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Abstract

Despite the importance of microbial activity in mobilizing arsenic in groundwater aquifers,

the phylogenetic distribution of contributing microbial metabolisms is understudied. Ground-

water samples from Ohio aquifers were analyzed using metagenomic sequencing to identify

functional potential that could drive arsenic cycling, and revealed mechanisms for direct

(i.e., Ars system) and indirect (i.e., iron reduction) arsenic mobilization in all samples,

despite differing geochemical conditions. Analyses of 194 metagenome-assembled

genomes (MAGs) revealed widespread functionality related to arsenic mobilization through-

out the bacterial tree of life. While arsB and arsC genes (components of an arsenic resis-

tance system) were found in diverse lineages with no apparent phylogenetic bias, putative

aioA genes (aerobic arsenite oxidase) were predominantly identified in Methylocystaceae

MAGs. Both previously described and undescribed respiratory arsenate reduction potential

via arrA was detected in Betaproteobacteria, Deltaproteobacteria, and Nitrospirae MAGs,

whereas sulfate reduction potential was primarily limited to members of the Deltaproteobac-

teria and Nitrospirae. Lastly, iron reduction potential was detected in the Ignavibacteria, Del-

taproteobacteria, and Nitrospirae. These results expand the phylogenetic distribution of

taxa that may play roles in arsenic mobilization in subsurface systems. Specifically, the

Nitrospirae are a much more functionally diverse group than previously assumed and may

play key biogeochemical roles in arsenic-contaminated ecosystems.

Introduction

Arsenic contamination of groundwater is a pressing health issue throughout the world [1]. For

example, elevated arsenic concentrations pose a threat to over 40 million people in Bangladesh

and eastern India alone, particular those living in Bangladesh [2,3]. Meanwhile in the US, a

recent study revealed that 20 of 37 principal aquifers contained arsenic concentrations above

the maximum contaminant level of 10 μg L-1, affecting approximately 2.1 million [4,5]. Arsenic

PLOS ONE | https://doi.org/10.1371/journal.pone.0221694 September 6, 2019 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Danczak RE, Johnston MD, Kenah C,

Slattery M, Wilkins MJ (2019) Capability for arsenic

mobilization in groundwater is distributed across

broad phylogenetic lineages. PLoS ONE 14(9):

e0221694. https://doi.org/10.1371/journal.

pone.0221694

Editor: Inês A. Cardoso Pereira, Universidade Nova

de Lisboa, PORTUGAL

Received: December 4, 2018

Accepted: August 13, 2019

Published: September 6, 2019

Copyright: © 2019 Danczak et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Metagenomic reads

files, assemblies, bins, and protein files can be

found on Cyverse (https://de.cyverse.org/de/). To

access the files, users must create an account and

log in. The following files are in the folder pathway

“/iplant/home/danczakre/Ohio Groundwater

Metagenomes”. Reads have been deposited in the

NCBI SRA under bioproject #PRJNA512237.

Funding: This study was funded by the Ohio Water

Development Authority (www.owda.org) through

grant no. 7171 awarded to MJW. The funders had

http://orcid.org/0000-0003-1396-192X
https://doi.org/10.1371/journal.pone.0221694
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221694&domain=pdf&date_stamp=2019-09-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221694&domain=pdf&date_stamp=2019-09-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221694&domain=pdf&date_stamp=2019-09-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221694&domain=pdf&date_stamp=2019-09-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221694&domain=pdf&date_stamp=2019-09-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221694&domain=pdf&date_stamp=2019-09-06
https://doi.org/10.1371/journal.pone.0221694
https://doi.org/10.1371/journal.pone.0221694
http://creativecommons.org/licenses/by/4.0/
https://de.cyverse.org/de/
http://www.owda.org


can occur in a range of redox states (-3, 0, +3, and +5), with mobile arsenite (As3+) and arse-

nate (As5+) the most common [6] in groundwater systems [7]. In this context, arsenite is more

soluble and affected by sorption than arsenate [6] and presents a greater risk for human

consumption.

The mobility of arsenic in these aquifer systems is at least partly mediated by microbial

metabolism, via both direct and indirect mechanisms. Bacteria from diverse phylogenetic line-

ages feature resistance mechanisms that reduce and transport arsenic, such as the one encoded

by the ars operon, where arsB is a membrane bound efflux pump and arsC is a cytoplasmic

arsenate reductase [8–11]. Alternatively, a narrower phylogenetic distribution of microorgan-

isms can participate in dissimilatory arsenic reduction via the arr system, utilizing arsenate as

a terminal electron acceptor and converting it to arsenite [8–11]. Bacteria can also immobilize

arsenic using arsenite oxidation mechanisms, such as the anaerobic (arx) and aerobic (aio)
oxidase systems. Arsenic is further affected by the biogeochemical cycles of other inorganic

groundwater constituents. The reductive dissolution of iron oxides through either direct

microbial activity [12–14] or indirect biogenic sulfide production [15] can lead to release of

adsorbed arsenic species. Although some previous studies have suggested that microbial sulfate

reduction could immobilize arsenic through co-precipitation of sulfide-arsenic-iron species

[16–18], other research has indicated increased arsenic mobilization associated with the for-

mation of thioarsenic species that are more soluble and less likely to adsorb to iron minerals

[19].

Despite our knowledge of microbial mechanisms that contribute to arsenic cycling, the

phylogenetic distribution of this functional potential is less well understood. The recent appli-

cation of metagenomic tools to shallow subsurface microbial populations revealed greater phy-

logenetic distribution of taxa involved in both nitrogen [20] and sulfur [21] cycling than was

previously appreciated. Here, we applied similar tools to investigate the microbial potential for

catalyzing arsenic transformations in shallow aquifers across three counties in central and

southern Ohio (Athens, Greene, Licking). Geochemical and mineralogical analyses had previ-

ously suggested that groundwater in each county was at risk for elevated arsenic concentra-

tions [7,22,23]. Leveraging metagenomic datasets, we investigated the relationship between the

functional potential across diverse bacterial lineages, and elevated arsenic concentrations. Our

data suggests that arsenic mobilization potential is found in groundwater ecosystems regard-

less of current geochemical conditions. Moreover, our results demonstrate that the potential

for arsenic and iron mobilization is broadly distributed across the bacterial tree of life, with

current analyses potentially missing many microbial groups capable of these transformations.

Methods

Sample collection

Groundwater samples were collected from three groundwater wells operated by the Ohio

Department of Natural Resources (ODNR) in three different counties. These three wells are

located within separate buried valley aquifers, consisting mostly of glacial sands and gravels,

and some till. The observation wells were sampled on a quarterly basis over a two-year period

from July 2014 to July 2016. One private drinking water well, located in a sand and gravel aqui-

fer within a thick till sequence in western Licking County, was also sampled once in June 2016

[24].

Groundwater wells were sampled as previously reported [24,25]. Briefly, they were purged

of more than 250 L of water to ensure that aquifer-derived water was being sampled (dedicated

pumps were placed at the screened interval for the ODNR wells). Approximately 38L of post-

purge groundwater was pumped sequentially through a 0.2 μm then 0.1 μm Supor PES
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Membrane Filter (Pall Corporation, NY, USA). Filters were then immediately flash frozen in

an ethanol-dry ice bath, and kept on dry ice before being stored at -80˚C at Ohio State

University.

DNA extraction, sequencing and processing

DNA was extracted from roughly a quarter of each 0.2 μm Supor PES membrane filter by

using the Powersoil DNA Isolation Kit (MoBio Laboratories, Inc., Carlsbad, CA, USA). Final

DNA concentrations were determined by using a Qubit Fluorometer (Invitrogen, Carlsbad,

CA, USA).

Metagenomic data for 8 samples (filters from July 2014, Oct. 2014 and April 2016 for

Greene and Athens, Oct 2014 for Licking, and the Licking–Private sample) was collected by

shotgun sequencing on an Illumina HiSeq 2500 at the Genomics Shared Resource at the Ohio

State University. Raw reads were trimmed and filtered based upon read quality using sickle pe
with default parameters [26]. Resulting reads were subsequently assembled into larger contigs

and then scaffolds using idba_ud with default parameters [27]. Assembly statistics are listed in

S1 Table.

Whole metagenome analysis

Arsenic and sulfur gene analysis. Each assembly was searched for a series of functional

marker genes related to arsenic mobilization. All metagenomes were gene-called and trans-

lated using Prodigal with default parameters [28]. For genes encoding proteins which directly

act upon arsenic (i.e. arsB, arsC, aioA, and arrA) [11], previously sequenced genes obtained

from NCBI (S1 File) were used to create a BLAST database against which metagenomes could

be searched [29]. Any gene that hit a previously identified sequence with an e-value of 1x10-40

or lower was considered a match. However, due to the interrelated nature of molybdopterin

proteins, sequences identified as arrA or aioA underwent further analysis. Sequences poten-

tially matching these two genes were subsequently aligned to other molybdopterin proteins

(including NapA, DMSO reductase, etc.; S1 File) using MUSCLE with default parameters

[30]. Alignments were then trimmed using Geneious v9.1.5 [31] to remove regions of at least

95% gaps and used to generate a RAxML tree with 100 bootstraps and an evolutionary model

determined by ProtTest [32–34] (raxmlHPC-PTHREADS -f a -m ‘ProtTest-Output’ -n output

-N 100 -p 1234 -s file.phy -x 1234 -T 20; ‘ProtTest-Output’ for arrA and aioA was WAG while

all other tress were LG). Trees were visualized with R using ggtree [35] and only those

sequences which fell into the respective arrA or aioA clades were analyzed further. The marker

gene for sulfate reduction, dsrD, was identified in metagenomes using an HMM with trusted

cutoff values generated by Anantharaman et al. (hmmsearch—tbloout result.hres—noali—
cut_tc -o result_hmm.txt dsrD.hmm input.faa) [21,36].

Multiheme c-type cytochrome analysis. Multiheme c-type cytochromes (MHCs)

required separate analyses for identification due to their numerous biochemical roles [37].

Potential MHC sequences were identified if a given amino acid sequence contained at least 3

CXXCH (Cys-X-X-Cys-His) motifs [37]. Potentially non-metal active MHCs were then

removed through three primary steps. Firstly, the MHCs were annotated by comparing

sequences to the KEGG, UniRef90, and InterproScan [38–42] databases using USEARCH [43]

to scan for single and reverse best hit (RBH) results [24]. These annotations helped identify

which cytochromes have a known function unassociated with metal cycling (i.e. NapC/NirT,

NrfA, HAO, etc.). These sequences, along with seeded MHC sequences from Geobacter spp.

and Shewanella oneidiensis, were clustered into a network by alignment score using EFI-EST

[44,45] with a score cutoff of 67. These networks were then visualized using Cytoscape v3.4.0
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[46] and parsed by hand in order remove hypothetical or misidentified proteins clustering

with non-metal active proteins. Lastly, sequences were analyzed using PSORTb v3.0.2 [47] to

localize encoded proteins within the cell, removing any protein destined for the cytoplasm

only. Resulting protein and motif counts were plotted in R using the ggplot2 package (v2.2.1)

[48,49].

Gene abundance calculation. Functional gene abundances were determined by mapping

trimmed reads from a metagenome to corresponding functional sequences using bowtie2

(bowtie—fast) [50]. These mapped reads were then normalized to the length of the gene and

the number of mapped reads in the assembly in order to obtain a “reads per kilobase million”

or “RPKM” metric. This measurement allows for cross sample comparisons in gene abun-

dances. These calculations were performed in R and then plotted using the ggplot2 package

(v2.2.1) [48].

Metagenomic binning and analyses

Scaffolds were binned using a combined binning approach called “DAS Tool” [51], which

allows for the dereplication of bins generated through different bin generation strategies.

Using the read mapping information obtained during the whole metagenome analyses, assem-

bled scaffolds >2500 bp were binned using MetaBAT (metabat—superspecific) [52]. Assem-

bled scaffolds >1000 bp were also binned using Maxbin [53]. Bins obtained from both

algorithms were then processed using DAS Tool with default parameters [51]. Diversity of

these bins was assessed by identifying ribosomal protein S3 (rps3) sequences using

AMPHORA 2 [54]. Obtained S3 sequences were aligned to an rps3 database from Hug et al.

[55] and used in tree generation according to the protocol outlined in the “Arsenic and sulfur

gene analysis” section (LG determined with the added utilization of Gblocks to mask phyloge-

netically uninformative regions) [56]. The maximum-likelihood tree was visualized using

ggtree in R [35], with major phylogenetic groups highlighted. Genome completeness and con-

tamination were measured using CheckM [57]. Bin completion measurements can be found

in S2 Table.

Only those bins which were of medium quality or greater based upon newly updated stan-

dards (i.e.,> = 50% complete,<10% contaminated; 306 total) [58] were analyzed further. Each

bin was annotated using the pipeline described above (i.e., USEARCH comparing sequences

against KEGG, UniRef90, and InterproScan databases); resulting general metabolic characteris-

tics were summarized. Bins were blasted against the specific genes of interest found in the

whole metagenomes (arsB, arsC, arrA, aioA, dsrD, and MHCs) to find organisms potentially

capable of arsenic mobilization. If a MAG of interest contained a sequence encoding a potential

RuBisCO, an alignment followed by tree generation as described with arrA and aioA was per-

formed with RuBisCO sequences from NCBI to assess whether it was type-I, -II, -III, or -IV.

Genome-based replication rates were approximated by performing an “iRep” analysis on

genomes at least 75% complete and less than 3% contaminated [59]. Given that iRep requires

genomes to be less than 2% contaminated, we have noted where these divergences occurred in

the supplemental materials (S3 Table). The reason for this difference was to increase the repre-

sentation of arsenic mobilizing functions in our analyses. Trimmed reads from each metagen-

ome were mapped to corresponding bins using bowtie2 (bowtie2—fast) [50] with unmapped

reads removed using shrinksam with default parameters [60]. The iRep command was then

run with defaults and results were plotted in R using the ggplot2 package (v2.2.1).

Approximate taxonomy was assigned by placement in the rps3 maximum-likelihood tree as

well through an NCBI BLAST search [61]. Those genomes belonging to the Nitrospirae, Ignavi-

bacteria, andMethylocystaceaewere analyzed more deeply using 43-protein concatenated trees.

Potential arsenic mobilization across broad lineages
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Single copy genes (SCGs) utilized during the phylogenetic placement step in CheckM [57] were

identified in all genomes from this study and those published on NCBI using HMMs obtained

from PFAM (hmmsearch -Z 26740544 -E 1e-20—tblout result.hres phylo.hmm input.faa) [36,62].

These SCGs were then individually aligned, trimmed, and used in tree generation according to

the method established in the “Arsenic and sulfur gene analysis” section, with an additional align-

ment concatenation step performed in Geneious v9.1.5 [31]. The trees were then visualized in

FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/). An exhaustive literature search was per-

formed to ascertain where throughout Bangladesh and eastern India these microorganisms were

previously described. Studies were selected if they fell within the specified geographic region and

whether they described, at some point, members of theMethylocystaceae or Nitrospirae (or sub-

classifications).

Metagenomic read files, assemblies, bins, and protein files can be found on Cyverse (https://

de.cyverse.org/de/). To access the files, users must create an account and log in. The following

files are in the folder pathway “/iplant/home/danczakre/Ohio Groundwater Metagenomes”.

Files are also available at the NCBI associated with bioproject number PRJNA512237.

Map generation

R-compatible shapefiles for Bangladesh and India were downloaded from the Database of

Global Administrative Areas (GADM) [63]. The shapefiles were imported in R using the sp
package v1.3.1 [64], processed using the “fortify” command (rgeos package v0.3.28) [65], and

plotted using the ggplot2 package (v2.2.1) [48]. Points on the map were placed by hand based

upon GPS coordinates.

Results and discussion

Groundwater microbiomes host functional potential for arsenic cycling,

regardless of geochemical conditions

The geochemical conditions within three of these aquifers have been reported previously [25].

Briefly, the aquifer in Athens County was characterized by reducing conditions, and contained

high concentrations of sulfate and dissolved iron. In contrast, samples from the Greene

County aquifer were the most oxidizing, while the Licking aquifer featured elevated arsenic

concentrations [25]. The fourth location, Licking–Private, had sulfate concentrations compa-

rable to the Athens aquifer (151 mg/L), iron concentrations higher than the other Licking loca-

tion (3.1 mg/L) and arsenic three times higher than the maximum contaminant limit (31 μg/L)

(S4 Table).

To investigate the metabolic potential for iron and arsenic cycling within these systems,

normalized abundances of marker genes associated with arsenic (arrA, arsBC, aioA) and iron

(multiheme c-type cytochromes; MHCs, dsrD) mobilization were compared across locations

(Fig 1). The Licking–Private Well featured the greatest functional potential for both direct

iron reduction and arsenic reduction, mirroring the surrounding geochemical conditions (Fig

1). Similarly, the genomic potential for arsenic oxidation was highest in the most oxidizing

Greene County samples (Fig 1). However, the absence of correlations between genomic func-

tional potential and geochemical conditions in the Athens and Licking aquifers suggest that

measures of activity may provide additional insights into links between microbiomes and bio-

geochemical transformations. Similar inferences regarding the disconnect between functional

potential and microbial activity have been made in other ecosystems [66–68]. This additionally

supports previous research which noted that arsenic metabolism genes were found in rice pad-

dies containing low concentrations of arsenic [69].
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To obtain a proxy for microbial activity, average replications rates for metagenome-assem-

bled genomes (MAGs) were calculated utilizing iRep (Fig 2) [59]. In brief, iRep measures vari-

ations in read coverage along a genome from the origin to the terminus to approximate

replication rates [59]. While this metric does not directly relate to metabolic activity, it may

help determine variations in replication rates between groups of microorganisms inferred to

perform different functional roles in the environment. MAGs encoding the potential for iron,

sulfate, and arsenate reduction featured similar, but variable, iRep values suggesting compara-

ble overall rates of replication (Fig 2). In contrast, MAGs encoding the potential for arsenic

oxidation (aioA) were all phylogenetically related to methanotrophs, and had potentially the

slowest rates of replication, as inferred from the lowest iRep values (Fig 2). Given the absence

of putative methanogens in this dataset, and the high oxidation-reduction potential measured

in groundwater, slower inferred growth rates for methanotrophs may be related to electron

donor availability.

The metabolic potential for direct arsenic transformations exists

throughout the bacterial tree of life

To expand our understanding of metal-cycling microorganisms in shallow subsurface systems,

MAGs were investigated for specific functions related to iron and arsenic transformations (Fig

3; S2 File). In total, 306 MAGs of medium or greater quality were recovered from 8
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https://doi.org/10.1371/journal.pone.0221694.g001
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groundwater metagenomes (S2 Table). Of these MAGs, 194 were subsequently analyzed

because they featured a ribosomal protein S3 sequence and at least one function of interest.

Reflecting the conservation of the ars operon throughout archaea, bacteria, and eukaryotes,

both arsB and arsC–arsenic detoxification genes–were broadly distributed throughout the bac-

terial tree of life and exhibited little phylogenetic bias within our dataset [9,11] (Fig 3).

Contrastingly, the phylogenetic distribution of aioA was significantly more constrained,

occurring only in genomes related to theMethylocystaceae, Rhodosprillaceae, and Rhodobacter-
aceeae families within the Alphaproteobacteria. Out of nine higher quality MAGs containing

aioA, six genomes belonged to theMethylocystaceae and were most closely related toMethylo-
cystis rosea SV97 and associated isolates, suggesting that these might constitute a new species

within the genus. While aioA has been previously detected withinMethylocystis sp. SC2,

potential functionality has not been explored in significant detail. Based upon the analyses pre-

sented here, it appears that our MAGs feature metabolisms of previously characterizedMethy-
locystaceae genomes, including methanotrophy via an encoded serine pathway as determined

Fig 2. iRep values for genomes separated by functional potential. Higher log(iRep) values for the genomes containing the specified functional

genes suggest faster growth. For example, those genomes which encoded putative AioA sequences had lower iRep values and replicated at a slower

rate than those genomes encoding the other functions.

https://doi.org/10.1371/journal.pone.0221694.g002

Potential arsenic mobilization across broad lineages

PLOS ONE | https://doi.org/10.1371/journal.pone.0221694 September 6, 2019 7 / 19

https://doi.org/10.1371/journal.pone.0221694.g002
https://doi.org/10.1371/journal.pone.0221694


Gallion. Ignavi.

D-bulb

Geo
D-bac

Fig 3. A maximum-likelihood tree generated from rps3 (rpsC) sequences. Each major lineage detected in this study is highlighted in a different color. Colored circles

below each name indicate which of the examined functions were observed in MAGs belonging to each lineage. Gray circles at the end of branches indicate lineages

observed in this study. In the lower portion of the figure, panels depict the frequency with which the putatively encoded functions occurred across MAGs belonging to

the detected linages. For example, AioA is found exclusively in MAGs belonging to the Alphaproteobacteria.

https://doi.org/10.1371/journal.pone.0221694.g003
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by the presence of methanol dehydrogenase and methane monooxygenase. Five MAGs appear

to be missing a glycine hydroxymethyltransferase, however, and all are missing an alanine-

glyoxylate transaminase. The aioA sequences within theMethylocystaceae appear to be most

closely related to those found in the Order Rhizobiales (S3 File, S1A Fig), including the aioA
found in Rhizobium sp. NT-26 which can obtain energy from arsenite oxidation [70]. Addi-

tionally, each genome appears to encode a putative pseudoazurin, a potential electron acceptor

for the arsenite oxidase [70]. While these results suggest that theMethylocystaceaeMAGs

might be capable of conserving energy by oxidizing arsenite to arsenate, a role for these genes

in canonical arsenic detoxification cannot be discounted. Regardless of energy conservation,

members of this family have been found in other arsenic contaminated sites throughout the

world, including numerous locations throughout Bangladesh [71,72] (Fig 4). Given their dis-

tribution throughout As-impacted sediments, members of theMethylocystaceaemay play an

under-appreciated role in arsenic cycling.

Nine medium or higher quality MAGs within the Betaproteobacteria, Deltaproteobacteria,

and Nitrospirae contained putative arrA sequences (Fig 3). All five MAGs belonging to the Beta-

proteobacteria were members of the family Rhodocyclaceae, a functionally diverse and broadly

distributed bacterial group [73]. The only Deltaproteobacteria MAG was a member of the Geo-
bacteraceae. Lastly, the remaining three MAGs were members of the phylum Nitrospirae and

were most closely related to genomes obtained from other subsurface environments [20,74,75].

Our results indicate that the organisms potentially capable of arsenic reduction might be more

diverse than existing databases suggest; out of nine MAGs, only one belonged to a traditional

arsenic reducing group (Geobacteraceae) (Fig 3). Particularly, both the Rhodocyclaceae and

Nitrospirae represent groups that might be overlooked when considering only characterized arse-

nate reducers, and may represent a significant underestimation of arsenic mobilization potential

throughout shallow aquifer systems due to their broad geographical distribution (Fig 4).

Lineages throughout the tree of life have previously undescribed sulfate

and iron reduction potential

Twenty-eight MAGs recovered in this study featured the potential to reduce sulfate to hydro-

gen sulfide. The majority (15) of genomes encoding this functional potential belonged to the

Fig 4. Biogeography throughout the India and Bangladesh. Map of eastern India and Bangladesh–areas historically

affected by arsenic contamination–indicating the biogeographical distribution of bacteria related to the

Methylocystaceae and Nitrospirae and the studies in which they were observed.

https://doi.org/10.1371/journal.pone.0221694.g004
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Deltaproteobacteria (Fig 3), including members of the Desulfobulbaceae, Desulfovibrionaceae,
Desulfobacteraceae, and Syntrophaceae. Additionally, a member of the family Polyangiaceae
also displayed genomic features for this function. Although this group is not traditionally asso-

ciated with sulfate reduction, this MAG encoded a potentially reductive dsrABD (S4 File, S1B

Fig) and featured the potential to use a broad range of smaller carbon substrates as electron

donors, including acetate, alcohols, and lactate, providing added genomic support for this

function. Beyond the Deltaproteobacteria, the next abundant group of MAGs (10) inferred to

perform sulfate reduction belonged to the phylum Nitrospirae. While traditionally considered

to be nitrite oxidizers [76], increasing recent evidence has greatly expanded the functional

potential of members within this phylum [21,77,78]. Again, these data suggest that the poten-

tial for sulfate reduction is present in phylogenetically broader groups than might be assumed

by simply considering well-characterized isolates. The metabolic activity of these organisms

could potentially drive indirect metal mobilization across diverse subsurface ecosystems.

The reductive dissolution of iron oxides drives metal mobilization, with iron-reducing

microorganisms using multi-heme c-type cytochromes (MHCs) as terminal reductases for the

final step of electron transfer. Using the presence of putative metal-active MHCs as a screen

for iron-reducing microorganisms, thirty-seven MAGs were selected for further analyses.

(Figs 3 and 5). Nine of these MAGs were affiliated with the Deltaproteobacteria, including

members of the Desulfobacteraceae, Geobacteraceae, and Desulfobulbaceae that are commonly

inferred to catalyze iron reduction in the environment [79–81]. Moreover, many of these

organisms encoded the capability to utilize shorter carbon compounds as electron donors via

acetate kinases and alcohol dehydrogenases.

Beyond these traditional iron-reducing taxa, many MHC-encoding MAGs (10) belonged to

the phylum Ignavibacteria within the FCB Superphylum. Some members of the Ignavibacteria,

namelyMelioribacter roseus, have previously been characterized as iron reducers [82,83],

although their role in environmentally relevant metal cycling is less well understood [84].

Genome-level phylogeny of these Ignavibacteria indicated that eight of the ten were most

closely related toMelioribacter (S5 File, S1C Fig). A closer examination of the metabolic

potential in these organisms revealed many similarities with other Ignavibacteria and canoni-

cal iron reducers, such as the inferred ability to utilize organic acids (acetate, formate, and lac-

tate). Moreover, each genome encoded a complete electron transport chain with all but 2

organisms exhibiting the potential to utilize diverse terminal electron acceptors including

nitrite (reduced to ammonia via the NrfAH system) and nitrous oxide (reduced to nitrogen

via NosZ). MHCs within the Ignavibacteria MAGs featured an average of 10 heme-binding

motifs, placing them within the range of MHCs detected in other iron cycling microorganisms

(Fig 5). In the absence of traditional autotrophic pathways associated with iron oxidizers, and

the phylogenetic relationship to the known iron reducerMelioribacter rosesus, we infer that

these Ignavibacteria MAGs are potentially capable of iron reduction. Although members of

the Ignavibacteria appear to be broadly distributed in numerous groundwater ecosystems, rel-

atively few seem to have been specifically detected in arsenic contaminated systems. We

hypothesize that this may at least partly be due to mis-identification of these taxa as deeply

branching members of the Chlorobi prior to their recent organization into a new phylum

(Ignavibacteriae) [82]. Overall, these results suggest that members of the Ignavibacteria–

beyond the characterized isolateMelioribacter rosesus–likely catalyze reductive dissolution of

iron oxides, contributing to the mobilization of adsorbed metals in reducing environments.

Additional MAGs containing a high number of putative metal-active MHCs were distrib-

uted across the Betaproteobacteria and Nitrospirae. Within the Betaproteobacteria, four out of

the five MAGs were members of the Gallionellaceae. Each of these MAGs featured chemo-

lithoautotrophic metabolic potential, including an encoded RuBisCO, and were most closely
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related to other groundwater Gallionellaceae genomes, although BLAST results suggest that

the nearest related isolates were the iron-oxidizing organisms Siderooxydans lithotrophicus
and Ferriphaselus amnicola [85]. Together, these results indicate that the Gallionellaceae
MAGs recovered here likely catalyze iron oxidation reactions. The functional potential

encoded within the Nitrospirae MAGs is discussed in more detail below.

The phylum Nitrospirae could play significant, previously undescribed

roles in arsenic cycling

The phylum Nitrospirae contains the distantly-related genera Leptospirillum, Thermodesulfovi-
birio, and Nitrospira, and features a broad diversity of metabolic functionality [76,77,86–89].

Isolated members of the Leptospirillum have been characterized as chemolithoautotrophic

iron-oxidizers, in contrast to the sulfate reducing capacity of the Thermodesulfovibrio, or the
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nitrite-oxidizing capabilities of the Nitrospira [76,77,86,90]. Additionally, a clade related to the

Thermodesulfovibrio contains genes necessary for magnetotaxis via intracellular magnetite for-

mation [91]. We were able to assemble fourteen medium quality or greater MAGs spanning

the phylogenetic and functional diversity within the phylum. Moreover, we were able to

uncover a novel potential function in arsenic cycling for the Nitrospirae, in addition to assign-

ing a potentially greater role in iron cycling.

A 43-protein concatenated tree (S6 File, S1D Fig) revealed that the 13 Nitrospirae MAGs

generated here are more closely related to genomes obtained from other subsurface environ-

ments than to isolated species, while one is related to Candidatus Nitrospira nitrificans. Meta-

bolically, these organisms encoded respiratory functionality based upon the presence of

oxidative phosphorylation genes, and contained a broad range of functions typical within the

Nitrospirae. Firstly, two MAGs contained genes (e.g., nxrA/B) for nitrite-oxidizing capabilities

traditionally characteristic of this phylum. Three MAGs encoded nitrate reductases via napA,

three MAGs featured sequences for copper-containing nitrite reductases (e.g., nirK), and three

MAGs encoded putative nitric oxide reductases (norBC). Evidence for nitrite reduction to

ammonium was present in one MAG featuring the Nrf-system, and others encoded a distantly

related ammonia forming nitrite reductase. Additionally, ten MAGs encoded the inferred

functional potential for sulfate reduction via the presence of reductive-type dsrABD genes [21].

MHC profiles similar to known iron-reducers, Geobacter bemidjiensis and Shewanella onei-
densis, were found in six MAGs, suggesting that members outside of the genus Leptospirllum
may be capable of iron cycling (Fig 5). The presence of MHCs with a broad range of CxxCH

motifs (up to 49 within one protein) suggests that members of the Nitrospirae may be capable

of direct election transfer to or from iron oxides. Due to similar enzymatic machinery and

associated genomic features, disentangling iron reduction from iron oxidation is challenging

in the absence of microbial isolates. Some evidence suggests that at least two of these Nitros-

pirae MAGs may perform chemolithoautotrophy due to the presence of the large subunit of a

type-II RubisCO (S7 File, S1E Fig). While this mechanism is found in the genus Leptospiril-
lum, these MAGs appear to be unrelated, suggesting that this functionality might be wide-

spread throughout the phylum. In contrast, the absence of RuBisCO-based autotrophic

machinery suggests that four Nitrospirae MAGs may perform iron reduction. These MAGs

are potentially capable of utilizing ethanol or formate as electron donors via an alcohol dehy-

drogenase and pyruvate formate lyase / Wood-Ljungdahl pathway, respectively. Additionally,

two MAGs may be capable of acetate utilization via an ADP-forming acetyl-CoA synthetase;

propionate and butyrate are unlikely substrates, however. While these observations are based

upon genomic inferences, results suggest that members of the Nitrospirae may play additional,

previously unrecognized roles in iron cycling.

Lastly, the capacity for respiratory arsenate reduction via a putatively encoded arrA was

found in three of the high quality Nitrospirae MAGs representing a possible metabolic expan-

sion for this phylum. Broadening our analyses to 185 other published genomes, arrA
sequences were found in only eleven other Nitrospirae beyond the three described here. All 14

arrA sequences appear to be most closely related to those sequences found in Deltaproteobac-

teria genomes, suggesting a potentially shared evolutionary history or horizontal gene transfer

(S8 File, S1F Fig). Geographically, members of the Nitrospirae appear to be constituents of

microbial communities in many ecosystems, including those featuring elevated arsenic con-

centrations [92–95] (Fig 4). While much of this evidence is based upon 16S rRNA gene data,

numerous Nitrospirae are members of groundwater bacterial communities obtained from

Bangladesh and might participate in direct arsenic transformations. These results further sug-

gest that the capability for arsenate reduction is broadly distributed and likely exists in other
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under-sampled lineages. Moreover, the Nitrospirae might represent a previously unidentified

group of organisms capable of widespread arsenic mobilization.

Conclusions

Arsenic-contaminated groundwater is a pressing issue throughout the world, although the

relationship between contributing geochemical conditions and microbial communities is

underexplored. Here we present evidence that the functional potential for arsenic mobilization

is both geographically and phylogenetically widespread (Figs 1 and 3). In the groundwater

samples studied here, moderate changes in environmental conditions could potentially stimu-

late the activity of arsenic-cycling microorganisms. For example, the onset of more reducing

conditions in the Greene County location studied here could lead to increasing concentrations

of mobile arsenic species through the activity of arsC and arrA genes that catalyze arsenate

reduction.

Furthermore, our research demonstrates the importance of investigating microbial com-

munity members beyond “canonical” iron or arsenic cycling organisms. TheMethylocystaceae
are a family consisting of methanotrophs but some members appear to encode an aioA, allow-

ing them to potentially oxidize arsenite (Fig 3). The phylum Ignavibacteria appears to contain

a greater diversity of members encoding potential genes necessary for iron reduction, a func-

tion previously described only within the genusMelioribacter. Lastly, members of the Nitros-

pirae are much more functionally diverse than previously thought, with new groups

potentially capable of iron reduction, iron oxidation, and arsenate reduction. Moreover, mem-

bers of theMethylocystaceae and Nitrospirae are detected in locations affected by elevated

groundwater arsenic concentrations and may help explain the mobilization potential missed

by tracking standard organisms. Although these functions are inferred from genomic data

alone, these results highlight the importance of looking beyond exclusively isolation-based and

phylogenetic assumptions. By obtaining a more complete understanding of the diverse func-

tional potential encoded within subsurface microbiomes, we can begin to combine isolation-

based techniques with arsenic mobilization studies in an attempt to better address this ongoing

crisis.
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