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Diffusion MRI (DMRI) plays an essential role in diagnosing brain disorders related to white matter abnormalities. However, it
suffers from heavy noise, which restricts its quantitative analysis. The total variance (TV) regularization is an effective noise
reduction technique that penalizes noise-induced variances. However, existing TV-based denoising methods only focus on the
spatial domain, overlooking that DMRI data lives in a combined spatioangular domain. It eventually results in an
unsatisfactory noise reduction effect. To resolve this issue, we propose to remove the noise in DMRI using graph total variance
(GTV) in the spatioangular domain. Expressly, we first represent the DMRI data using a graph, which encodes the geometric
information of sampling points in the spatioangular domain. We then perform effective noise reduction using the powerful
GTV regularization, which penalizes the noise-induced variances on the graph. GTV effectively resolves the limitation in
existing methods, which only rely on spatial information for removing the noise. Extensive experiments on synthetic and real

DMRI data demonstrate that GTV can remove the noise effectively and outperforms state-of-the-art methods.

1. Introduction

DMRI is a unique way in the in vivo characterization of ana-
tomical connectivity in the human brain [1]. However, it is
frequently impeded by pronounced thermal noise due to
its echo-planar acquisition strategies and low signal-to-
noise ratio (SNR) [2]. One practical way to reduce the noise
variance of DMRI data is averaging several acquisitions [3].
Therefore, it requires an extended period that is not suitable
for clinical settings. On the other hand, many postprocessing
algorithms have been applied in DMRI denoising to improve
the data quality. Most of them can be roughly grouped into
transform-based and spatial approaches.

Transform-based denoising methods are frequently used
in signal processing because it is generally believed that noise
and signal are more easily distinguished in the transform
domain. Nowak [4] proposed the wavelet domain filter for
reducing Rician noise in MRI. This method filters the squared
magnitude of MRI in that distribution changes from Rician to

noncentral Chi (nc-y). Wood and Johnson [5] proposed an
MRI denoised strategy based on the wavelet packet. This
method exceptionally performs well on removing Rician noise
with low SNR since wavelet packet provides a more compact
signal representation than single wavelet decomposition.
Other transform-based approaches, including curvelet trans-
form [6] and block-matching and 3D (BM3D) [7] denoising
schemes, have been proven to tackle Rician noise in MRI data
efficiently.

Spatial denoising methods utilize the neighbor information
around the pixel to reduce the variance caused by noise. Hen-
kelman [8] presented the pioneering study on estimating
Gaussian noise in MR images and smoothened them by convo-
lution filtering, but this method blurs sharp edges that provide
crucial clinical information. Gerig et al. [9] applied nonlinear
anisotropic diffusion (AD) filters to 2D and 3D MRI denoising.
AD filters can remarkably leverage the MRIs™ quality in terms
of persevering boundaries. However, AD methods assume that
the processed MRI are piecewise constant and the noise is
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Gaussian distributed with zero means. Both of those men-
tioned above are not applicable for MRI. Tong et al. [10] pro-
posed an improved AD algorithm that used an adaptive
scheme to select parameters to reduce Rician noise in MRI.
To avoid tuning numbers of parameters carefully, Awate and
Whitaker [11] proposed a nonparametric neighborhood sta-
tistics technique for MRI denoising. They inferred the prior
from the degraded MRI and the knowledge of the Rician noise
model. The uncorrupted MRI statistics are modeled in a non-
parametric Markov Random Field (MRF) and estimated by
the expectation-maximization algorithm. Experiments show
that this method can well preserve important features in brain
MRI. Fabio et al. [12] defined a 3D local Gaussian MRF
(LGMREF) that allows tuning the filter in an unsupervised
way. The LGMRF model can automatically implement the
regularization to find the trade-oft between noise reduction
and detail preservation.

TV-based regularization [13] is one of the most influential
denoising algorithms since it can effectively reduce the variance
while preserving shape edges. Martin et al. [14] proposed a TV-
Rician denoising model for MRI data by solving a semi-implicit
numerical scheme. Liu et al. [15] extracted the noise map
through a two-step wavelet-domain estimation method, then
denoised the MRI data based on a generalized TV model. Later,
the authors extended their work by combining none local mean
(NLM) filters [16]. The aforementioned methods mainly pro-
cess the data in the spatial domain (i.e., x-space) while ignoring
that DMRI data consists of spatial and diffusion wavevector
space. These denoising algorithms lead to new smoothing arti-
facts caused by averaging over differential oriented signals, par-
ticularly in the highly curved white matter structures.

Recently, Chen et al. have proposed two novel NLM-
based denoise methodologies in joint x — g space. Before
NLM denoising, for each point in x—gq space, they (1)
defined a spherical patch from which they extracted the
rotation-invariant features patch matching [17] and (2) per-
formed graph framelet transforms to extract robust rotation-
invariant features after encoding the g-space sampling
domain using a graph [18]. Graphs have the ability to well
modeling the data with irregular and complex structures
[19]. In this paper, we represent the joint x — g space DMRI
data with a graph and associate signal coeflicients with graph
nodes. Then, we consider the denoising DMRI data on the
graph as an optimization problem, which seeks to minimize
a TV function based on graph edge signals. The main contri-
bution of our GTV denoising framework includes threefold:
(i) the proposed method avoids computing rotation-
invariant features; (ii) the minimizing variation procedure
harnesses not only over spatial space but also angular space,
allowing information to be shared across DW images for
effective denoising; (iii) the information in angular space
represents structures oriented in different directions, so our
method is expected to be more effective for denoising with-
out introducing new artifacts.

The remainder of this paper is organized as follows. We
describe the detail of the proposed method in Section 2 and
evaluate the effectiveness on synthetic data and public real
data in Section 3. Section 4 shows our further discussion of
this work. Finally, we conclude this work in Section 5.
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2. Method

2.1. Graph Representation. Given a graph G = (7', w), where
7 ={v,}_, represents the set of N nodes and w € CV¥ is
an affinity matrix, which characterizes the relationships
between every pair of nodes on graph. The graph signal is
a mapping function 7" — C that associates signal coeffi-
cients S, € C to each node v, € 7 of the graph.

We show how to represent DMRI data using a graph.
Specifically, given a sampling point (i,j) in spatioangular
domain, which is determined by a spatial location x; € R?
and a gradient direction q; € R® and diffusion weighting b;

o ||qj\|2, we consider it as a node of the graph and define
the affinity weight with another node (i', j') as [20]
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where o,, 0,, and 0, are three parameters controlling the

commitments of spatial, angular, and diffusion weight,
respectively [21].

2.2. GTV of DMRI. We define the GTV of DMRI signal $
with respect to graph & as
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where §; ; is a diffusion signal associated with spatial location
x;, gradient direction g;, and diffusion weighting b;. J/;; is
the spatioangular neighborhood of §;;. We set wi,j;i’f’ =0
where (i',j")¢)./ i then, (2) becomes the standard [,

-norm ||V (S)-
To denoise the DMRI data, we propose

1
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where the quadratic fidelity term is to force the underlying
clean data S to stay close to the acquired noisy DMRI data
§', and tuning parameter A controls the trade-off between
two parts of (3) [22]. Since (1) assumes the nearer nodes
have a higher weight, (3) ensures they have lower dissimilar-
ities. It is worth noting that our GTV takes the neighbor-
hood region compared to traditional TV, which only
considers the neighbors of a sample along Cartesian axes.

2.3. Optimization. Graph gradient V& is a linear operator
(hereafter denoted as L) which associates the DMRI signal
to the corresponding node, and consequently, (3) is usually
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FIGURE 1: Some examples of synthetic data degraded by Gaussian noise with different deviations.
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ArLGoriTHM 1: Forward-backward-based primal-dual for GTV optimization.

referred to the primal problem since it can be expressed as
the following form:

minf(x) + g(L), 4)

where f(x) represents the fidelity term in (3) and it is convex
and differential with a B-Lipschitz continuous gradient V(

x). (4) is related to the following dual problem [23]:

mvinf* (—LTV) +g'(v), (5)

where f* is the conjugate of function f. It is worth noting
that only a small number of neighbors are taken into
account in the proposed graph (i.e., the number of edges is
much smaller than that of nodes); therefore, (5) is much eas-
ier to solve than (4). The second term g(D) = A||D||, where
D=L(S) is convex and has proximity operator [24].

prox, ;(D) =sgn (D) e max (|D| - 7y,0). (6)
Note that 7 is the step size in the iterative optimization

process and is typically set to the inverse of the Lipschitz
constant, and o denotes the Hadamard product. With the
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FIGURE 3: Quantitative comparison of denoising performance, where x-axis represents standard deviation of noise.

aid of these tools, we can recover the unique solution of (3) via
a forward-backward-based primal-dual algorithm [23, 24].

3. Experiments

3.1. Datasets. We evaluate the proposed GTV based on a
synthetic dataset and a subject from Traveling Human
Phantom (THP) that was collected for a multisite neuroim-
aging reliability study [25]. The research was completed
according to the endorsed guidelines.

In order to evaluate the denoising performance of the pro-
posed method for various fiber structures, we use phantomas
to produce a synthetic dataset [26]. The fiber geometric con-
figuration is completely identical to that in ISBI 2013 HARDI
challenge, and the gradient direction files are consistent with
the THP dataset, i.e., using b = 1000 s/mm? with a total of 30
noncollinear gradient directions. Image dimensions are 55 x
55 x 55 with 2 x 2 x 2 mm® resolution.

THP data was acquired using the Siemens 3T TrioTim
MR scanner with the following imaging protocol: 128 x
128 imaging matrix, 2 x 2 x 2mm? resolution, TE = 92 ms,
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FIGURE 4: Regional close-up views of DW images and RMSE maps.

and TR =1,200 ms. b values and gradient direction are the
same as the synthetic data.

To evaluate the performance of our proposed approach,
we add Gaussian distributed noise with zero mean and dif-
ferent deviation of o, =100,200 and 300 to the synthetic
data. Some example images are shown in Figure 1.

3.2. Parameter Settings. We have implemented Algorithm 1
with the help of open-source Python packages including
PyGSP [27] and PyUNLocBox [28], which, respectively,
facilitate a number of operations on graph and solvers on
nondifferentiable convex optimization problems using prox-
imal splitting methods [29]. The relative tolerance stopping
criterion ¢ is set to 107, and the maximum number of iter-
ations is set to N =200 [24]. Both of them are set automati-
cally by PyUNLocBox. Larger values of tuning parameter A
lead to smoother solutions of (3) whereas smaller values
emphasize better fitting to the required measurements.
Hence, we set A =0.1.

The proposed approach regards each sampling point in
the spatioangular domain as a node. Therefore, DMRI data
will lead to a large graph, requiring colossal memory, and
GTV is difficult to converge. To overcome this weakness,
we construct the graph by dividing the DMRI data into over-
lapping patches in spatial space, then optimize each patch
simultaneously. Although a larger patch can capture more

(b) ANLM

(a) Noisy (c) MP-PCA  (d) XQ-NLM (e) GTV

FiGure 5: Comparison of edge-preserving performances among
different denoising algorithms.

context information, we set the size of the patch to 5x 5 x
5 and the overlap step to 2 according to our compute unit
with 12 GB memory.

As mentioned in (1), construction of the graph involves
three parameters: 0, 0, and 0,,. We normalize each expo-
nent in exponential functions to [0, 1] as it was suggested
in [21]. The maximum distance in a 5 5 x5 patch equals
to 64, and therefore, we set o, = 8. We fix parameters o, =
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FIGURE 6: Residual maps. Representation of whether structural information is removed after denoising.

8 and 0}, = 1, then evaluate the influence of parameter o, by

measures of peak signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) [30]. As indicated in Figure 2,
the proposed method will achieve the best performance
when o, =1.1.

3.3. Methods for Comparison. We compared GTV with the
following state-of-the-art methods:

(1) Adaptive nonlocal means (ANLM): ANLM [31] is an
improved version of the NLM algorithm, which is
adaptive soft coefficient matching. Based on [31],
we set the patch radius to 2

(2) Marcenko-Pastur PCA (MP-PCA): MP-PCA [32]
classifies the principal components of the observed
DMRI signal based on Marcenko-Pastur distribu-
tion, then removes them as noise. Both ANLM and
MP-PCA are implemented by DIPY [33]

(3) XQ nonlocal means (XQ-NLM): XQ-NLM [17]
denoises the signal via weighted averaging of self-
similar information, which is defined in the spatial-
angular domain. The parameters are set to the
default values as suggested in [17]

We transform the Rician signal to its Gaussian-distributed
counterpart using Ozarslan et al.’s method [34]. For a fair
comparison, we estimate the nonstationary noise by MP-
PCA for ANLM, XQ-NLM, and GTV. Then, we determine
the standard deviation of stationary noise via PIESNO [35].

3.4. Results. We first quantitatively show the denoise perfor-
mance through measures including SSIM and PSNR in
Figure 3 where the x-axial represents the noise level.
Although GTV has achieved slightly higher SSIM than
MP-PCA and XQ-NLM, all of them are close to 1, meaning
that denoised data structures closely resemble the original
synthetic data. Regarding PSNR, GTV and XQ-NLM have
outperformed MP-PCA and ANLM, which indicates filter-
ing in spatial-angular space can remove more noise.

We randomly select two regions of interest (ROI)
marked by red and blue rectangles, respectively. Close-up
views of DW images and RMSE maps are presented in
Figure 4. The first and third rows of DW images show that
MP-PCA, XQ-NLM, and GTV have outperformed ANLM.
With the help of RMSE maps in the below rows, we can
observe that the reconstruction error of GTV is smaller than
MP-PCA and XQ-NLM, which indicates GTV can restore
the image more precisely.

FIGURE 7: Fiber ODF comparison of various denoising algorithms.

One disadvantage of NLM-based methods is that the
denoising process may add method noise which usually
blurs the outputs. The region marked by the red square in
Figure 5 is a part of the boundaries between white matter
and the ventricles. Due to the consideration of information
in the g-space, XQ-NLM and GTV have recovered the edges
as MP-PCA does. In contrast, ANLM has removed some
noise, but the remaining is far from perfect. The region
marked by the blue square in Figure 5 includes a contingent
of boundaries, and it shows that GTV reconstructs the inter-
nal details while its boundary is the clearest.

Residual maps are used to evaluate whether structural
information has been removed after denoising. In Figure 6,
residual maps of MP-PCA, XQ-NLM, and GTV have less
structure information than that of ANLM. This observation
provides evidence that ANLM has lower edge-preserving
abilities in Figure 5 from another perspective.

We further evaluated the denoising performances
through fiber ODFs. THP [25] is single-shell (with only a
single b=0 image) DMRI data. Response functions for
single-fiber white matter (WM), as well as gray matter
(GM) and cerebrospinal fluid (CSF), were estimated from
the denoised data using an unsupervised method [36]. Then,
we performed Single-Shell 3-Tissue Constrained Spherical
Deconvolution (SS3T-CSD) [37] to obtain WM-like FODs
as well as GM-like and CSF-like compartments in all voxels
using MRtrix3Tissue, which is a fork of MRtrix3 [38]. The
first row in Figure 7 shows a slice of FOD-based directionally
encoded color (DEC) maps [39]. The fiber ODFs in the
region marked by the red rectangle indicate more coherence
after denoising. The region marked by a blue rectangle
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indicates that the proposed GTV has more effectively
reduced spurious fiber peaks that result from noise.

4. Discussion

GTV can remove the noise more effectively, which may be
attributed to the following aspects:

(1) DMRI uses g-space information to characterize the
direction and scale of the diftusion for water mole-
cules in the tissues. The proposed GTV takes advan-
tage of neighborhood similarity information in the
spatioangular domain while constructing a graph

(2) Graph representation is a versatile model where
nodes are associated with DMRI signal intensity,
and edges reflect structural information

Although the proposed algorithm is very effective for
denoising, it is not superior to the recent novel DMRI denois-
ing method Patch2Self [40] which denoises DMRI with a self-
supervised deep learning strategy. Furthermore, there may be
two limitations in this study. First, taking each sample in spa-
tioangular space as an independent node leads to a big graph,
which requires a large amount of memory for storing graph
properties, including affinity weighted matrix and Fourier
basis. It can be relieved by dividing the data into patches
[21]. Second, optimization of total variation takes a relatively
long time. We speed up the denoising by using the multicore
CPUs to optimize each patch simultaneously. Possible solu-
tions include refactoring the software using C++ and combin-
ing a two-step optimization approach [16] developed to solve
the resulting convex denoising GTV model.

5. Conclusion

In this study, we formulated denoising processing as an opti-
mization problem, finding the DMRI data with minimal graph
total variation. Both spatioangular information of DMRI data
were incorporated to construct the graph, which significantly
contributed to this paper. The performances of our proposed
method were assessed via experiments on synthetic and real
data. Numerical results demonstrate that GTV outperforms
various current state-of-the-art approaches in terms of pre-
serving edges and removing noise. Future works may extend
GTV to patch GTV that associates values in a patch with a
graph node.
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