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Abstract

Background: Further advances in modern microscopy are leading to teravoxel-sized tiled 3D images at high
resolution, thus increasing the dimension of the stitching problem of at least two orders of magnitude. The existing
software solutions do not seem adequate to address the additional requirements arising from these datasets, such as
the minimization of memory usage and the need to process just a small portion of data.

Results: We propose a free and fully automated 3D Stitching tool designed to match the special requirements
coming out of teravoxel-sized tiled microscopy images that is able to stitch them in a reasonable time even on
workstations with limited resources. The tool was tested on teravoxel-sized whole mouse brain images with
micrometer resolution and it was also compared with the state-of-the-art stitching tools on megavoxel-sized publicy
available datasets. This comparison confirmed that the solutions we adopted are suited for stitching very large images
and also perform well on datasets with different characteristics. Indeed, some of the algorithms embedded in other
stitching tools could be easily integrated in our framework if they turned out to be more effective on other classes of
images. To this purpose, we designed a software architecture which separates the strategies that use efficiently
memory resources from the algorithms which may depend on the characteristics of the acquired images.

Conclusions: TeraStitcher is a free tool that enables the stitching of Teravoxel-sized tiled microscopy images even on
workstations with relatively limited resources of memory (< 8 GB) and processing power. It exploits the knowledge of
approximate tile positions and uses ad-hoc strategies and algorithms designed for such very large datasets. The
produced images can be saved into a multiresolution representation to be efficiently retrieved and processed. We
provide TeraStitcher both as standalone application and as plugin of the free software Vaa3D.
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Background
Advances in microscopy technologies
The recent advances in modern microscopy enable three-
dimensional imaging of large biological specimens at high
resolution. Often, the sample is too large to fit into the
field of view of the microscope, so that a combination of
multiple overlapping recordings (tiles) is needed to enable
the reconstruction (stitching) of the whole image from the
individual image stacks. Software 3D-Stitching tools are
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needed to assemble tiles since in many cases reliable tile
positions are not available. This is true also when motor-
ized stages are used for fast and reproducible acquisition
of multiple tiles, since their physical coordinates may not
be precise enough to allow direct reconstruction.

Current microscopy technology can easily require
image reconstructions starting from tens of tiles, each
with sizes ranging from tens of megavoxels (e.g. 1024 ×
1024 × 64) to hundreds of megavoxels (e.g. 2048 × 2048 ×
128). Several stitching tools have been therefore recently
developed to deal with such a challenging task, and suc-
cessful stitching of 3D images of these orders of magni-
tude has been reported in the literature [1-3].
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However, the growing demand to acquire complete and
large biological specimens at high resolution has lead to
further advances in microscopy. In particular, the class of
microscopes based on the technique commonly referred
to as ultramicroscopy or light sheet-based microscopy
(LSM) [4] enables fast three-dimensional high resolution
imaging of large specimens exploiting their induced fluo-
rescence. Samples are illuminated by a thin sheet of light
and the fluorescence emission is observed from the axis
(scanning axis) perpendicular to the illumination plane.
Objects are then translated along the scanning axis, so
obtaining a tile as a stack of 2D slices [5]. Combining
this technique with a special procedure to clear tissue
makes it possible to acquire large specimens, such as
whole mouse brains [6]. Recently, at LENS in Florence, it
has been developed an improved LSM technique, referred
to in the following as Confocal Light Sheet Microscopy
(briefly CLSM), which is capable of imaging very large
volumes (∼cm3) with good enough contrast and resolu-
tion (∼1 μm) to be used for neuroanatomical studies on
the whole mouse brain [7]. Since a typical field of view
of the objective is ≈ 400 × 400 μm2 and dimensions of
each raw image may be 512 × 512 pixels, at least 25 × 25
tiles are needed to cover the whole volume, each com-
posed by 10.000 slices. Actually, the number of tiles is
substantially higher, since acquiring overlapped tiles is
necessary to enable automatic and very precise stitching.
This increases the dimension of the stitching problem of
at least two orders of magnitude, leading to acquisitions of
hundreds of large tiles and final image sizes ranging from
hundreds of gigavoxels to one teravoxel and more.

Characteristics of teravoxel-sized datasets
To make acquisitions of such large images viable, com-
puter controlled micropositioning stages must be used
to acquire tiles arranged according to a bidimensional
grid. Tiles physical coordinates can therefore be recorded
during acquisition. Due to the range of movements in
each dimension (∼cm), even very small mechanical drifts
might make these coordinates not precise enough to
enable direct reconstruction of the image. Nevertheless,
they can definitely allow a precise control over the overlap
between adjacent tiles and the a posteriori determination
of the Region Of Interest (ROI) for each tile where the
overlap occurs.

With respect to the image content there are two prob-
lems that are relevant to stitching. First, images may
contain thin structures that are just larger than the res-
olution of the microscope, which makes mandatory to
perform the stitching with high precision to avoid artifacts
due to misalignments of a few pixels. Second, since speci-
mens can be selectively labeled with fluorescent markers,
regions with very limited or none information content
may occur in the acquired volume. Since these regions

do not contain useful alignment information, the stitching
algorithm should be capable to deal with them.

Current software solutions
Different solutions and tools are available for automatic
3D Stitching of large images [1-3]. Their common strat-
egy is the following: (i) performing a pairwise registra-
tion through a combination of Phase Correlation (PC)
and Normalized Cross-Correlation (NCC), both of which
provide an image similarity score, but with different com-
putational requirements and performance, so that NCC
is generally used to refine the PC results; (ii) finding a
globally optimal placement of tiles using similarity scores;
(iii) combining all tiles in a larger image, while correcting
lighting differences in the overlapping regions.

Existing 3D-Stitching tools do not seem adequate to
address the Stitching of teravoxel-sized datasets because
they were designed under the following major assump-
tions, which are related to the common characteristics
of modern high-resolution imaging techniques such as
Confocal, Bright field or Electron microscopes. First, the
specimen can be very large along the two radial directions
only, whereas the extension along the scanning direction
is much more limited. This implies that there are at most
hundreds of slices per tile instead of thousands. Second,
the number of tiles is limited and their spatial place-
ment can be either organized (i.e. prior knowledge of tiles
coordinates is available and at least partially reliable) or
un-organized (i.e. prior knowledge of tiles coordinates is
missing or unreliable). Note that in the latter case, step (i)
must be performed for all possible pairs of tiles making the
task computationally tractable only if the number of tiles
is limited. Finally, as a consequence of previous assump-
tions, the overall size of datasets can vary from hundreds
of megavoxels up to a few gigavoxels.

For these reasons, the typical stitching tool today
addresses some, but not all of the aspects of teravoxel-
sized datasets.

Software design considerations and requirements
Moving from the considerations discussed so far we give
the following general requirements for a stitiching tool
capable to deal with teravoxels-sized images.

(I) Stitching processing pipeline
Similarly to other state-of-the-art tools, the stitching pro-
cess has to perform the following main steps: (i) find the
relative position between each pair of adjacent stacks (in
fact, since in our case tiles are parallel along the axis direc-
tion, there are no rotations, and this simply means to
find the displacement between them); (ii) find a globally
optimal placement of stacks in the final image space; (iii)
combine all stacks into a single 3D image and substitute
overlapping regions with a blended version of them.



Bria and Iannello BMC Bioinformatics 2012, 13:316 Page 3 of 15
http://www.biomedcentral.com/1471-2105/13/316

To effectively deal with the huge dimensions of this class
of images one more step to be added is the saving of the
resulting 3D image into a multiresolution representation
suited for efficient image retrieval and processing.

(II) Minimization of the overall computational workload
The computational complexity and memory requirements
of the algorithms that process tiles should be minimized,
while at the same time multiple I/O operations on the
same data should be avoided. Since dataset dimensions
is expected to further grow as long as microscope tech-
niques develop their potentials, all algorithms, including
for what is concerned with I/O operations, should also be
parallelizable to make the whole process scalable.

(III) Identification of indices measuring the alignment
quality
Since there may be portions of the volume with scarce
or none information content, some of the computed dis-
placements at step (i) may be wrong. This produces a
redundant set of alignment data of different quality, which
should be associated to some quality index and then glob-
ally composed minimizing a measure of the overall error.

(IV) Manual intervention
When dealing with images with hundreds of tiles, a few
wrong computed alignments are likely to occur since
thresholds used by the algorithms to deal with alignment
quality indices may fail in some cases. In these cases, even
if only very few stacks were incorrectly stitched, the entire
stitching pipeline should be repeated from the begin-
ning with different settings or the introduced artifacts
accepted. In order to avoid this situation, the user should
be able to intervene manually by easily detecting and pos-
sibly correcting the abnormalities before the final image is
produced. To make this possible, stitching steps should be
separable thanks to a loading/saving feature for metadata
describing their results, which the user should easily edit.
A preview-like feature should also be provided to check
the effectiveness of the manual intervention on a limited
portion of the acquired volume, without processing again
all data from scratch.

(V) Independence of sophisticated content-based analysis
of the images
The stitching process should not depend on sophisticated
content-based analysis of the raw images, which is likely
to generate too much computational workload on very
large datasets. In practice, all algorithms should depend
at most linearly on the dataset size. Analyses requiring
more than linear algorithms, if any, should be performed
on limited regions of the acquired volume, and only after a
nonredundant, easy to access representation of the whole
3D image has been generated.

(VI) Expandability
Given the wide variety of images in microscopy and the
concrete possibility that new techniques will be soon
developed to acquire teravoxel-sized datasets, it may be
expected that modified, customized or totally new algo-
rithms will be needed in some of all steps of the stitching
process. Hence, it is essential that the software structure
of the stitching tool provides means for incorporating new
capabilities.

Implementation
Architecture
As reported in Figure 1, the TeraStitcher tool is struc-
tured in a stepwise fashion according to requirement (I).
First, a preliminary step that imports data organization is
necessary to access data properly and efficiently in subse-
quent steps. We assume raw data arranged as a tile matrix
whose dimensions will be referred to as vertical (V ) and
horizontal (H). Data are stored according to a two-level
hierarchical structure where, at the first level, directories
contain all tiles of a row or of a column and at the sec-
ond level directories contain the tile corresponding to that
row or column, stored as a sequence of slice images dis-
posed along the depth (D in the following) direction. This
allows us to load just a small portion of data at the time,
which is a necessary condition for requirement (II). Note
also that directory names and image files names convey
the information about tile and slice positions as provided
by the controlling software of the microscope, so that
this information can be extracted in the import step and
used whenever required. Second, the Pairwise stacks dis-
placements computation step produces a redundant set
of alignment data with associated reliability measures,
according to requirement (III). Both redundancy and reli-
ability measures are exploited to select the most reliable
displacement for each pair of adjacent stacks (Displace-
ments projection), to discard the unreliable displacements
(Displacements thresholding) and to find an optimal place-
ment of tiles (Optimal tiles placement) before merging
tiles into a multiresolution representation. The details of
each step are discussed in section Algorithms. Third, most
steps produce metadata describing their results and/or
use these metadata to perform their tasks. At each step,
metadata are saved in XML files which the user can
edit to manually refine displacements, tile coordinates or
other stitching metadata, according to requirement (IV).
The details of this approach are given in section Manual
intervention.

In order to satisfy the expandability requirement (VI),
we followed an object-oriented approach in designing
the software architecture of our tool. It consists of four
modules organized in three layers with growing abstrac-
tion levels (see Figure 2). At the lowest abstraction level,
the IOManager and XML modules contain input/output
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<stacks_dir value="C:\tomo1" />
<voxel_dims V="0.8" H="0.8" D="1" />
<origin V="7.2" H="15.8" D="13.2" />
<dim rows="20" cols="20" slices="6000" />
<STACKS>

<Stack ROW="0" COL="0" ABS_V="0"
ABS_H="0" ABS_D="0" STITCHABLE="no"
DIR_NAME="072000/072000_154000“ />
<Stack ROW="0" COL=“1" ABS_V="0"
ABS_H=“375" ABS_D="0" STITCHABLE="no"
DIR_NAME="072000/072000_157000“ />
…

</STACKS>

--import 
-volin="C:\tomo1" 
-ref1=1 -ref2=2 -ref3=3 
-vxl1=0.8 -vxl2=0.8 -vxl3=1 
-projout=xml_import

--displcompute
-projin=
"C:\tomo1\xml_import.xml" 
-subvoldim=100
-projout=xml_displcomp

<Stack ROW="2" COL="1" …>
<EAST_displacements>

<Displacement TYPE="MIP_NCC">
<V displ="0" def="0" rel="0"
nccPeak="0" nccWidth="30" />
<H displ="377" def="375" rel="0.65"
nccPeak="0.69" nccWidth=“11" />
<D displ=“0" def="0" rel= "0"
nccPeak="0" nccWidth=“30" />

</Displacement>
<Displacement TYPE="MIP_NCC">
<V displ="-1" def="0" rel= "0.68"
nccPeak="0.85" nccWidth="16" />
<H displ="375" def="375" rel="0"
nccPeak="0" nccWidth="30" />
<D displ="-2" def="0" rel="0.605307"
nccPeak="0.82362" nccWidth="23" />

</Displacement>…
</EAST_displacements>…

--displproj
-projin= 
"C:\tomo1\xml_displcomp.xml" 
-projout=xml_displproj

--displthres –threshold=0.7
-projin= 
"C:\tomo1\xml_displproj.xml" 
-projout=xml_displthres

--placetiles 
-projin= 
"C:\tomo1\xml_displthres.xml" 
-projout=xml_merging

<Stack ROW="2" COL="1" …>
<EAST_displacements>
<Displacement TYPE="MIP_NCC">

<V displ="-1" def="0" rel="0.68"
nccPeak="0.85" nccWidth="16" />
<H displ="377" def="375" rel="0.65"
nccPeak="0.69" nccWidth="11" />
<D displ="-2" def="0" rel="0.605307"
nccPeak="0.82362" nccWidth="23" />

</Displacement>
</EAST_displacements>…

<Stack ROW="2" COL="1" STITCHABLE="no"…>
<EAST_displacements>
<Displacement TYPE="MIP_NCC">

<V displ="0" def="0“ rel="0"
nccPeak="0" nccWidth="30" />
<H displ="375" def="375" rel="0"
nccPeak="0" nccWidth="30" />
<D displ="0" def="0" rel="0"
nccPeak="0" nccWidth="30" />

</Displacement>
</EAST_displacements>…

<Stack ROW="2" COL="1" ABS_V="747"
ABS_H="370" ABS_D="0" STITCHABLE="yes"
…/>…
<Stack ROW="2" COL="2" ABS_V="746" ABS_H=
"750" ABS_D="2" STITCHABLE= "yes" …/>…
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<Stack ROW="2" COL="1" STITCHABLE="yes"…>
<EAST_displacements>
<Displacement TYPE="MIP_NCC">

<V displ="-1" def="0“ rel="1"
nccPeak="1" nccWidth="0" />
<H displ="380" def="375" rel="1"
nccPeak="1" nccWidth="0" />
<D displ="2" def="0" rel="1"
nccPeak="1" nccWidth="0" />

</Displacement>
</EAST_displacements>…

<Stack ROW="2" COL="1" ABS_V="750"
ABS_H="371" ABS_D="3" STITCHABLE="yes"
…/>…
<Stack ROW="2" COL="2" ABS_V=“746" ABS_H=
"750" ABS_D="2" STITCHABLE= "yes" …/>…

tomo1

072000

[…]
[…]

Figure 1 The stitching pipeline. The central column lists both automatic and optional manual steps that compose the pipeline. For each
automatic step are shown alongside the corresponding command line arguments as well as their values used in a sample workflow. The left column
shows the metadata flow and the most significant portions of XML files for each step. On the right column there are some figures illustrating the
elaboration of both data and metadata and the number of data readings and writings. The figure which illustrates the manual refinement after the
Displacements thresholding step was obtained by using the MATLAB scripts we provide for a more comprehensive analysis of metadata. Stitchable
stacks are marked in blue (dark grey) and non stitchable ones are marked in yellow (light grey).
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Figure 2 The software architecture of TeraStitcher. The architecture of the proposed TeraStitcher tool is composed by four modules organized in
three layers with growing abstraction levels. At the lowest abstraction level, the IOManager and XML modules contain input/output routines for data
and metadata, respectively. The middle layer contains the VolumeManager module, which is responsible to model data organization and to access
both data and metadata through functionalities provided by the lower layer. At the top layer, the Stitcher module implements the stitching pipeline.

routines for data and metadata, respectively. The mid-
dle layer contains the VolumeManager module, which
is responsible to model data organization and to access
both data and metadata through functionalities provided
by the lower layer. At the top layer, the Stitcher module
implements the stitching pipeline.

Let us have a look inside the Stitcher module, which
is critical when considering the expandability and gener-
ality requirements of our tool. The internal structure of
Stitcher is shown in Figure 3. Stitcher methods implement
the stitching pipeline of Figure 1 and the corresponding
strategies to use efficiently system resources. Two design
patterns, Strategy and Abstract Factory [8], are used to
create a layer of interfaces separating Stitcher’s strategies
from the actual algorithms and data structures, respec-
tively, since these may depend on the specific character-
istics of the acquired images. Strategy lets the user deter-
mine at runtime which PairwiseDisplAlgo and TilesPlace-
mentAlgo algorithms should be used, whereas Abstract
Factory lets a PairwiseDisplAlgo produce its own Dis-
placement. A concrete subclass of Displacement should
provide not only spatial information (i.e. the relative posi-
tion of adjacent tiles), but also one or more displacement
reliability measures tailored to the adopted alignment
strategy, with values between 0 (totally unreliable dis-
placement) and 1 (reliable displacement). In addition, its
project(displ) and threshold(thres) methods should use
these reliability measures to implement the Displacement
projection and Displacement thresholding steps respec-
tively, as explained in more detail in section Algorithms.
So, new implementations of steps 3-6 of the stitching
pipeline can easily be embedded within this framework by
implementing at most three class interfaces.

Algorithms
Pairwise stacks displacement computation
To compute the relative position of a pair of tiles (Pairwise
stacks displacements computation step) we adopted a

multi-MIP-NCC approach (see Figure 4). Tiles are split
along the D direction into substacks of nslices slices, where
the parameter nslices can be set by the user with typical
values in the range [100, 200]. For each couple of homol-
ogous substacks of two adjacent tiles, the overlapping
regions are identified using tile positions provided by the
instrument. The information contained in these regions
is condensed in three 2D images computed as maximum
intensity projections (MIPs) along the three dimensions.
Then a 2D-NCC map is computed for each of the three
pairs of MIPs in a search region of side 2δsearch + 1 pixels
centered on the central pixel of the overlapping regions. In
this way, two displacements corresponding to NCC peaks
are obtained for each direction, for a total of 6 displace-
ments. The most reliable displacement for each direction
is then selected and memorized using a combination of
two reliability measures extracted from the NCC maps.
These measures are the NCC peak value (the higher, the
more reliable) and the NCC shape width of the peak (the
smaller, the more reliable). The informations collected so
far are stored in a MIP-NCC-Displ object (see Figure 3).
Note that pairs of substacks are aligned separately, pro-
ducing a redundant set of alignment data for each pair
of adjacent tiles. Such a redundancy is exploited in the
Displacement projection step, as explained below.

Besides the relevant reduction in memory occupancy
memory requirements reduction, which is discussed in
section Strategies to limit resource requirements, there are
two reasons for dividing tiles into substacks. First, since
multi-MIP-NCC is based on MIP projections, it works
well if the information content of the overlapping regions
in not too dense. Hence, it could perform poorly if applied
to whole stacks, whose MIPs along the D direction could
accumulate too much information. Second, working on
a few relatively small 2D matrices at the time allows an
efficient use of the memory hierarchy. The only minor
drawback is a small increase in computational workload,
since multiple NCC maps have to be computed along D.
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Figure 3 Class diagrams of VolumeManager and Stitcher modules. A StackedVolume contains as many Stack objects as the number of stacks
that compose the volume and it is responsible to model data organization. The Stitcher methods implement the stitching pipeline and the
strategies to use efficiently system resources, by accessing data through the StackedVolume. These strategies use the algorithms TilesPlacementAlgo
and PairwiseDisplAlgo that may depend on the specific characteristics of images. Note that TilesPlacementAlgo uses Displacements produced by
PairwiseDisplAlgo. Classes MST, MIP-NCC, and MIP-NCC-Displacement implement the actual algorithms used in our implementation.

Displacement projection
Once all substacks of one tile have been aligned with
their adjacent homologous, the obtained displacements
are combined to give the best displacement for each pair
of adjacent tiles. Such a combination is implemented in
the project(...) method of MIP-NCC-Displ class and it is
done by selecting, for each direction separately, the most
reliable single direction displacement. This is possible

because each single direction displacement has its own
reliability measures, thanks to the adopted MIP-NCC
approach. Note that, even if independent reliability mea-
sures were not available for each direction, one could
still select the most reliable displacement among the ones
computed for every substack. In any case, multiple sub-
stacks alignments provide an advantage, since substacks
difficult to stitch are likely to occur.
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Figure 4 Multi-MIP-NCC method. Each tile is split along the D direction into substacks of nslices slices. For each couple of adjacent substacks, three
MIPs along the three directions are extracted from the overlapping regions. Then a 2D-NCC map is computed for each pair of homologous MIPs, so
obtaining two displacements for each direction. Two reliability measures extracted from the NCC map are used to select for each direction the best
of the two available displacements.

It is worth noting that having multiple substacks align-
ments could also be used to cope with situations where
different reliable alignments in V and H directions are
returned by the MIP-NCC algorithm. This would cor-
respond to acquisitions where sample movements in D
direction where not perfectly parallel and tiles should be
someway rearranged before merging. While on the one
hand this would require tile resampling with a remarkable
increase in computational costs, on the other hand we did
not actually observe such shifts along the D direction in
our acquisitions. For this reasons the tool uses just one
displacement (the best in every direction) to align adjacent
tiles.

Displacement thresholding
After the best displacements have been obtained, their
reliability is thresholded: when it is below the given
threshold, the default displacement provided by stage
coordinates is reestablished and the corresponding

reliability measure is set to 0 (totally unreliable). Fur-
thermore, the associated pair of stacks is marked as a
nonstitchable pair. If all the four pairs associated with a
tile are nonstitchable, then the tile itself is marked as non-
stitchable, i.e. there’s no way to stitch it to any other stacks,
except of using the tile position estimation provided by the
instrument. This information is taken into account in the
next step.

We observed from different datasets that good candi-
date values for displacement threshold are in the range
[0.7, 0.8], as also suggested by the results reported in
Table 1. However, we do not exclude that in the case of
low-contrasted or high noisy data these values could be
lower.

Optimal tiles placement
Since displacements provided by previous steps are not
independent, a globally optimal placement of tiles has to
be found before producing the final representation of the
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Table 1 Comparison of displacements errors and quality measures among different datasets

Dataset Tool Error Quality measure

Max Average Min Average

V H D V H D V H D V H D

TeraStitcher 0 0 0 0 0 0 0.86 0.85 0.86 0.87 0.87 0.88

C. elegans worma

Fiji 0 0 0 0 0 0 0.51 0.63

XuvStitch 0 0 0 0 0 0 0.72 0.78

iStitch 0 0 0 0 0 0 0.94 0.95

TeraStitcher 0 0 0 0 0 0 0.79 0.80 0.64 0.81 0.83 0.73

Neuron filamentsa

Fiji 0 0 0 0 0 0 0.55 0.58

XuvStitch 0 0 0 0 0 0 0.67 0.76

iStitch 0 0 1 0 0 0.3 0.90 0.92

TeraStitcher 0 0 0 0 0 0 0.81 0.88 0.75 0.88 0.92 0.76

Fruit fly brainb

Fiji 0 0 0 0 0 0 1 1

XuvStitch 0 0 0 0 0 0 1 1

iStitch 0 0 0 0 0 0 0.95 0.96

TeraStitcher 1 0 1 0.5 0 0.5 0.71 0.68 0.53 0.73 0.7 0.61

Portion of mouse cerebellumc
Fiji 0 0 0 0 0 0 0.72 0.73

(axons) XuvStitch 0 0 0 0 0 0 0.2 0.31

iStitch 7 1 0 3.5 0.5 0 0.95 0.96

TeraStitcher 0 0 0 0 0 0 0.84 0.85 0.87 0.87 0.87 0.89

Portion of mouse brainc
Fiji 0 0 0 0 0 0 0.77 0.80

(neurons and axons) XuvStitch 0 0 0 0 0 0 0.90 0.91

iStitch w.a.d w.a. w.a. w.a. w.a. w.a. 0.76 0.78

TeraStitcher 0 0 0 0 0 0 0.76 0.77 0.6 0.8 0.84 0.75

Whole mouse cerebellumc
Fiji 0 0 0 0 0 0 0.78 0.85

(Purkinje cells and axons) XuvStitch 3 3 2 0.8 0.8 1 0.75 0.87

iStitch 1 0 0 0.2 0 0 0.92 0.94

TeraStitcher 0 0 0 0 0 0 0.77 0.75 0.74 0.77 0.77 0.75

Whole mouse brainc
Fiji 0 0 0 0 0 0 0.37 0.39

(neurons and axons) XuvStitch 0 0 0 0 0 0 0.6 0.65

iStitch 0 0 0 0 0 0 0.77 0.79

In this table we report a comparison of displacement errors (in voxels) and quality measures between TeraStitcher and the state-of-the art stitching tools when stitching Megavoxel-sized datasets.
aPublicly available dataset downloaded from http://www.vaa3d.org.
bPublicly available dataset downloaded from http://www.xuvtools.org.
cCLSM dataset (courtesy of F.S. Pavone, L. Sacconi, L. Silvestri) available at http://www.iconfoundation.net.
dWrong alignment.

http://www.vaa3d.org
http://www.xuvtools.org
http://www.iconfoundation.net
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Figure 5 Optimal tiles placement using a minimum spanning tree (MST). Weighted undirected graph of tiles whose edges represent
displacements. Weights are computed as the inverse of displacements reliability measures, yielding +∞ for the unreliable ones. These prevents the
tree connecting stitchable tiles (marked as blue squares) from passing through the nontistchable ones (marked as yellow circles). If different
reliability measures are available along the three directions, as in the case of using MIP-NCC to compute misalignments, three minimum spanning
trees are obtained for each direction separately. The marked tile in the figure is a nonstitchable tile which is excluded from any MST path traversing
stitchable tiles.

whole 3D image. Following [3], we computed the min-
imum spanning tree of the undirected weighted graph
constituted by the mesh of tiles connected by edges repre-
senting tiles displacements. The minimum spanning tree
algorithm finds the edges (i.e. the displacements) con-
necting all tiles without forming cycles and whose total
weight is minimum. Weights are computed as the inverse
of the displacements reliability measures (see Figure 5). In
this way, displacements associated to nonstitchable stacks
have a weight equal to +∞ since their reliability was set
to 0. This prevents the tree connecting stitchable stacks
from passing through nonstitchable ones, unless there is a
group of isolated stitchable stacks, in which cases a path
including them is provided anyway. If different reliabil-
ity measures are available along the three directions, as in
our case after using MIP-NCC to compute misalignments,
the algorithm is applied separately for each direction to
find the alignments that are globally optimal for that
direction.

Merging and multiresolution generation
After all relative displacements among tiles have been
computed, tile merging is performed.

Final slices are produced simply copying nonoverlap-
ping regions, while the overlapping ones are substituted

by a blended version of them. Blending is performed using
two sinusoidal functions phase-shifted by π for weighting
the pixels of the two images (see Figure 6-b).

Finally merged slices are saved at several resolutions.
At every lower resolution the downsampling is done by
computing the mean of an 8-pixels cube of the higher
resolution. The resulting image can be saved either as a
single stack or in a multistack format with the dimensions
of individual stacks decided by the user. The multistack
format is provided since it allow a selective access to
the higher resolution image, which dramatically improves
memory efficiency of further processing.

Figure 6 Result of stitching at the border of four overlapping
tiles. Merging without aligning nor blending (a) and with aligning
and blending (b).
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All these operations are performed according to a strat-
egy minimizing memory occupancy, which is described in
detail in the next section.

Strategies to limit resource requirements
In this section we discuss how the entire stitching pro-
cedure is organized to minimize both I/O data transfers
and memory requirements which are critical problems
in processing data of TB size. We will focus on the two
stitching steps that process data, which are the Pairwise
stacks displacements computation and the Merging and
saving tiles into a multiresolution representation steps.
As reported in Figure 1, data are read once for each of
the two steps. To understand why, one should note that
the final representation of the whole 3D image cannot
be produced if the precise relative positions of tiles have
not been determined. Tile positioning in turn requires
that all tile pairs have been properly aligned. Since the
entire dataset cannot be kept in memory, all data have
to be read at least twice and written back to mass stor-
age once, after the final image representation has been
produced.

Let us refer to Nslices as the number of slices per
tile and to Nrows and Ncols as the number of rows and
columns of the tile matrix, respectively. Each tile which
is not on the matrix border has four adjacent tiles, con-
ventionally referred to as West, North, East and South,
respectively.

As mentioned in section Algorithms, in the Pairwise
stacks displacements computation step the whole volume
is processed a layer at the time, each composed by nslices
slices at most. For each layer, tiles are read row-wise or
column-wise depending on which dimension is smaller.
Supposing that stacks are read row-wise, a stack is main-
tained in memory until its displacements with its South
and East stacks are computed, after which it is released
(see Figure 7). If border tiles are properly managed skip-
ping alignments with missing adjacent tiles, only Ncols + 1
tiles have to be maintained in memory to compute all
pairwise displacements, and all data have to be read only
once. The column-wise case is symmetric. Hence, this
step needs to keep in memory only (min{Nrows, Ncols} +
1) × nslices slices at the time. Such a quantity can be
directly controlled by the user by choosing a small value
for nslices.

In the Merging step, only a small group of slices for each
tile are read at the time, following again a row-wise order
for tiles, and taking into account for each tile the right dis-
placement along D computed after the first step. When
one slice group of every tile in row i of the tile matrix have
been read, adjacent slices in the groups are merged with
the algorithm described in section Algorithms. This pro-
duces a group of horizontal stripes of the slices of the final
image representation. These stripes are then merged with
the ones previously generated from the slices of the pre-
ceding rows, so producing larger stripes of the same group
of final slices (Figure 8).

H 

V 

R    
A    
M 

i ii iii iv
Figure 7 Memory management in the pairwise stacks displacements computation step. The whole volume is processed a layer at the time,
each composed by nslices slices. For each layer, stacks are read row-wise when there are more rows than columns (i-iv). A new substack is loaded (i)
when its North substack needs it for displacement computation (ii). After that, the North substack can be released (iii) and this process is repeated
for the next column (iv).
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Figure 8 Memory management in the merging step. The whole
volume is processed a layer at the time, each composed by the
number of slices needed to generate the lowest resolution (e.g. 32
slices for a reduction of 5 times). For each layer, stacks are read
row-wise and merging is performed slice by slice. When one slice
group of every tile in row i of the tile matrix have been read, adjacent
tiles in the groups are merged using the blending algorithm
described in the Algorithms section. This produces a horizontal stripe,
which is merged with the ones previously generated from the slices
of the preceding rows, so producing larger stripes until the whole
slice of the final image representation is obtained.

Managing properly the first stripe and repeating this
procedure for all rows of the tile grid, a group of complete
slices of the final representation is produced and saved
back to mass storage. In this way, the memory require-
ment is to keep in memory only a small number of final
slices. The number is determined by the minimal reso-
lution of the whole 3D image that has to be generated
and by the downsampling method adopted. Groups of a
few tens of slices are enough in practice. Since a resolu-
tion reduction of 5 times is enough for efficient access
to data, in practice there are 25 = 32 slices in each
group.

We conclude the section observing that in both steps
tiles are divided in multiple groups of slices and each
group is processed independently. Parallelization of the
whole process is therefore trivial and very efficient.
Indeed, if groups of slices of all tiles are distributed on
multiple disks and multiple processing units are available,
all operations can be parallelized with negligible overhead,
including I/O operations.

Manual intervention
In this section we discuss how the tool enables easy
and fast manual intervention in order to refine stitching
metadata such as pairwise displacements, tiles coordi-
nates and stitchable/nonstitchable attributes of stacks.
Our solution is based on three principles: (i) using
XML files to load/save stitching metadata, (ii) enabling a
preview-like feature to stitch selectable portions of data
and (iii) providing graphical models of metadata for a
more comprehensive analysis. In the following we detail
each of these principles.

XML files editing
Stitching steps save their metadata into XML files and
they can be launched individually by loading an existing

XML containing the metadata used by that step. The
benefit of this approach is threefold. First, the user can
manually refine stitching metadata by simply editing XML
files, which structure was designed to provide easy read-
ability and understanding (see Figure 1). Second, steps
become separable not only logically but also physically by
saving/loading the state of the stitching process into/from
the XML file. It is then easier to tune single-step param-
eters without re-executing the previous ones. Third, steps
dealing only with metadata can be performed on differ-
ent machines. This enables manual intervention on any
machine when the result does not need to be verified on
data (e.g. consider the intervention between Displacement
thresholding and Optimal tiles placement step).

Preview-like feature
Each step dealing with data lets the user select the por-
tion of volume to be processed in terms of an interval of
stacks rows and/or columns of the tile matrix and/or in
terms of an interval of slices along D axis. The latter is very
useful to verify the quality of stitching before and after
any manual intervention. Thanks to the adopted slice-
based merging strategy, the tool enables fast stitching of
small subset of slices of the whole volume, so obtaining a
preview of the final volume in just few seconds. After dis-
abling any activated blending method, the user can then
easily detect and locate abnormalities on this preview by
visual inspection on stacks borders.

Graphical models of metadata
We developed and provide MATLAB scripts that start-
ing from XML files generate graphical models of metadata
to be used for a more comprehensive analysis and faster
manual intervention. An example is given in Figure 1
for the Displacement thresholding step, where we report
a map of stitchable and non stitchable stacks together
with their displacements values and reliability measures.
From this map, one could observe if the connected region
of stitchable stacks does correspond to the shape of
the acquired specimen and if the alignment of some
nonempty stacks turned out to be particularly difficult
along a particular direction. In this way, the user can
detect abnormalities directly on metadata and then edit
the corresponding XML entry.

Results and discussion
In this section we provide four sets of performance data
characterizing our stitching tool from both qualitative and
quantitative points of view. A comparison between the
TeraStitcher tool and the ones presented in [1-3] is also
provided in both cases.

First, in Table 1 we report maximum and average dis-
placements errors as well as their corresponding qual-
ity measures obtained by stitching tiles from different
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datasets with our tool and the ones it has to be com-
pared with. The aim of such a comparison is to demon-
strate that TeraStitcher performs at least as well as the
others from a qualitative point of view. To this pur-
pose, several image stacks from 7 datasets differing in
content, bitdepth, lighting conditions, contrast and SNR
have been used. Displacements errors were measured
taking into account an uncertainty of ±1 voxel of the
groundtruth, which was then subtracted from each error.
Quality measures were normalized from [0, 100] to [0, 1]
for XuvStitch. The results show that TeraStitcher can
stitch both images acquired in CLSM and images acquired
with other microscopy techniques with single-pixel pre-
cision. Conversely, both iStitch and XuvStitch didn’t per-
form well with CLSM images. In fact, the former provided
more than one wrong displacement. However, differently
from other tools considered here, this tool does not use
stage coordinates, which probably made stitching more
difficult. As to XuvStitch, it provided just wrong displace-
ments in two instances. Moreover, its quality measures
were quite low in all the instances of the Mouse cerebellum
dataset, which would make them not suited to be used as
reliability measures. Finally, Fiji performed very well in all
the instances considered, but its quality measures seemed
to be content-dependent and they were very low for 3 of
the 7 considered datasets.

Second, in Table 2 we report a comparison about the
execution times and memory occupancy of individual
phases as well as of the whole stitching procedure on
megavoxel-sized data extracted from the Whole mouse
cerebellum dataset acquired in CLSM. Measurements
have been carried out on a laptop equipped with 4 GB of
RAM, 500 GB of disk space, 1 dual-core CPU at 2.53 GHz.
We used the following values for TeraStitcher parameters:
nslices = 100, δsearch = 16. In order to have a fair compari-
son, the other tools parameters having the same meaning
of δsearch were set at the same value. It is worth not-
ing that although iStitch implementation does not exploit
the knowledge of the approximate relative position of
the two stacks as the other tools considered do, it com-
putes an initial relative position on a quite undersampled
image (see [3] for details). For this reason the contribu-
tion of this preliminary step to the overall execution time
can be considered negligible. The results show that both
execution times and memory occupancy of our tool are
significantly lower than those of the others, except for
XuvStitch, whose execution times were comparable with
those of TeraStitcher. However, its memory peak becomes
significantly higher than that of TeraStitcher when stitch-
ing large datasets, as it is shown in the third row of the
table, where four stacks of 512 × 512 × 600 voxels have
been stitched. Another interesting result is that iStitch
performed better than the other tools when stage coordi-
nates are not provided, probably thanks to the preliminary

step on the undersampled image mentioned above, which
confirms to be quite effective.

Third, in Table 3 we report execution times and mem-
ory peaks of individual phases when stitching gigavoxel
and teravoxel-sized data with TeraStitcher. We could not
make a comparison with the other tools because they eas-
ily ran out of memory with such data. Measurements have
been carried out on a workstation equipped with 96 GB of
RAM, 9 TB of disk space, 2 quad-core CPUs at 2.26 GHz
and using the following values for TeraStitcher parame-
ters: nslices = 100, δsearch = 25. The first three rows refer to
increasing subvolumes of a 3D image of the Whole mouse
cerebellum dataset. It is apparent that all times are linearly
dependent on the image size. The complete image (∼200
gigavoxels) has been processed in about 15 hours (third
row in the table). The last row refers to the time needed
to process a 1.3 teravoxels image corresponding to about 4
days. Times corresponding to individual substeps are not
available in this case.

Finally, we show in Figure 8 the result of the stitch-
ing process on slices at the border of four overlapping
tiles for different datasets. This example is representative
of the very good qualitative performance attained by our
alignment and blending algorithms.

Conclusions
Forthcoming microscopy techniques like Confocal Light
Sheet Microscopy are able to acquire tiled images of 1 ter-
avoxel or more. These images pose novel requirements
to stitching that are not adequately addressed by existing
tools.

In this paper we have presented a tool designed for auto-
matic 3D stitching of teravoxel-sized tiled images. The
tool, initially developed for stitching images generated by
the CLSM microscope, is completely general, and suited
to be adapted to other instruments capable to acquire
images of these dimensions. The central idea is to accu-
rately specify the requirements of the stitching problem
when teravoxel-sized images are involved, and then use
efficiently the system resources to perform the stitching of
these images. To improve the generality of the proposed
tool, we defined a software architecture that clearly sep-
arates the strategies in common among different datasets
from the algorithms that may depend on specific charac-
teristics of the acquired images.

An implementation of the tool that is capable to per-
form the stitching of real teravoxel-sized images on
workstations with relatively limited memory resources in
reasonable time has been presented. It uses specific algo-
rithms well suited for a relatively wide class of images, that
substantially reduce memory and computational require-
ments of some basic steps of the stitching procedure
with respect to previous approaches. A comparison with
state-of-the-art stitching tools confirms that the solutions
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Table 2 Performance comparison among stitching tools

Data size (MVoxel) Stacks Tool Use of stage coordinates Memory peak Tstitching
a Tdispl.comp. Tmerging TI/O Ttotal

TeraStitcher yes 200 4 2 2 7 11

Fiji yes 450 45 20 25 8 53

100 2×200 slices

Fiji no 1400 99 75 24 3 102

XuvStitch yes 400 n.a. 4 16 n.a. 20

XuvStitch no 950 n.a. 22 16 n.a. 38

iStitch no 600 11 n.a. n.a. n.a. 17

TeraStitcher yes 300 8 4 4 12 20

200 4×200 slices

Fiji yes 1300 132 62 71 13 145

XuvStitch yes 500 n.a. 6 28 n.a. 34

iStitch no 662 37 n.a. n.a. n.a. 46

TeraStitcher yes 300 35 23 12 32 20

600 4×600 slices

Fiji yes > 3000 n.a. 113 n.a. n.a. n.a.

XuvStitch yes 1200 n.a. 18 80 n.a. 34

iStitch no 1900 143 n.a. n.a. n.a. 46

In this table we report a comparison of execution times (in seconds) and memory peaks (in MB) between TeraStitcher and the state-of-the art stitching tools when stitching Megavoxel-sized datasets.
a
Time spent in stitching, net of I/O.
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Table 3 Performances of TeraStitcher when stitching very large datasets

Data size (Gigavoxel) Dataset Memory peak Tstitching Tdispl.comp. Tmerging TI/O Ttotal

63,25 Portion of whole mouse cerebellum 821 60 23 37 157 217

126,50 Portion of whole mouse cerebellum 1132 145 68 77 318 433

198,78 Whole mouse cerebellum 1132 232 109 123 539 771

1315,04 Whole mouse brain 2450 n.a.a n.a. n.a. n.a. 6050

In this table are shown both execution times (in minutes) and memory peaks (in MB) of the TeraStitcher tool when stitching Gigavoxel and Teravoxel-sized datasets.
a
Not available.
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adopted are best suited for stitching very large, automati-
cally acquired microscopy images.

Availability and requirements
We provide TeraStitcher both as standalone application
and as plugin of the free software Vaa3D [9]. Sources
and binaries, as well as some MATLAB scripts for the
generation of graphical models for metadata, are freely
available at the project home page. An online help is
also provided which comprises the detailed description of
command line parameters, stitching pipeline, supported
data formats, supported stacks organization, and a FAQ
section.

• Project name: TeraStitcher
• Project home page: http://code.google.com/p/

terastitcher
• Operating system: Platform independent
• Programming language: C++
• Other requirements: OpenCV library 2.2.0 or

higher is required for compiling both the standalone
application and the plugin of Vaa3D. On the contrary,
our binary packages can be directly used since we
provide OpenCV precompiled binaries within them.

• License: both source code and binaries are freely
available at the project home page for
non-commercial purposes only and we require that
our work is cited in user’s related studies and
publications, if any. A short license agreement which
encloses this clause is provided in the header of every
source file as well as in the binary packages and before
downloading any material related to the project.
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