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Background. Lymph node (LN) metastasis was an independent risk factor for stomach cancer recurrence, and the presence of LN
metastasis has great influence on the overall survival of stomach cancer patients. Thus, accurate prediction of the presence of lymph
node metastasis can provide guarantee of credible prognosis evaluation of stomach cancer patients. Recently, increasing evidence
demonstrated that the aberrant DNA methylation first appears before symptoms of the disease become clinically apparent.
Objective. Selecting key biomarkers for LN metastasis presence prediction for stomach cancer using clinical DNA methylation
based on a machine learning method. Methods. To reduce the overfitting risk of prediction task, we applied a three-step feature
selection method according to the property of DNA methylation data. Results. The feature selection procedure extracted several
cancer-related and lymph node metastasis-related genes, such as TP73, PDX1, FUT8, HOXD1, NMT1, and SEMA3E. The
prediction performance was evaluated on the public DNA methylation dataset. The results showed that the three-step feature
procedure can largely improve the prediction performance and implied the reliability of the biomarkers selected.
Conclusions. With the selected biomarkers, the prediction method can achieve higher accuracy in detecting LN metastasis and

the results also proved the reliability of the selected biomarkers indirectly.

1. Introduction

According to the recent reports of the World Health Organi-
zation (WHO), stomach cancer is the fifth most common
cancer in the world and more than 70% of the new cases of
stomach cancer occurred in developing countries (mainly
in China) [1, 2]. The early stage of stomach cancer, which
is defined as stomach cancer limited to the mucosa or sub-
mucosa and irrelevant to the presence or absence of lymph
node (LN) metastasis, confers a survival rate of greater than
90% in 5 years in many centers [3]. However, even in the
early stage, it was reported that the incidence of LN metasta-
sis was 14.1% overall and was 4.8 to 23.6% depending on
cancer depth [4, 5]. Many researchers demonstrated that

LN metastasis is an independent risk factor for stomach
cancer recurrence in patients following curative resection,
and the overall survival of LN metastasis-negative stomach
cancer patient is significantly longer than that of LN
metastasis-positive patients [6, 7]. Therefore, it is certain
that an accurate LN metastasis presence prediction can
provide the guarantee of credible prognosis evaluation of
stomach cancer patients.

Traditionally, LN metastasis diagnosis is mainly
implemented by preoperative imaging such as abdominal
ultrasonography (US) and computed tomography (CT), but
their diagnostic accuracy is limited. It was reported that
the detection rate of lymph nodes around the stomach
was 18.7% in CT and 5.0% in US [8]. Endoscopic
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ultrasonography (EUS) is an effective approach and gener-
ally provides a more accurate prediction of the tumor
stage than does CT. However, EUS-based prediction accu-
racy for LN is only slightly greater as compared to CT [4].

Recently, increasing evidences suggest the critical role of
DNA methylation in human carcinogenesis [9, 10]. Aberrant
DNA methylation is one of the common alterations in carci-
nogenesis, and it first appears before symptoms of the disease
become clinically apparent [11-13]. In addition, aberrant
DNA methylation can promote the progression of disease
[14]. With the development of high-throughput technology,
plenty of DNA methylation data are available for cancer pre-
diction and biomarker identification [15-18]. Inspired by
these applications, in this study, we used the DNA methyla-
tion data to categorize the incidence of LN metastasis in
stomach cancer through a machine learning method. Con-
sidering the high-dimensionality and high-noisiness of the
DNA methylation data, there are still several challenges to
achieve the categorization. In contrast to the large number
of features (probes), the small number of cancer samples
available for training may lead to the degradation of classifi-
cation performance and raise the risk of overfitting [19]. It is
natural and perhaps essential to employ a feature selection
step to obtain a feature set which only consists of genes con-
tributing positively to the classification without redundant
features. The key benefits of performing feature selection
are reducing overfitting, improving accuracy, and reducing
training time. Beyond that, feature selection in cancer
research can help researchers to identify key carcinogenic
markers and accurate prediction can provide references for
clinical implementation. The feature selection methods
mainly can be divided into three categories, which are the
filter, wrapper, and embedded methods [20-23]. The filter
methods use a measure to score feature subsets while the
wrapper methods use a predictive model to score. With
the wrapper method, different feature sets are generated
and an optimal engine, such as genetic method [24], simu-
lated annealing method [25], and particle swarm optimiza-
tion method [26], is selected to search a set of features that
best distinguish the training samples of different classes.
Embedded methods are the catch-all group of techniques
which perform feature selection as part of the model
learning process.

In this study, we grouped the data of stomach cancer into
three categories, normal, LN metastasis negative, and LN
metastasis positive, according to the clinical information. A
three-step feature selection method was applied to identify
the key genes. To evaluate the reliability of the selected
biomarkers, we introduced the random forest algorithm to
predict the categories with and without the three-step feature
selection method. The results showed that the prediction
accuracy was largely improved with the selected biomarkers,
and it also proved the reliability indirectly.

2. Results

2.1. Feature Selection. Feature selection is commonly used
to remove the irrelevant and redundant features from the
original feature set. The minimum redundancy maximum
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relevance (mRMR) feature selection method is a feature
selection method for finding a set of features that have the
highest relevance with the target class and are also maximally
dissimilar to each other based on the mutual information
theory. However, mRMR is computationally expensive.
In our paper, the differential methylation analysis was
integrated with mRMR to achieve the preliminary feature
selection. To further obtain the most informative feature
for classification, an embedded feature selection method
with genetic algorithm was introduced to get the final
optimal features.

2.1.1. Feature Selection with Differential Methylation Region
(DMR) Analysis. To preliminarily obtain the probes that are
closely related to the phenotype, DMR analysis, which aimed
to identify significantly methylated probes between different
phenotypes, was applied. We compared the methylation sta-
tus of each probes in the normal samples within the cancer
samples and the methylation status of probes in the LN-
negative samples within the LN-positive samples. Differen-
tially methylated probes were determined with the Mann-
Whitney U test. The density of the mean difference and the
Benjamin-Hochberg- (BH-) adjusted p value of the two
comparisons were shown in Figure 1, from which we can
see that the methylation patterns were much more similar
in the LN-negative and LN-positive samples than in the
normal samples and cancer samples. The appearance indi-
cated that the thresholds used for selecting significantly
differentially methylated probes must be different accord-
ing to the two comparisons. For the comparison of normal
versus cancer, we selected probes with an adjusted p value
less than 1E-5 and an absolute mean difference greater than
0.2 as significantly differentially methylated probes. For the
comparison of LN negative versus LN positive, the threshold
for the adjusted p value and absolute mean difference was set
as 0.01 and 0.02, respectively. With such criteria, we identi-
fied 1077 and 275 as significantly differentially methylated
probes in the two comparisons. There were only 33 probes
shared by both.

2.1.2. Feature Selection with the mRMR Method. The clas-
sic mRMR method was applied to filter the probes selected
previously, and the probes were ranked according to their
score. Since there is no explicit threshold, only the top
10% probes were left and these probes were used as input
to the next feature selection step. The results of mRMR fil-
tering were shown in Figure 2, from which we can see that
the scores in respect to the LN negative versus LN positive
comparison were extremely low. The results implied that
the LN-negative samples and LN-positive samples were
very indistinct.

2.1.3. Feature Selection with Genetic Algorithm. Performing
feature selection with genetic algorithm requires conceptu-
alizing the processing of feature selection as an optimiza-
tion problem and encoded the solution as binary. In this
paper, random forest algorithm was used as the fit func-
tion during the genetic algorithm and the receiver operat-
ing characteristic (ROC) was used to measure the fitness.
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FiGURrk 1: The density of the mean difference and BH-adjusted p value of the two comparisons. (a) The density of the mean difference of
normal versus cancer comparison and LN negative versus LN positive comparison. (b) The density of the logl0 BH-adjusted p value of

normal versus cancer comparison and LN negative versus LN positive comparison.
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FIGURE 2: The distribution of mRMR scores with respect to features.
cancer. (b) LN negative versus LN positive.

The details will be discussed later in the section of Mate-
rials and Methods. The normal versus cancer classification
and LN negative versus LN positive classification were
treated independently.

During the genetic algorithm in respect to the normal
versus tumor classification, the ROC value summary in each
iteration was shown in Figure 3(a), from which we can see
that almost all the solutions can give a high fitness value.
From this plot, we can see that after 12 iterations, the mean
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fitness hovered around 0.9999. We collected all the best
solutions after each of the 12 iterations and simply summa-
rized how many times a probe had been selected. The
distribution of the number of selected probes were shown
in Figure 3(b), and we selected the top 20 probes as the
final features used for classification. According to the
genomic locations, the 20 probes were associated to 39
genes including well-known cancer-related genes, such as
TP73, PDX1, and FUTS8 [27-29].
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F1GURE 3: The results of genetic algorithm-based feature selection with respect to the normal versus tumor classification. (a) The fitness
improvement in the process of iteration. (b) The distribution of the number of selected probes.
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FIGURE 4: The results of genetic algorithm-based feature selection with respect to the LN negative versus LN positive classification. (b) The
fitness improvement in the process of iteration. (a) The distribution of the number of selected probes.

The results of genetic algorithm in respect to the LN
negative versus LN positive classification were shown in
Figure 4(a), from which we can find that even after 100
iterations, the fitness is still not much greater than 0.8. This
result also implied the indistinctness between the LN-
negative and LN-positive samples. The mean fitness hov-
ered around 0.8 after iteration 20. Similarly, we collected
all the best solutions after each 20 iterations, and the distri-
bution of the number of selected probes was shown in
Figure 4(b). Finally, 12 probes were chosen for the final
classification and associated with 14 genes including several
lymph node metastasis-related genes, such as HOXDI,
NMT1, and SEMA3E [30].

2.2. Classification Performance Evaluation. To illustrate the
necessity and effectiveness of the feature selection procedure,
we compared the performance of the random forest using the
three-step-selected probes with the random forest using only
the differentially methylated probes. We randomly generated
100 training and testing data for evaluation, and the AUROC
(area under ROC curve) value was used as measurement. The
AUROC value of a classifier described the probability that the
classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative instance. Simply
put that a larger value of the AUROC means a higher dis-
criminatory power. The box plots in Figure 5 shown below
were the distribution of the AUC values of the prediction in
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FiGure 5: The distribution of the AUC value with different methods. (a) AUC value with different methods with respect to the normal versus
tumor classification. (b) AUC value with different methods with respect to the LN negative versus LN positive classification.

TasLE 1: The sample number for each phenotype.

Normal Cancer
LN negative LN positive Unclassified
27 94 189 12

respect to the normal versus tumor and LN negative versus
LN positive.

From the plots, we can see that with the three-step feature
selection procedure, the classifier can give a better perfor-
mance in respect to both the normal versus tumor and LN
negative versus LN positive classifications compared to with
only the DMR analysis. Moreover, we also can find that the
three-step feature selection or DMR only analysis gives
good performance (AUC value all greater than 0.99) for
the normal versus tumor classification.

3. Materials and Methods

3.1. DNA Methylation Dataset and DMR Analysis. The
clinical data and the TCGA level 3 DNA methylation data
were downloaded from The Cancer Genome Atlas (TCGA)
project [31]. Only the samples with clear clinical diagnosis
were used in the study. The details were shown in Table 1.
To identify differentially methylated probes, for each
probe, we ranked the samples and compared only the
lower methylation quintile sample to the upper methyla-
tion quintile sample between two phenotypes using the

Mann-Whitney U test. The BH-adjusted p value and mean
methylation difference were used to guide the identification.

3.2. Genetic Algorithm. Genetic algorithms are optimization
tools that search the solution through simulating the evolu-
tion of random variation and natural selection. For feature
selection, the individuals are subsets of candidate features
that are encoded as binary and the value indicated that a fea-
ture is either included or not in the subset. The parameters
used for the genetic algorithm were set as follow [19]:

(i) Population size: 100
(ii) Maximum number of generations: 100
(iii) Selection method: tournament selection with size =2
(iv) Elitism rate: 10 individuals
(v) Crossover: 2-point crossover with probability 0.6

(vi) Mutation: random mutation with probability 0.05

The initial population was created by producing chromo-
somes with a random 30% of the predictors. The fitness
function of every individual was defined as the ROC value
of the classification method.

4. Conclusions

Stomach cancer is the fifth most common cancer in the
world, and most of the new cases occurred in developing
countries, especially in China. Recently, more and more
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TaBLE 2: Identified biomarkers for each prediction.

Normal versus tumor biomarkers

LN negative versus LN positive biomarkers

SLC39A5, C3orf32, TP73, CD1B, PCDHGA4, PCDHGA11, PCDHGAJY,

PCDHGA1, PCDHGBI, PCDHGB6, PCDHGA12, PCDHGB3, PCDHGB?,

PCDHGA6, PCDHGAS, PCDHGA10, PCDHGAS, PCDHGB4,

PCDHGA3, PCDHGA2, PCDHGB2, PCDHGA7, PCDHGBS5, C200tf197,
SLCI6A5, FUTS8, SLCI15A2, C170rf93, PRAC, OCLN, TMEM144, FGF2,

PDX1, CCL1, LILRB5, LCE3D, GPR45, LPO, CGB5

LAT2, TTC13, ARV1, NMT1, DCAKD, GJA1, OR7A17, LOX,
KRT19, ZNF655, KRTAP4-4, TAARS5, SEMA3E, HOXDI

evidence demonstrated that LN metastasis was an indepen-
dent risk factor for stomach cancer recurrence in patients
following curative resection, and the overall survival of LN
metastasis-negative stomach cancer patients is significantly
longer than that of LN metastasis-positive patients.

Based on the critical role of DNA methylation in
human carcinogenesis, in this study, we focused on the pre-
diction of the LN metastasis status using the DNA methyl-
ation data. However, considering the inherent disadvantage
of DNA methylation data, such as the limited sample num-
ber compared to the large number of probes, we applied a
three-step feature selection procedure to extract a small
subset of representative features. First, we applied the dif-
ferential methylation analysis to identify the significantly
methylated probes between different phenotypes. Then, an
mRMR method was introduced to remove the redundant
feature obtained in the first filter step. Finally, a wrapper
method based on genetic algorithm was used to achieve
the final feature selection. We obtained 20 probes related
to 39 genes which were inputs of the prediction in respect
to normal versus tumor, and 12 probes related to 14 genes
were input to the prediction in respect to LN negative ver-
sus LN positive (see Table 2). These genes related to the
selected probes are mostly associated with cancer and LN
metastasis, such as TP73, PDXI, FUT8, HOXDI, NMT1I,
and SEMA3E.

To evaluate the effect of three-step feature selection to the
prediction performance, we downloaded the DNA methyla-
tion data and clinical data from the TCGA project. The
AUROC value was used as the performance measurement.
The experiment results showed that the three-step feature
selection can largely improve the performance of prediction,
especially predicting LN negative versus LN positive. The
source code used in this paper can be obtained at https://git.
oschina.net/junwu302/codes/m2gonkax18sthdvl3e0b932.
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