected

nodes. The assortativity of the intermediate subnetwork increased in time. In 1986, the neigh-

bours degree decreased with the node degree as opposed to 2013 where the nearest neighbours

degree is relatively constant (Fig J in S2 Appendix).

The high volatility in the topology of the transient subnetwork is highlighted by the high

fluctuations of the assortativity coefficient (Fig 5B). The nearest neighbours degree fluctuates

with no clear tendency with the node degree throughout the study period highlighting the ran-

dom behaviour of the transient subnetwork (Fig J in S2 Appendix.

• Node strength distribution.

The node strength distribution of the three subnetworks (Fig 6A’, 6B’ and 6C’) corresponds

to a stretched exponential function P(K> k) = exp((−λk)α) as Konar et al. found for the world

virtual water network [32] [21]. The stretched exponential function is curved in a log-log plots

[42]. The α parameter gives important indication on the distribution: if α is equal to 1 then the

distribution is exponential; if it is comprised between 0 and 1, the distribution is stretched.

The time evolution of the parameter α is given in the insets of Fig 6. The nature of the node

strength distribution is common among the three subnetworks but the distributions differ in

terms of magnitude and evolution.

The backbone subnetwork is stable in terms of node strength distribution over the study

period, as reflected by the small variation in the α parameter. From the three subnetworks, the

backbone has the lowest α parameter, with a stable value between 0.31 and 0.35 over the study

period, meaning that it has the most stretched distribution. We observe more changes in the

node strength distribution of the intermediate subnetwork, where the α parameter grew from

0.34 in 1990 to 0.51 in 1994 and then stabilized. The increase in the α parameter indicates a

progressive reduction in the stretch of the exponential distribution, equating to a progressive

homogenization among countries with very low and very high trading mass. However, the

most important nodes in terms of traded mass belong to the backbone subnetwork where the
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contrast between low and high trading nodes persists. The transient subnetwork confirms its

random characteristics. The node distribution varies during the study period and has no

defined pattern of evolution as noted by the erratic variation of the α parameter between 0.12

and 0.45 over the study period.

Centrality and connectivity of countries. Centrality measures at what extend a node

belongs in the shortest path between two randomly chosen nodes in the graph. In other words,

it measures how much a country works as an intermediary between two distant countries.

Nodes with high centrality are influential and are also expected to be the highest connected

nodes.

Hubs in the backbone subnetwork are defined by both high connectivity (i.e. number of

trades per node) and centrality meaning that they connect many nodes among them and

through the shortest paths. Hubs are mainly European countries: Belgium, France, The Neth-

erlands, Italy and Germany, plus the United States which are the second largest exporter in

terms of number of trades (Table D in S3 Appendix).

In the intermediate subnetwork, as opposed to the backbone subnetwork, the nodes with

the highest connectivity do not have the highest centrality (Tables F & G & Fig M in S3 Appen-

dix). High centrality nodes support trades that are important in the network to link highly and

poorly connected nodes. Accordingly, hubs in the intermediary subnetwork are highly con-

nected but relatively poorly involved in the shortest paths.

In 2013, the nodes with the highest connectivity in terms of number of trades in the inter-

mediate subnetwork are Turkey, India and Malaysia (Table E in S3 Appendix). In terms of

traded mass, high connectivity nodes are Ukraine, Brazil and Russia. In contrast, the nodes

with the highest centrality coefficients (supporting the shortest paths) are the United States,

France, Canada, and Great Britain. These nodes are already hubs in the backbone subnetwork.

In contrast to the hubs in the backbone subnetwork, hubs in the intermediate subnetwork

change in time (Table E in S3 Appendix). In the period of 1986-1995, hubs are mainly histori-

cal industrial countries, mostly Western European countries and the USA. Since the late

1990’s, the intermediate subnetwork is being increasingly led by developing countries, mainly

Asian and South American countries (Turkey, Malaysia, Pakistan, China Argentina and Bra-

zil) as well as some Eastern European countries such as Poland, Ukraine and Russia.

Another way to understand the emerging dynamics of the intermediate subnetwork is to

compare the evolution of node connectivity with that of the backbone subnetwork. The node

degree between the two subnetworks relate through a logistic function (Fig K in S2 Appendix).

Node connectivity increases rapidly in the intermediate subnetwork and there are less and less

nodes with lower connectivity than in the backbone subnetwork. Since 2000, only the five

major hubs have conserved a higher connectivity in the backbone than in the intermediary

subnetwork: Belgium, France, the United States, the Netherlands and Italy.

Clustering analysis. It is possible to measure the clustering of a node with its partners by

taking into account the direction of flows. This can be done by the clustering coefficients. The

analysis consists to statistically determine the most likely flow directions among three nodes at

a local scale and average them at the entire network. The average clustering coefficients for a

directed network allow identifying the existence of triads (Fig 5C & 5D).

The clustering coefficients that are the most representative in the network are of type ‘In’

and ‘Out’. The average clustering coefficient In and Out is higher in the three subnetworks

than in an equivalent random network computed for each case, meaning that the three subnet-

works are clustered. The most representative triad is of type In in both the total network and

the backbone subnetwork. When a node has two imports from two different countries, the

probability that these countries also exchange directly is high. The fact that the In coefficient is
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very similar between the total network and the backbone subnetwork means that the backbone

subnetwork largely determines the clustering of the total network.

By analogy, the Out coefficient represents the probability that the neighbors of an exporting

node also exchange directly between them. In the total network, the clustering coefficient of

type Out is lower than the In, confirming the dominance of large exporters. A higher In than

Out coefficient means that two exporting countries are more probable to trade directly

between them than two importing countries. In the intermediate subnetwork, the probability

that the partners of an exporting country have a trade between them increased over time and

led to a higher Out coefficient in the total network.

Geographical analysis. In addition to differences in the network topology and connectiv-

ity, the three subnetworks also differ in terms of geographical reach of trades. To characterize

geographic distances between two partner countries, we count the number of intercontinental

trades (Fig 7). In 2013, 43% of the mass traded by the backbone subnetwork was interconti-

nental against 57% between countries of a same continent. The backbone subnetwork is the

least intercontinental subnetwork over the entire study period. Nevertheless, two among the

largest trades in the backbone subnetwork are intercontinental: from the United States to

Japan (10.2 million tons) and to China (8.6 million tons). The United States also have impor-

tant neighbouring partners as they import 8.2 million tons of cereals from Canada and export

11.9 million tons of cereals to Mexico. The third largest intercontinental trade in 2013 is from

France to Algeria (4.9 million tons).

The continent where the backbone subnetwork is the most developed is Europe with 107

trades between 27 countries and a traded mass of 12.4 million tons. The largest flows are

exports from France to Belgium (5.2 million tons) and to the Netherlands (4.3 million tons).

Fig 7. Share of intercontinental traded mass. The share is the ratio of intercontinental to total traded mass for each

subnetwork. The transient subnetwork (blue dashed line) is mainly composed by intercontinental trades. In contrast,

the share of intercontinental traded mass is being decreasing in time for both the intermediate subnetwork (red line)

and the backbone subnetwork (black line). The backbone subnetwork is the least intercontinental subnetwork over the

entire study period.

https://doi.org/10.1371/journal.pone.0216318.g007
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The long-lasting trade activity in Europe—represented by the backbone subnetwork—is sup-

ported on the one hand by geographic proximity and geopolitical and economic treaties that

favor commercial stability and on the other hand by reliable production. Cereals production

in Europe, and particularly wheat production, has increased fourfold since the 1960’s and var-

ies little, potentially due to the adoption of the Common Agricultural Policy giving way to the

intensification of trade within Europe and the competition with the United States for reaching

external markets [4].

In contrast to the backbone subnetwork, the large majority of transient trades are intercon-

tinental. In 2013, 90% of the transient trades were intercontinental even though these trades

contribute to only 1% of total intercontinental traded volume. Similarly, intercontinental

trades are dominant in the intermediate subnetwork, even though their share decreased over

time. The share amounted to 85% in 1986 against 70% in 2013 besides the five-fold increase in

the traded mass by this subnetwork. The decreasing share of intercontinental trades suggest a

more rapid intensification in trades within continents.

Discussion and conclusion

This study provides a detailed analysis of the patterns and evolution of the world cereals trade

network. It reveals the invariant sub-network structures that underlie the global network

dynamics and evolution. The identification and analysis of three subnetwork structures with

time invariant topology over a 28-years-long time-period provides relevant insights on metrics

that are usually studied either statically or for the entire network [43] [21] [23] [24] [25] [44]

[29].

It has been previously shown that the global network increasingly displays small-world

properties, meaning that countries are more closely connected as a result of increasing net-

work density [23] [21]. Small-world properties are here confirmed and emphasized by the

increase in the clustering coefficients and the decrease in the shortest path length over the

study period [39] [45]. We show that increasing small-world properties are driven by the

emergence of trades with exponential degree distribution (intermediate subnetwork) corre-

sponding to developing countries that become international trade actors either by better

exploiting their agricultural potential, through better infrastructures, through changes in

domestic demand or a combination of these factors. Such countries represent a growing share

in total trade but their activity does not modify the scale-free structure of the backbone subnet-

work composed by the historical long-lasting trades. The trades that are neither in the back-

bone nor in the intermediate subnetworks are transient and have random structure. The

transient subnetwork also grew significantly since 1986 but only in the number of trades as

opposed to total traded mass which remained quasi-stable. Transient trades introduce ran-

domness in the total network. The great number of links (62% of all trades since 1986) highly

influences the degree distribution of the global network when considered unweighted. Weight-

ing according to the traded mass greatly lowers the influence of transient trades on the topol-

ogy of the total network. The three subnetworks identified in the present study display distinct

and time-invariant structures.

The change in the structure of the global network from scale-free to exponential between

1986 and 2013 implies that the growth in traded mass during this period did not follow a pat-

tern of preferential attachment to the highest connected nodes. The conservation of the scale-

free property within a network with a constant number of nodes is possible up to a certain

threshold and would necessitate preferential attachment [46]. In the agri-food context, the

number of nodes is constrained by the number of countries and therefore the network evolu-

tion merely depends on the node connections. Here we observe a random growth with
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exponential degree distribution. Random growth and its impact on the network properties is

given little scrutiny in literature [40]. In the agri-food context, no preferential attachment

equates to the multiplication of powerful agricultural nodes with exportable grain surpluses

supporting the diversification of grain supply sources to deficit countries. Diversification leads

to a more homogeneous degree distribution and decreases the distance between the average

and the maximum degrees [40]. The exponential distribution is mainly supported by emerging

countries and is also reported for networks with high connectance and high average degree,

such as the Worldwide Marine Transportation Network [47], email networks [48], the electric

power grid of Southern California [39] and some food webs [49].

In previous food trade network studies the results on degree distribution of the global net-

work often diverge. Most studies show an exponential distribution of degrees [32] [29] [50]

[31] but others report a fat tail distribution [18] [25] [24]. Konar et al. [21] showed an expo-

nential degree distribution for the virtual water trade network, but the study concerns a single

date i.e. 2000. Carr et al. [29] analyzed the evolution of the topology of the global network

(1986-2008) and found that the degree distribution follows an exponential function for the

entire study period with a tendency to become more homogeneous over time. Ercsey-Ravasz

et al. [25] found a broad degree distribution for the year 2008 implying a fat tail distribution

similar to the power law distributions that we found for the first years of the study period.

Possible reasons of disagreement among studies include the variety of the studied commod-

ities, author’s assumptions, the use or not of bi-directional matrices (see Sec. Materials and

methods) and the accounting unit considered. Indeed, network analysis is rarely based on the

physical flows of commodities but more on one of their resource equivalents. Most studies use

the virtual water equivalent of trades [31] [23] [30] [29] [21] [32]. The network topology when

calculated on the basis of virtual water may diverge from the topology calculated on the basis

of the physical flows of products because of the differential water intensity in agricultural pro-

duction of countries. The water intensity varies among countries according to production

practices and climatic conditions. The physical flows of products are more relevant to describe

the topology of the food network.

The decreasing heterogeneity between high and low connected nodes is a fundamental

change in the topology of the world network. It is highlighted both by the change in the nodes

degree and by the increase in the assortativity coefficient over time. Previous works focusing at

a specific date reported a high disassortativity coefficient [21] [29] and an exponential degree

distributions of node connectivity at several scales [20]. We show that disassortativity and scal-

ing decreased over time due to the expansion of the intermediate subnetwork. The parameters

of the exponential function evolved and result in the increase in average degrees in the topol-

ogy of the global network. Nonetheless, despite the change in the topology and the metrics of

the global network, the topology of each of the three underlying subnetworks structures

remained invariant.

The scale-free property is also found in the node strength distribution with a stretched

exponential function for the three subnetworks. The node strength is the sum of the mass of

imports and exports. The stretched exponential distribution presents a tail fatter than the

exponential distribution but thinner than the power law distribution [42]. This characteristic

implies that the strength of nodes in terms of total mass is more heterogeneous than the nodes

degree distribution. This feature is confirmed by the power law relationship between the node

strength and the node degree (Figs H & I in S2 Appendix) [21] [29] [30] and implies that the

more a country has trades and the more these trades are of high mass.

The global food network is highly influenced by geopolitical and economic treaties. A spec-

tacular growth rate of the intermediate subnetwork in terms of mass, 42%, occurs in 1995. In

1992, the Cairns Group of Fair Trading Nations advocated for the reduction in trade barriers
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for cereals in the world economy. Agriculture is then included in the General Agreement

on Tariffs and Trade (GATT) replaced, in 1995, by the World Trade Organization. In 1995,

the Agreement On Agriculture (AoA) took effect and aimed at liberalizing agricultural mar-

kets [4].

Some countries of the Cairns group have become hubs in the intermediate subnetwork

such as Canada, Argentina, Brazil, Malaysia, South Africa and Pakistan (Tables F & G in S3

Appendix). It is clear that trade barriers have played an important role in the cereals trade net-

work: prior to the AoA, the world cereals trade market was dominated by Europe and the

United States (Table D in S3 Appendix). European countries have already engaged in the

intensification of cereals production since the 60’s and Europe shifted from a net cereals

importer to a net exporter in the 80’s [4]. The breakdown into subnetworks seems to be rele-

vant from a geopolitical point of view: the backbone subnetwork is dominated by Europe and

the United States and the intermediate subnetwork by new exporting countries of the Cairns

Group. This hypothesis will have to be further analyzed in a future work.

The hubs of the backbone subnetwork are mostly developed countries that historically

correspond to the largest cereal producers on each continent (Table D in S3 Appendix). Agri-

culture is heterogeneously distributed throughout the world and only a few countries are pow-

erful producers and reliable exporters. However, some countries are hubs not because of they

produce much but because they are commercial crossroads due to their geographic location

and powerful infrastructure. Often, these countries have important ports that serve as plat-

forms to international trade. Countries with chronic cereal deficits tend to trade with hubs to

benefit from their stability and reliability.

France, Great Britain, Germany, Belgium and the Netherlands are the main hubs in the

region of Europe. France has a production of 1.06 tons/cap in 2013 [7], which is one of the big-

gest worldwide. In contrast Belgium and the Netherlands are major hubs with exceptionally

low production. Despite their high productivity in terms of tons/ha, Belgium and the Nether-

lands rank at the 60th and the 114th positions in terms of world production in 2013 with 0.10

tons/cap and 0.30 tons/cap respectively. Their status as hubs in the backbone subnetwork

clearly relates to their geographical position and port infrastructures and highlights their key

role and long-term stability as cereal trade re-exporters. On the one hand, the United States

and Canada with respective cereal production of 1.38 and 1.88 tons/cap and on the other hand

Argentina and Brazil are the hubs in the American continent and have a great trade influence

on Eastern Asia and Oceania. In this latter region, the major local hub is Australia.

The backbone and intermediate subnetworks are entangled in terms of node centrality,

which is the degree of node insertion in the shortest trading paths. Nodes with high centrality

are influential and are also expected to be the nodes with the highest connectivity. The nodes

with the highest centrality in the intermediate subnetwork are hubs in the backbone subnet-

work: the United States, Canada, the United Kingdom and France. Due to their high centrality,

those countries are important intermediary nodes despite a lower number of trades in the

intermediate subnetwork (Table G in S3 Appendix). Therefore, the hubs in the backbone sub-

network are not the highest connected nodes in the intermediate subnetwork, but their trades

are important paths of re-exportation.

The three subnetworks show significant differences in terms of intercontinental trades.

Such differences underline different trading logic and are highlighted in this study in terms of

geographical reach and stability of trades. The backbone subnetwork is the least intercontinen-

tal and relies mainly on land transport infrastructure that is less cost-effective than maritime

transport. The trade stability reflected by this subnetwork seems to witness the positive effect

of proximity on long-lasting partnerships and economic cooperation. In contrast, the interme-

diate and transient subnetworks have a vast majority of intercontinental trades accounting for
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most of the mass traded by these subnetworks (Fig 7). They both mainly build on permanent

maritime and at a lesser degree air traffic infrastructures and highlight the increase in agri-

food globalization. The intermediate subnetwork reflects the progressive consolidation of

long-distance trade partnerships between countries with cereal deficits and surpluses that

respectively accentuate with demographic growth and agricultural intensification over time. In

contrast, the transient subnetwork is highly volatile. The observed patterns of instability could

support the idea that trades in the transient subnetwork are occasional and highly responsive

to small and unplanned grain shortfalls or surpluses worldwide. Another possibility is to asso-

ciate transient trades to errors in the FAOstat dataset but this option is only probable when the

trade is reported once. When the trade is reported by both the importing and exporting coun-

tries, which is the case of most trades (Fig A in S1 Appendix), the data are most likely

consistent.

Probably the main interest in the analysis of network topology is to assess network resil-

ience to perturbations [51]. Perturbations may be geo-politically driven or relate to natural

mechanisms such as climate change. A scale-free network, shaped by the activity of hubs, is

more resilient to random failure than an exponential degree distribution network but much

more vulnerable to targeted attacks [14] or globally synchronized shocks [52]. In exponential

networks, degree distribution and connectivity are more homogeneous and the role of hubs

and the average path length are lower than in scale-free networks. As a result, other trade paths

to compensate for the removal or damage of a major node are facilitated and underlie higher

network resilience.

Resilience can be modelled by simulating shocks and their propagation within food net-

works, but studies on this topic do not reach a consensus on the world food network. Some

argue that the increase in connectivity does not increase food security [53] while others assert

that highly connected networks tend to gain in stability [43] [50]. The insights provided in this

study on the existence and properties of the invariant subnetwork structures within the world

trade network can improve prospective food security modelling. The identification of invari-

ant structures allows breaking-down complexity according to differential dynamics and con-

tribution of each subnetwork in total trade. The temporal stability of trades seems to relate to

the geopolitical evolution of the world agricultural markets. The decomposition into invariant

structures can, therefore, support complex system prospective modelling of food security

accounting for climate change and geopolitical constraints based on simple criteria such as

preferential attachment to hubs or random connectivity. The analysis of agricultural world

trade from a perspective of distinct subnetworks could be extended to other key agricultural

products such as feed, meat, fresh food and beverages to assess whether the detected invariant

structures are specific to cereals or generic among all food commodities.
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