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Previously, we reported the aqueous electrodeposition of rare earth - iron group alloys. A
key factor was the complexation of the metal ions with various coordination compounds
(e.g., aminoacetic acids), without which only the ferrous metal and rare earth hydroxides/
oxides are deposited. In this work, samarium cobalt (SmCo) alloys were synthesized using
direct current (DC) aqueous electrodeposition. The basic electrolyte solution consisted of
1 M samarium sulfamate, 0.05 M cobalt sulfate, and 0.15 M glycine, resulting in deposits
containing >30 at% Sm at 60°C with current density of 500 mA/cm2. Supporting
electrolytes (i.e., ammonium salts) decreased the Sm content in the deposit.
Crystallinity of deposited films altered from nanocrystalline to amorphous as the Sm
content increased. Deposits with high Sm content (32 at%) became isotropic with
reduction in magnetic saturation (Ms) and coercivity (Hc). A deposition mechanism
involving stepwise reduction of the complexed Sm-Co ions by depositing hydrogen
atoms was proposed.
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INTRODUCTION

High-performance permanent magnets such as samarium-cobalt (SmCo) and neodymium-iron-
boron (NdFeB) alloys are playing an increasingly prominent role in miniaturizing electrical and
electronic machines and devices. Although the rare earth-transition metals (RE-TM) alloys are
substantially more expensive than the hard, magnetic ferrites, their superior magnetic properties
drive the RE-TM permanent magnets’ growing usage (Strnat and Strnat, 1991). A sharp decline
in their manufacturing costs would lead to an increasingly dominant position in worldwide
applications of nano- and micro-scale systems.

Compared to SmCo, NdFeB permanent magnets (PM) have a higher energy product ((BH)max)
and coercivity (Hc), but a lower Curie temperature (TC) and chemical stability in aggressive
environments. As a result, SmCo PMs have application in high temperature and aggressive
environments such as those encountered by military and aeronautical / aerospace systems (du
Trémolet Lacheisserie et al., 2002). So far, fabrication of nanostructured SmCo alloys have been
restricted to physico-chemical deposition methods. Therefore, development of an aqueous
electrodeposition process would dramatically reduce manufacturing costs (Dini, 1993).

In a series of preliminary studies, we reported on the aqueous electrodeposition of alloys of RE
mischmetals, La, Ce, Nd, Gd and Sm with the iron group metals (e.g., Ni, Co, and Fe). The key
factor is the complexation of the metal ions with aminocarboxylates (Chen et al., 1996; Myung
et al., 1999; Schwartz et al., 1999; Schwartz et al., 2004; Wei et al., 2006; Wei et al., 2008; Wei et al.,
2009). The present work reports on the aqueous DC electrodeposition of SmCo alloys using
parallel electrodes. The solution constituents and compositions as well as the deposition
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variables were selected as a result of preliminary parametric
studies using Hull Cells (HC) (Wei et al., 2008).

EXPERIMENTAL

The electrodeposition cell consisted of two parallel electrodes (brass
cathode, 2 × 2 cm, and a platinum anode, 3 × 6 cm), which were
4 cm apart. A shielding panel with a 2 cm by 2 cm window was
inserted equidistant between the electrodes to provide a more
uniform current distribution. A saturated calomel electrode (SCE)
measured the cathode potential. A potentio/gavalno-stat (EG & G
273) served as the power source with a coulometermeasuring charge
(50 C). Solution volume was kept at 240ml. The basic solution
consisted of 1M Sm sulfamate, 0.05M Co sulfate, and 0.15M
glycine, unless otherwise noted. The plating conditions were
varied within the following ranges: current density from 2 to
500mA/cm2, temperature from 25 to 60°C, pH range from 2 to
6. The solutions were not agitated during electrodeposition.

Prior to plating, the brass cathode was mechanically cleaned
by immersing in 0.1 M NaOH, rinsing with deionized (DI) water,
dipping in 10 vol. % HCl (30 s) and then rinsed with DI water.
The plated cathodes were rinsed and dried with nitrogen. Disk
specimens (0.64 cm diameter) were fabricated for analysis and
characterization.

Sm and Co contents in the deposits were determined by
energy dispersive X-ray spectroscopy (EDS). Co content was

measured separately by atomic absorption spectrophotometry
(AAS, Perkin Elmer). Deposit structure, crystal orientation,
phase identification and grain size were determined by powder
X-ray diffraction (XRD). Deposit surface morphology and
microstructure were observed with scanning electron
microscopy (SEM). Magnetic properties were determined by
a vibrating sample magnetometer (VSM, Digital Measurement
Systems Model 1660) with an applied magnetic field scanning
between −10 and +10 KOe. In-phase (//) and perpendicular
(⊥) measurements represent the field applied to the specimen’s
plane, respectively. The deposit magnetic properties were
obtained from BH loops. All measurements and data
reported were on deposits with metallic appearance, unless
otherwise noted. CDmax is the maximum current density,
beyond which deposits appeared non-metallic. Minimum
duplicate runs were performed.

RESULTS AND DISCUSSION

Confirming trends of the Hull Cell (HC) studies (Wei et al.,
2008), the deposit Sm content increased with increasing
temperature and applied current density (Figure 1A). At
25°C, the CDmax was 50 mA/cm2 with deposit containing
approximately 14.5 at% Sm (i.e., 30.2 wt%). Increased

FIGURE 1 | Effect of current density and solution temperature on (A)
deposit samarium content and (B) current efficiency (CE).

FIGURE 2 | (A) Cathodic polarization curves in the electrodeposition of
Sm-Co alloys at various current densities and solution temperature and (B)
dependence of Sm content on cathodic potential.
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solution temperature (60°C) extended the CDmax to 500 mA/
cm2, resulting in the deposit Sm content of approximately
30 at% (i.e., 55 wt%), sufficient for a series of stoichiometric
SmCo intermetallic compounds (after appropriate annealing):
Sm2Co17, SmCo5, SmCo7 and SmCo3. The current efficiencies
(CEs) initially decreased sharply, leveling with CD exceeding
50 mA/cm2 (Figure 1B).

While the cathode potential became more negative with
increased CD, it was less negative with increased solution
temperature (Figure 2A). The deposit Sm content increased
linearly with more negative potentials, apparently
independently of solution temperature (Figure 2B). However,
co-deposition of SmCo initiating a potential less negative than the
equilibrium potential of Sm (EoSm/Sm

3+ � −2.65 vs SCE) indicated a
deposition mechanism involving a potential resulting from
complexation rather than direct electrodeposition from
aqueous ions.

X-ray diffraction spectra (XRD) of Figure 1 deposits
indicated structures changing from crystalline to
noncrystalline (amorphous) with increasing Sm content
(Figure 3). The crystolites consisted of α-Co phases

(hexagonal close packed (hcp)) or Sm (rhombohedral)
phases were observed. Deposits formed at 25°C were
essentially amorphous with low Sm(OH)3 content. Low CD
(2 mA/cm2, 3 at% Sm) deposit showed strong 10.0 and 10.1 α-
Co (hcp) peaks and weak (20.1), (20.2) SmCo5 and Sm2Co17
(hcp) peaks, respectively (Figure 3).

XRD spectra of 60°C electrodeposits (not shown) indicated a
slight shift in the Bragg angles (α-Co 0.002 and 10.0 peaks) with
increasing Sm content. Differing atomic radii of Co (1.25 Å) and
Sm (1.81 Å) suggested a misfit, (RSm-RCo) � 0.45], which could
result in Co lattice distortion, which tends to elongate the Co
lattice while compressing it along the basic plane and likely
generate residual stresses in the SmCo deposit contributing to
microcracks (Figure 4).

Figure 4 shows the SEM images of SmCo alloys
electrodeposited at 60°C and 100 mA/cm2, which revealed a
cracked nodular surface. At higher magnification, fibrous
nanorods with varying random orientation emanating from
individual nodules (Figures 4B,C) were observed, as with
other electrodeposited cobalt and cobalt alloys (Cavallotti
et al., 1983). The estimated nodule diameters ranged

FIGURE 3 | XRD patterns of electrodeposits obtained at different temperature (i.e., 25 and 60°C) and various CDs.
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approximately from 1.5 to 2.5 μm, the crack widths from 0.12
to 0.15 μm with an estimated density of approximately
1,000 cracks/cm2. The texture of the mechanically fractured
sidewall was indicative of the deposit’s brittleness (Figure 4D).
It is suggested that the deposit nanocrystalline or amorphous
structure and columnar growth may be the result of coalescing
or bundling fibers (Figure 4C). Experience with
electrodeposits of chromium (Cr) and electroless nickel (Ni)
indicated that fine-grained nanocrystalline or amorphous
deposit surfaces generally contain nodules (Ruan and
Schuh, 2008).

Figures 5, 6 show the effects of deposition variables on deposit
composition and magnetic properties. Hysteresis loops indicated
magnetic saturation (Ms) was easier along the in-plane direction
(easy axis) than the perpendicular direction (hard axis). The
in-plane and perpendicular directions approached each other as
deposit Sm content increased, while Ms and Hc decreased as CD
increased. At constant CD and increased solution temperature
(25°C–60°C), Ms and Hc increased, reflecting changing alloy
compositions and structures (Figure 5)

Magnetization (Ms) decreased linearly with increased deposit
Sm content (Figure 6B), similar to sputtered deposits (Cho et al.,
1997). Magnetic saturation of Co (Ms � 169 emu/g) (Bozorth,
1978) is higher than Sm (Ms � 0.3 emu/g) (Adachi et al., 1994),
and the decreased Ms of the alloy was the result of decreased Co

content. The deposit’s structure changed from crystallinity to
non-crystallinity with increased Sm content (Figure 6). Deposits
with low Sm contents exhibited (002) plane orientation (c-axis),
resulting in anisotropy.

As the deposit structure changes from crystallinity to non-
crystallinity (increased Sm content), the deposits become more
isotropic (Figure 5), and Ms and Hc|| decreased. Deposits with
low Sm contents exhibit 00.2 plane orientation (c-axis), resulting
in anisotropy (Hc⊥ >> Hc||) (Figure 6C). Deposits with increased
Sm have decreased hcp 00.2 peak intensity with decreased Hc⊥.
Deposits with high Sm content (32 at%) are non-crystalline and
isotropic (Hc⊥ ≈ Hc||) as shown in Figure 6C with reduced Ms

(Figure 6B).
Deposit coercivities in the in-plane direction (100 Oe)

varied only slightly with deposit composition, but in the
perpendicular direction, higher Hc (600–800 Oe) was
obtained at low Sm content, decreasing sharply with
increasing deposit Sm content. We note that as-deposited
room temperature sputtered stoichiometric SmCo films also
exhibited low coercivities (∼100 Oe), which did not increase
substantially with subsequent annealing unless deposited on a
Cr underlayer, promoting nanocrystalline c-axis texture in the
SmCo deposit, increasing in-plane anisotropy (Hc > 40 KOe)
(Prados and Hadjipanayis, 1998; Prados and Hadjipanayis,
1999).

FIGURE 4 | Top and cross-sectional scanning electron microscopic images of Sm-Co electrdeposits at different magnification; 9.2 at% Sm, ∼ 5 μm, pH 5.7, 60°C,
100 mA/cm2.
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In-plane coercivities remained constant regardless of the
deposit Sm content; coercivity in the perpendicular direction,
however, decrease with increased Sm content (Figure 6C). The
squareness of the deposits appeared to be reversed (Figure 6D).

Deposit particle size decreased as Sm content increased, result
of increased CD and/or decreased solution temperature
(Figure 6A). Cavallotti et al. reported similar results for
electrodeposited Co and Co alloys (Cavallotti et al., 1983).

Figure 7A shows the dependence of Sm content on pH at
various CDs (10 and 50 mA/cm2) at room temperature. Sm
contents were higher than at 60°C but at the latter
temperature maxima deposit Sm content were higher between
pH 4 (12 at%, 100 mA/cm2) and pH 5 (28 at. %, 300 mA/cm2),

respectively. Lower current densities and higher solution
temperatures resulted in higher current efficiencies (CEs),
but dependence on solution pH was not substantial
(Figure 7B).

Hull cell experiments (Wei et al., 2008) showed Co and
Sm(OH)3 are electrodeposited from glycene-free solution,
indicating a complex was essential for deposition of SmCo
alloys. At 25°C, maximum deposit Sm contents were obtained
at 25 mA/cm2 (∼11 at%) and 50 mA/cm2 (∼14 at%) with glycine
concentration of 0.1 and 0.15 M , respectively; below 0.1 M,
non-metallic deposits were formed. Increased solution
temperature (60°C) and higher CDs resulted in increased Sm
contents (e.g., 300 mA/cm2, 0.1 M glycine to ∼18 at%) initially,

FIGURE 5 | Magnetic hysteresis loops of Sm-Co deposits at 25 and 60°C, and various CDs.
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decreasing with increased glycine concentration (>0.1 M). High
deposit Sm contents were obtained with 2 to 3:1 glycine to Co
ratios in the presence of excess Sm3+ (Figure 8A).

Current efficiencies (CEs) of 25°C deposits increased to 15%
with increased CD and glycine concentrations. At 60°C, there
appeared to be no significant CE dependence, although CE
increased to 30% at higher CDs (Figure 8B).

XRD spectra (not shown) indicated that 0.15 M glycine
containing solutions produced nanocrystalline or amorphous
deposits with a weak 11.0 Sm(OH)3 peak at 25°C but none at
60°C. This confirmed observations of the HC studies (Wei et al.,
2008), i.e., glycine inhibited formation of hydroxides in
agreement with Diven et al. (2003) that glycinato-Co
complexes inhibit formation of Co(OH)2 in aqueous solutions.

Interestingly, XRD spectra of deposits from solutions with 0.05 M
or 0.5 M glycine concentrations show the presence of Sm(OH)3
and Co(OH)2 11.0 peaks, which suggested an optimum
concentration of complexant: M (metal ion) ratio, minimizing
or inhibiting hydroxide/oxide inclusions. At 60°C, deposits also
exhibited several Co (hcp) peaks which did not appear in 25°C
deposit spectra.

Figure 9 shows the effects of selected complexants (0.15 M) on
the deposit Sm contents. In 25°C solutions, only the amino acids
appeared to be effective complexants (Table 1), while the other
tested complexants resulted in burnt or powdery deposits
containing hydroxides/oxides. Increasing solution temperature
to 60°C resulted in extending the CD ranges and permitted co-
deposition with other amino acids and hydroxycarboxylic acids,

FIGURE 6 | Effect of Sm deposit content and temperature on grain size and magnetic properties.
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analogous to glycine and alanine (glycolic and lactic acids) with
decreased CDmax (Table 1). Substitution of other complexants for
glycine indicated glycine provided higher deposit Sm contents,
but polycarboxylic acids (e.g., citric acid, EDTA) presumably
resulted in stronger complexes which prevented deposition of
SmCo alloys. These results suggested the bond strengths and/or
structures of the various (aqueous) coordination compounds and
their interdependence with the deposition variables are
paramount in the co-deposition of the alloys, their
compositions and magnetic properties.

Supporting electrolytes (SE) are frequently added as solution
components to increase solution conductivity, stabilize solution
pH, and permit higher CDs, affecting deposit composition and
properties. Figure 10 shows the effect of KCl, NH4Cl and NH4

sulfamate on deposit Sm content. At 25°C, KCl increased the
deposit Sm content up to 18 at%, which was higher than that in
the absence of supporting electrolyte (15–14 at%), while NH4Cl
and NH4 sulfamate decreased the Sm content to 9.7 at% and 8.1 at
%, respectively. CD increased substantially at 60°C in both the
absence and presence of supporting electrolytes (Figure 10).

Ammonium compounds are widely added to plating solutions
as these SE may participate in complexation of the depositing
ions. Ammonium sulfamate was investigated as SE in the SmCo
solutions (Figure 11). Increasing additions of NH4

+ (0–1 M)

decreased the deposit Sm contents from solutions at both 25°C
and 60°C. This effect was more pronounced at the higher
temperature: Sm deposit contents decreased from ∼32 at. %
Sm (no NH4

+) to ∼11 at% Sm (1 M NH4
+) at 500 mA/cm2,

with similar decreases at lower CDs. This might be attributed

FIGURE 8 | Effect of glycine concentration on (A) samarium deposit
content and (B) current efficiency at 25 and 60°C.

FIGURE 7 | Effect of solution pH on (A) Sm deposit content and (B)
current efficiency different temperature (25 and 60°C) and various CDs.

FIGURE 9 | Effect of various complexes on samarium deposit content at
60°C (pH � 5.8).
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to the deprotonation of ammonium (NH4
+ → NH3 + H+), which

could form other competing complexes such as cobalt
hexammine ion (Co(NH3)6

2+), favoring Co deposition.
Furthermore, NH3 could modify the proposed heteronuclear-
glycinato-complexes (Schwartz et al., 2004) with the inclusion of
bridging NH3 ligands, which are not conductive to facilitate
electron transfer in redox reactions (Taube and Gould, 1969).

Proposed Deposition Mechanism
Coordination compounds, such as inorganic complexes
(ligands)—cyanide, halide, hydroxide, and phosphate
complexes—, have been employed in electroplating systems
since the early 1800s and are increasingly involved in many

commercial processes. Organic ligands including
polycarboxylic, hydroxycarboxylic, aminocarboxylic and
heterocyclic compounds are also well-known complexing
agents for the electrodeposition of single metals and alloys
from aqueous plating solutions. Tartrates, citrates,
hydroxyacetates, hydroxypropionates and glycinates are
extensively employed in electroless deposition and
electrodeposition of alloys.

In addition to engineering, electronic, and magnetic
applications of these electrodeposited alloys, there is increasing
interest in applying compatible samarium (Torres et al., 2001;
Torres et al., 2003; Kremer et al., 2005), vanadium (Tsaramyrsi
et al., 2001; Kaliva et al., 2002a; Kaliva et al., 2002b), molybdenum
and tungsten (Kiss et al., 1995; Zhou et al., 1999; Zhou et al., 2000;
Zhang et al., 2003; Zhou et al., 2004; Kustin et al., 2007)
coordination compounds in biological (physiological) systems.
Citrate ions participate in essential physiological processes (e. g.,
Krebs cycle) and as natural chelator for various metal ions;
compatible amino acid and peptide complexes may interact
with bodily citrate fluids and independently have enhanced
effects as active biological agents for metalloenzyme processes
and oncological treatments.

Yukawa and coworkers stressed the relevance of the
coordination chemistry of amino acids and peptides in
understanding interaction of trace metals with enzyme and
other biological systems in bioinorganic and medicinal
chemistry (Komiyama et al., 2008).

Franklin considered possible effects of complexation on
electrodeposition mechanisms and deposition rates including
adsorption or inclusion of complexed ions or molecules,
complexation resulting in catalyzing deposition rate through
ion bridging or ion pairing (Franklin, 1987).

The following observations pertinent to the proposed
deposition mechanism were considered: only metallic Co and
Sm(OH)3 deposited from Sm-Co solutions. Complexation with
glycine or other ligand is a required constituent for
electrodeposition of Sm-Co alloys. The structure and
geometrics of the complex, along with the deposition variables
determined the deposition rates of both Co and Sm, the resultant
alloy composition, grain size and other properties. The extensive
industrial application of chromium plating was used for

TABLE 1 | Summary of CDmax and max. Sm contents obtained from solutions containing different complexers.

25°C 60°C

Complexer CDmax (mA/cm2) Max. Sm content (at%) CDmax (mA/cm2) Max. Sm content (at%)

Acetic acid nd nd 100 6
Glycine 50 15 500 32
Serine 50 13 500 28
α-alanine 50 12 400 23
β-alanine nd nd 300 24
4-aminobutanoic acid nd nd 200 20
Glycolic acid nd nd 200 25
Lactic acid nd nd 300 11
Citric acid nd nd nd nd
EDTA nd nd nd nd

nd, non metallic deposit.

FIGURE 10 | Effect of supporting electrolyte on samarium deposit
content at (A) 25°C (closed pts) and (B) 60°C (open pts) [Note- draw
continuous and dashed connecting line].
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comparison (Hoare, 1989). Although the toxic Cr(VI) regularly
electroplates to Cr, much less toxic Cr(III) cannot. Mandich
reported that Cr(III) is a strongly hydrated ion, which
precludes its electrodeposition to metallic Cr (Mandich, 1997).
However, complexed with a suitable organic ligand, Cr(III)
deposits to Cr (Danilov and Protsenko, 2001; Song and Chin,
2002).

Yukawa showed the versatility of glycine and other amino
acids and peptides as complexing chelated molecules (Komiyama
et al., 2008). The versatility of glycine is based, in part, on various
protonation/deprotonation configurations. Sm glycino-
complexes either as chelated monomeric Smgly3 (Figure 12)
or dimeric coordinated compounds, i.e., complexes resulting in
high stability constants, possibly preventing electrodeposition
(Torres et al., 2001; Torres et al., 2003; Kremer et al., 2005).

Zvaginsteva and Goncharov considered the polymerization of
glycine as peptides (Zvaginstev and Goncharov, 1963). It is
envisioned that quasi-peptides structures developed as a result
of H-bonded bridges by O...H. . .N bonds. The presence of Co
ions possibly inhibited Sm-glycine chelated complexes, resulting
in catenated heteronuclear trisglycino- complexes coordinating
cis oriented Co and Sm ions through the glycine carbonato- and
amino- groups, respectively (Figure 13).

In gas phase catalysis, hydrogenation of organics usually proceeds
by adsorbed hydrogen atoms on surfaces; this generally requires high
temperatures and/or pressures as contrasted with aqueous phase
hydrogenation (Ceyer, 2001). Further, in aqueous phase
electrocatalysis, adsorbed hydrogen atoms readily reduce and
hydrogenate organics and promote polymerization (Parravano,
1951; Park et al., 1985; Li et al., 2012).

H atoms generated and adsorbed at the cathode surface
provided the electrons for the reduction and deposition of
metal from the complex. The adsorbed hydrogen atoms
reduced Sm3+ to Sm2+, modifying the complex. Continued
stepwise reduction by hydrogen atoms resulted in zero-valent
Co0 and Sm0 complex, which deposited on the electrode surface,
resulting in an intimately mixed deposit constituting the
equivalent of an alloy, SmxCoy, with variable composition,
depending on deposition conditions (Figures 13, 14).

Low CD deposition resulted in low Sm content and the
presence of Co crystallites in the deposit. The reduction series
of Co and Sm in the polymeric glycine- complexes and reaction
flowchart (Figures 13, 14) show the suggested stepwise reduction
process, culminating in the SmCo alloy.

SUMMARY

Samarium cobalt alloys were electrodeposited from aqueous
solutions containing 1M samarium sulfamate, 0.05M cobalt
sulfate, 0.15M glycine, in presence and absence of supporting
electrolytes. While they contribute to the solution stability, the
supporting electrolytes used in this work decreased the Sm
content in the deposit. Glycine or other coordination compounds
were essential constituents in promoting co-deposition of Sm and
Co; without complexing species, only Cometal and Smhydroxide or
oxide deposited. Glycine was a preferred ligand, resulting in higher
deposit Sm contents while effectively inhibiting or minimizing
occluded hydroxide/oxides in the deposit.

Polarization curves showed a linear dependence of deposit Sm
content on cathodic potential with higher Sm content obtained at
more negative potentials than the equilibrium potential of Sm,
indicating complex species were involved in the co-deposition
mechanism.

FIGURE 11 | Effect of NH4 sulfamate concentration on (A) samarium
deposit content and (B) current efficiency at 25 and 60°C.

FIGURE 12 | Sm glycine chelate complexes adapted from Prados and
Hadjipanayis (1999).
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Increased solution temperature extended the CDmax from 50mA/
cm2 (25°C) to 500mA/cm2 (60°C), resulting in high deposit Sm
contents (32 at%), which satisfied the potential stoichiometric SmCo
alloy compositions after annealing. The preferred solution pH range
was between 2 and 6; pH > 6 resulted in nonmetallic deposits.

Magnetic saturation (Ms) of deposits decreased with increased
Sm content, becoming isotropic with deposits containing >30 at%
Sm. Electrodeposited SmCo alloys and as-sputtered SmCo5 films
exhibited low coercivities (i.e., Hc of ∼100 Oe as deposited).

Crystalline deposits became noncrystalline (amorphous) with
increased deposit Sm content. Lower temperature and lower CD
favor noncrystalline deposits with weak Sm(OH)3 peaks; no
Sm(OH)3 peaks are observed in deposits from elevated temperatures.

A deposition mechanism involving the sequential stepwise
reduction of the Sm and Co ions complexed with glycine (or other
compatible ligand) by atomic hydrogen deposited at the cathode
surface is proposed. Without complexation, only metallic Co and
non-metallic Sm hydroxide/ oxide co-deposit.

FIGURE 13 | Incremental atomic H reduction of Sm-Co ions in glycine structure.
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