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Background: Leptin is an adipokine that is recently reported to be a biomarker of
systemic inflammation. Although atherosclerosis causes cardiovascular diseases, it
is not clear whether leptin contributes to the acceleration of this process. In this
study, we investigated whether alterations of plasma leptin levels were related to
diabetic nephropathy and systemic inflammation. In addition, we examined the
physiologic action of leptin in cultured vascular smooth muscle cells (VSMCs).
Methods: A total of 126 type 2 diabetic participants and 37 healthy controls were
studied. The diabetic participants were divided into three groups according to
stage of nephropathy. We investigated whether leptin induced monocyte chemo-
tactic peptide-1 (MCP-1) synthesis through the mitogen-activated protein kinase
(MAPK) pathway using cultured VSMCs.

Results: Plasma leptin concentrations were significantly higher in the diabetic group
than in the controls. Plasma leptin levels were positively correlated with body mass
index, fasting and postprandial blood glucose, hemoglobin Alc, total cholesterol, urinary
albumin excretion, high-sensitivity C-reactive protein (hsCRP), and MCP-1 plasma levels,
and negatively correlated with creatinine clearance values. In cultured VSMCs, leptin
increased MCP-1 production in a dose-dependent manner, and this stimulating effect of
leptin on MCP-1 expression was reversed by the MAPK (MEK) inhibitor PD98059. In
addition, leptin stimulated the phosphorylation of MEK, extracellular signal-regulated
kinase, and E26-like transcription factor, which are components of the MAPK pathway.
Conclusions: Overall, these findings suggest that activation of leptin synthesis may
promote MCP-1 activation in a diabetic environment via the MAPK pathway in VSMCs
and that it possibly contributes to the acceleration of atherosclerosis.
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Introduction

The prevalences of obesity and diabetes continue to
increase dramatically in many countries. Obesity, especially
visceral obesity, causes insulin resistance and is associated
with dyslipidemia, impaired glucose metabolism, and hyper-
tension, all of which exacerbate atherosclerosis [1]. One
recently proposed, plausible mechanism is that factors known
as adipocytokines, which are produced by adipose tissue in
obesity, can directly impact the atherogenic environment of
the vessel wall by regulating gene expression and function in
endothelial, arterial smooth muscle, and macrophage cells. These
adipocytokines include tumor necrosis factor alpha (TNF-o),
leptin, adiponectin, resistin, monocyte chemotactic peptide-1
(MCP-1), and plasminogen activator inhibitor-1 (PAI-1), as well
as free fatty acids [2]. Reduction of visceral fat mass leads to
amelioration of these risk factors and potentially prevents
cardiovascular events.

Atherosclerosis is a chronic inflammatory condition of the
arterial wall and causes cardiovascular complications such as
ischemic heart disease, stroke, and peripheral arterial disease.
Vascular smooth muscle cells (VSMCs) within the media of
arteries are important in the pathogenesis of atherosclerosis.
These cells respond to various cytokines and growth factors to
migrate, proliferate, and produce extracellular matrix [3].

The ob gene product, leptin, is secreted mainly by adipose
tissue and acts through its receptor, OB-R [4]. In previous
studies, leptin has been shown to induce the proliferation of
VSMC [5,6], and this process is important in the development
of atherosclerosis. Hyperleptinemia, which often coexists with
diabetes and metabolic syndrome, is an independent risk
factor for the progression of coronary artery disease. However,
there is conflicting evidence about the exact role of leptin in
the pathogenesis of atherosclerosis.

Obesity induces phenotypic changes in adipocytes, such as
hypertrophy, and induces an inflammatory response in adi-
pocytes in an autocrine or paracrine fashion to impair
adipocyte function, including insulin signaling [7]. Several
studies have reported that overexpression of MCP-1 induces
macrophage recruitment in adipose tissue and insulin resis-
tance [8,9]. VSMCs express chemokine (C-C motif) receptor 2
(CCR2), the primary receptor for MCP-1, causing the expres-
sion of inflammatory genes and impaired uptake of insulin-
dependent glucose [10]. MCP-1 (also known as chemokine
CCL2) is one of the key cytokines that contribute to athero-
sclerosis by inducing monocyte trafficking and remodeling of
the extracellular matrix [11-13]. Taken together, these results
indicate the possibility of an expanded role of MCP-1 in
vascular inflammation in metabolic syndrome. Therefore,
the MCP-1/CCR2 pathway might play an important role in
the pathogenesis of atherosclerosis by macrophage infiltra-
tion into VSMCs, leading to vascular inflammatory
consequences.

This study was performed to investigate whether alterations
of leptin levels in plasma are related to the state of systemic
inflammation and severity of nephropathy in type 2 diabetic
participants. In addition, we want to investigate whether MCP-1
synthesis was increased under high leptin conditions and leptin
stimulation activated mitogen-activated protein kinase(MAPK)
pathway in cultured VSMCs.

Methods
Study participants

A total of 126 type 2 diabetic participants and 37 healthy
controls were enrolled in the study. All participants had been
treated at an outpatient clinic and were recruited over 12 months.
The healthy controls were chosen from an epidemiologic study
conducted at the Ansan Cohort Center, which was held in 1998 in
Ansan-si, Gyeonggi-do, South Korea. For the control group, age, and
sex-matched participants who had no known disease history and
no abnormal laboratory findings were chosen. The diagnosis of
type 2 diabetes mellitus was made according to the Report of the
Expert Committee on the Diagnosis and Classification of Diabetes
Mellitus [14]. Participants had to fulfill three additional criteria for
inclusion: no episode of ketoacidosis, no ketonuria, and insulin
therapy initiated after at least 5 years of known disease. Partici-
pants with non-diabetic kidney diseases, and participants with
azotemia (serum creatinine > 1.6 mg/dL) were excluded. Partici-
pants were instructed not to make lifestyle changes or changes to
their oral hypoglycemic or/and insulin therapy during the study
period. Ethical approval was obtained from the Korea University
Institutional Review Board, and written informed consent was
obtained from all study participants.

Among the diabetic participants, 74 had hypertension. All
hypertensive diabetic participants were being treated with anti-
hypertensive medication, 61 participants were taking an angio-
tensin-converting enzyme inhibitor or an angiotensin II receptor
antagonist with or without other antihypertensive medications.
The other 13 participants who were not receiving a renin-
angiotensin system (RAS) blockade were being treated with
calcium channel blockers, or alpha or beta blockers. Venous
blood was taken from all participants after overnight fasting.
Fasting blood glucose and postprandial 2-hour glucose levels
were measured using the hexokinase method. Total protein,
albumin, hemoglobin, creatinine, total cholesterol, triglyceride,
hsCRP, and high-density lipoprotein (HDL) cholesterol levels were
also measured. Hemoglobin Alc (HbAlc) was measured by high
performance liquid chromatography (HPLC). The homeostasis
model assessment of insulin resistance (HOMA-IR) was calculated
using the standard formula. A 24-hour urine collection was
performed for the determination of urinary albumin excretion
and creatinine clearance. Urinary albumin excretion was mea-
sured by radioimmunoassay (Immunotech, France) at a sensitiv-
ity of 0.5 mg/L. Plasma and urinary creatinine levels were
measured using the modified Jaffe method. Creatinine clearance
was calculated using the morning creatinine level and was
standardized for a body surface area using the standard formula.
Plasma MCP-1 and leptin levels and secreted MCP-1 from culture
supernatants were measured using an enzyme-linked immuno-
sorbent assay (ELISA) kit (R&D Systems, Minneapolis, MN, USA).
The diabetic participants were divided into three groups: a
normal albuminuric diabetic group with a 24-hour urinary
albumin excretion (UAE) lower than 30 mg in two or more urine
samples and no more than one value greater than or equal to
30 mg (n=40); a microalbuminuric diabetic group with a 24-
hour UAE in the range of 30-299 mg in at least two urine
samples (n=41); and an overt proteinuria group of proteinuric
diabetic participants, defined as having a 24-hour UAE greater
than or equal to 300 mg (n=35).
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Culture and experimental conditions for VSMCs

A rat vascular smooth muscle cell line (CRL-2018) was
obtained from ATCC (Manassas, VA, USA). Cells were maintained
in Dulbecco’s Modified Eagle Medium (DMEM) containing 10%
fetal bovine serum (FBS) and 100 u/mL antibiotics at 37 °C under
a humidified 5% CO, atmosphere. Cultures were fed every 2-3
days during growth and every 2 days after confluence. Cells
were used at 10 passages in this study. VSMCs were cultivated
on 100 mm dishes and serum-restricted for 24 hours to
determine whether leptin could directly increase MCP-1 synth-
esis. Afterward, different concentrations of recombinant rat
leptin (Sigma-Aldrich, St. Louis, MO, USA) were added to culture
media at final concentrations of 1 ng/mL, 10 ng/mL, and 100 ng/
mL. Three or 12 hours later, the media were collected, and the
cells were scraped from the dishes in the presence of extraction
buffer (20 mM Tris-HCl, pH 7.4, 10 mM ethylenediaminetetraa-
cetic acid, 5 mM ethylene glycol tetraacetate, 5 mM [-mercap-
toethanol, 50 pg/mL phenylmethyl sulfonyl fluoride, 10 mM
benzamidine, and 0.1 pg/mL aprotinin) and homogenized. Cell
lysates and conditioned media were centrifuged at 15,000 rpm
for 10 min at 4 °C, and the supernatants were collected. To
define the mechanism of leptin-mediated MCP-1 synthesis and
whether or not it is mediated by the MAPK/extracellular signal-
regulated kinase (ERK) pathway, a selective MAPK kinase (MEK)
inhibitor, PD98059 (Sigma-Aldrich, St. Louis, MO, USA), was
added to the cells at a concentration of 10 pM 1 hour before
treatment with leptin. Next, we performed another experiment
to determine the effects of high glucose and leptin stimulation
on the MAPK signaling pathway. Subconfluent VSMCs were
cultured for 24 hours in a medium containing 5 mmol/L or
30 mmol/L of D-glucose. The cells were then treated with leptin
at final concentrations of 1 ng/mL, 10 ng/mL, and 100 ng/mL,
and harvested after 6 hours. In addition, we investigated
whether leptin stimulation induces the sequential activation of
the MAPK pathway, as occurs with the MEK, MAPK (ERK), and
E26 (ETS)-like transcription factor (ELK) pathways. Since leptin
increased maximal MCP-1 production at a final concentration of
100 ng/mL, leptin was added to the VSMCs at final concentra-
tions of 100 ng/mL, and cells were harvested at 30 minutes, 1
hour, 3 hours, 6 hours, and 12 hours, and then the proteins were
extracted. To avoid any confounding effects of serum on the
MAPK pathway, all experiments were performed in serum-free
media. All experimental groups were cultured in triplicate. The
results were representative of those from three independent
experiments.

Reverse transcription/polymerase chain reaction

VSMCs were resuspended in Trizol reagent (Invitrogen,
Carlsbad, CA, USA) containing RNase inhibitor. Reverse tran-
scription (RT) was performed using an RT polymerase chain
reaction (PCR) kit (PerkinElmer, Foster City, CA, USA). A total
of 1 pg of RNA and oligo-(dT)12 primers were used. The
reaction mixture was incubated for 60 min at 42 °C, and was
then heated for 7 min at 90 °C in a thermocycler (Crocodile III,
Oncor Co., Japan). After cDNA synthesis by RT, PCR amplifica-
tion was done. For MCP-1, the sense primer was 5 GAC CTG
TTT GTC CGT AAG GC 3, and the antisense primer was 5" GAC
CTG TTT GCA ACG GGC TG 3'. The mixture was heated at 94 °C
for 30 seconds, at 55 °C for 30 s, at 72 °C for 30 seconds, and
this was repeated by 38 cycles. For ERK1/2, the sense primer
was 3’ CTT CCT CTA CCA GAT CCT CC 5, and the antisense

primer was 3’ GTC AAG AGC TTT GGA GTC AG 5. The mixture
was heated at 94 °C for 1 min, at 57 °C for 1 min, at 72 °C for
1 min, and this was repeated by 36 cycles. The PCR data were
expressed in relative values as MCP-1/B-actin, Erk/B-actin.

Western blot analysis

Cells were lysed in lysis buffer. The protein was electro-
phoresed on a 10% SDS-PAGE minigel under denaturing
conditions. The protein was transferred onto a nitrocellulose
membrane. Then, separate reactions were conducted with
rabbit anti-MEK antibody, anti-p-MEK antibody, anti-ERK1/2
antibody, anti-p-ERK1/2 antibody, anti-ELK antibody, and
anti-p-ELK antibody (New England Biolabs, Inc., Beverly, MA,
USA) diluted 1:1000 applied to the membrane. The filter was
then washed four times with PBST and incubated with horse-
radish peroxidase-conjugated secondary antibody diluted
1:1000 for 60 min at room temperature. The detection of
specific signals was performed using the ECL method. Equal
amounts of protein loading were confirmed by Coomassie blue
staining of the gel.

Statistical analysis

For parametrically distributed data, we used Student’s
unpaired t-tests and analysis of variance (ANOVA) for com-
parisons of quantitative variables, and chi-square tests for
comparisons of proportions. Plasma leptin, MCP-1, and UAE
levels were positively skewed with a high frequency of low
values. Because data transformation would not have normal-
ized this distribution, we used non-parametric statistical
methods. For the analysis of in vitro data, a nonparametric
analysis was used due to the small sample. A Kruskall-Wallis
test was used for comparison of more than two groups,
followed by a Mann-Whitney U test, using a microcomputer-
assisted program with SPSS for Windows 10.0 (SPSS Inc.,
Chicago, IL, USA). Correlations between plasma leptin levels
and biochemical parameters were examined using Spear-
man’s rank correlation and by stepwise multiple regression
analysis. P values less than 0.05 were considered statistically
significant. Results were expressed as mean + SEM.

Results
Clinical characteristics of the study sample

Table 1 shows the baseline clinical characteristics of the study
sample. There were no significant differences between the
participants and controls for age, sex, body weight, hemoglobin,
albumin, and creatinine levels. These parameters were similar
among the diabetic participants based on nephropathy status.
There was no significant difference in the proportion of patients
with previous history of cardiovascular disease or cerebrovascular
diseases among diabetic patients (Table 1). The control group had
a lower mean body mass index (BMI), fasting plasma glucose,
postprandial 2-hour plasma glucose, total cholesterol, triglycer-
ide, and hsCRP levels, systolic and diastolic blood pressure, UAE
rate, and higher creatinine clearance than the diabetic groups.
Among the diabetic participants, there were no significant
differences in body weight, BMI, or systolic and diastolic
blood pressure. The overt proteinuria group had higher UAE
values and lower creatinine clearance than the normal and
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Table 1. Clinical characteristics of control and diabetic participants

Control Normoalbuminuria Microalbuminuria Proteinuria
Number 37 40 41 35
Number of patients with 0/0 3/3 4/3 4/3
(CVD/cerebrovascular dz)
Age () 432+12.4 458+13.8 463 +12.3 455+11.7
Sex (male/female) 17/20 19/21 20/21 16/19
Body weight (kg) 61.2 +6.97 61.9+ 14,5 62.7+12.3 63.4+15.3
Height (cm) 164.4+11.3 163.9+11.2 161.9 + 164 163.2 +£13.5
BMI (kg/m?) 22.7 +4.33* 253 +3.11 26.4 +2.41 26.5+3.33
Hemoglobin (g/L) 141+ 24 131 +35 137 +23 131+ 26
Albumin (g/L) 41+5 40+3 4146 40 + 4
FBG (mmol/L) 511+ 1.23" 7.13 +3.45 7.32+3.88 7.11+5.25
PP2hrG (mmol/L) 6.11+2.12° 10.34+4.82 7.43 +3.21 8.31+4.23
HbA1c (%) NA 7.4+2.6 6.8+1.9 69+1.7
HOMA-IR NA 45+3.5 49+23 47+34
TC (mmol/L) 412 +1.227 5.12+0.94 5.01 +1.23 521+1.34
TG (mmol/L) 1.23+1.03" 1.61+0.93 1.87+1.34 1.70+2.39
HDL-C (mmol/L) 1.12+0.35 1.13 +0.66 1.12+0.78 0.97 +0.94
SBP (mm Hg) 1155 + 14.4* 13554219 1325+ 25.6 141.1+21.8
DBP (mm Hg) 729+ 13.5* 81.3+16.5 79.5+14.6 81.2+13.7
Cr (umol/L) 72 +31 73 +33 74 +27 75 + 26
CCr (mL/min/1.73m?) 85.4 +21.5* 72.1+21.5 67.5+31.2 60.2 +26.1°
UAE (mg/d) 13.1+79 22.1+5.1° 79.4 +21.37 1768.7 + 1236.4%%**
hsCRP (mg/dL) 0.11+0.12* 0.23 +0.25 0.34 +0.56 037+0.62
P-MCP-1 (pg/mL) 56.7 +22.3 149 +25.1 312 +25.7 393 +31.2¢
P-leptin (ng/mL) 16.3 +11.2* 29.7 + 14.1 32.6+11.2 41.6 +16.5°

* P < 0.05 vs. diabetic group. ' P< 0.01 vs. diabetic group. ! P<0.001 vs. diabetic group. | P < 0.05 vs. control group. ** P < 0.001 vs. control group.
$ P<0.05 vs. micro and overt proteinuric groups. ¥ P<0.05 vs. normo- and micro-albuminuric groups. ¥ P<0.001 vs. normo- and micro-

albuminuric groups.
Values are expressed as mean + SEM.

BMI, body mass index; Ccr, creatinine clearance; Cr, creatinine; CVD, cardiovascular disease; DBP, diastolic blood pressure; dz, disease; FBG,
fasting blood glucose; HOMA-IR, homeostasis model assessment index; MCP-1, monocyte chemotactic peptide 1; NA, not available; P, plasma;
PP2hrG, postprandial 2-hour glucose; SBP, systolic blood pressure; TC, total cholesterol; TG, triglycerides; UAE, urinary albumin excretion.
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Figure 1. Plasma MCP-1 concentrations based on plasma levels of leptin. Study participants were classified into two groups according to plasma
leptin levels using a cutoff value of 30 ng/mL. Data are shown as mean + SEM.
*P < 0.001 vs. participants with plasma leptin concentrations less than 30 ng/mL. MCP-1, monocyte chemotactic peptide 1.

microalbuminuria groups. The normal albuminuric group showed
higher levels of fasting plasma glucose and postprandial 2-hour
plasma glucose levels than the microalbuminuria and overt
proteinuria groups.

Plasma concentrations of leptin and MCP-1
Plasma leptin levels were markedly elevated in the type

2 diabetic participants compared to the controls even in the
normal albuminuric group (Table 1). Interestingly, plasma

leptin levels were significantly higher in the overt proteinuria
group than in the normal and microalbuminuria groups.
Plasma MCP-1 concentrations were also significantly higher
in the diabetic group than the control group. In the diabetic
group, plasma MCP-1 levels increased according to the state
of diabetic nephropathy. Since median value of plasma leptin
level was 30 ng/mL, we reanalyzed the plasma MCP-1 levels
based on the plasma leptin concentration using a cutoff value
of 30 ng/mL. When we compared MCP-1 levels after adjusting
for the four groups according to plasma leptin levels,
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participants who had leptin levels over 30 ng/mL had showed
markedly higher levels of MCP-1 than participants with leptin
levels below 30 ng/mL (Fig. 1). Table 2 shows the correlation
analysis results between plasma leptin levels and various
clinical parameters in the study participants. Plasma leptin
levels were positively correlated with body mass index, fasting
and postprandial blood glucose, HbAlc, total cholesterol, UAE,
hsCRP, and plasma MCP-1 levels, and negatively correlated
with creatinine clearance. However, plasma leptin concentra-
tions did not show a significant relationship with other risk
factors, including body weight, triglyceride levels, creatinine

Table 2. Correlation analysis between plasma leptin levels and
biochemical parameters

Parameters r value P

Age (y) 0.127 0.545
Body weight 0.215 0.053
Height 0.012 0.712
Body mass index 0.452 0.021
Hemoglobin 0.121 0.543
Albumin 0.272 0.343
Fasting blood glucose 0.512 0.005
PP2hr blood glucose 0.634 0.002
HbAlc 0.723 0.004
HOMA-IR 0.645 0.001
Total cholesterol 0.719 0.032
Triglycerides 0.348 0.218
HDL cholesterol —0.012 0.322
Systolic blood pressure 0.273 0.062
Diastolic blood pressure 0.124 0.372
Creatinine 0.321 0.072
Creatinine clearance -0.395 0.031
Urinary albumin excretion 0.547 0.022
hsCRP 0.396 0.021
Plasma MCP-1 0.798 <0.001

Correlation analysis was performed using Spearman rank correlations.

CRP, C-reactive protein; HDL, high-density lipoprotein; HOMA-IR,
homeostasis model assessment index; MCP-1, monocyte chemotactic
peptide 1; PP2hrG, postprandial 2-hour glucose.
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dent variable at a cutoff value of 100 pg/mL, plasma leptin
levels was only included in the model (betas + SE= —0.048 +
0.001, P <0.001).

MCP-1 mRNA and protein expression in cultured VSMCs in
response to leptin

Since plasma leptin levels appear to be the most significant
independent factor for MCP-1 plasma levels, we next observed
the effect of leptin stimulation on MCP-1 production. As shown
in Fig. 2, MCP-1 mRNA expression significantly increased after
leptin stimulation in a concentration-dependent manner, except
at 1 ng/mL concentration. Interestingly, selective MEK inhibitor
PD98059, significantly inhibited leptin-induced MCP-1 gene
expression. Based on gene expression pattern, secreted MCP-1
protein also showed a similar tendency (Fig. 2). MCP-1 secretion
also time-dependently increased from 3-12 hours, and prior
treatment with PD98059 also showed a significant decrease in
MCP-1 production (Fig. 2).

Effects of leptin on the activation of MAPK

Since MEK inhibitor PD98059 significantly suppressed
leptin-induced MCP-1 production, we further evaluated
whether MCP-1 production induced by leptin depends on
the MAPK pathway. We first examined the activation of
MAPK (ERK) in response to leptin stimulation. As shown in
Fig. 3, leptin stimulation significantly increased ERK gene
expression. Additionally, the activation of ERK, assessed by
measuring the levels of phospho-specific ERK, was found to
increase in response to leptin. However, we did not detect
dose-dependent activation of ERK by leptin stimulation

(Fig. 3).
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Figure 2. Effects of leptin and PD98059 on MCP-1 mRNA expression (A) and MCP-1 protein secretion (B) in cultured VSMCs. Secretary MCP-1
protein levels were measured by ELISA. Cells were exposed to different concentrations of leptin with or without prior PD98059 treatment for
3 hours for mRNA measurement and at indicated time intervals for determination of secretory MCP-1 protein levels. Data are shown as

mean + SEM.

*P < 0.05. TP < 0.01 vs. control. *P < 0.05. P < 0.01. |P < 0.001 vs. 100 ng/mL leptin treatment group without PD98059.
ELISA, enzyme-linked immunosorbent assay; MCP-1, monocyte chemotactic peptide 1; VSMC, vascular smooth muscle cell.
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ERK, extracellular signal-regulated kinase (ERK1/2); MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemotactic peptide 1; VSMC,

vascular smooth muscle cell.

Effects of leptin on the activation of MEK and ELK

We next examined the effect of leptin on the activation of
MEK, which is an upstream activator of MAPK. Phospho-
specific MEK, an indication of MEK activation, occurred in
response to leptin stimulation. Similar to ERK activation, we
could not find a dose-dependent activation of MEK by leptin
stimulation; however, there was no significant difference in
total MEK protein expression among the groups (Fig. 4). In
addition, we determined whether activation of the MEK-
MAPK pathway could induce a parallel increase in the activity
of a MAPK target transcription factor, ELK. As shown in Fig. 4,
ELK activation measured by the level of phospho-specific ELK
was also observed after leptin stimulation. However, no
change in total ELK protein expression was observed based
on the concentration of leptin.

Effects of leptin on sequential activation of the MAPK
pathway

Finally, we determined whether leptin stimulation induced a
sequential activation of the MAPK pathway, we examined the
activation of MEK, ERK, and ELK in response to leptin at a final
concentration of 100 ng/mL, and harvested after 30 minutes, 1
hour, 3 hours, 6 hours, and 12 hours. As shown in Fig. 5, the
activation of MEK was found to rapidly increase in response to
leptin after 30 min, whereas maximal activation of ERK and ELK
was observed at the 3- and 6-hour intervals, respectively.

Discussion

Obesity significantly contributes to the development of
atherosclerosis and consequent cardiovascular disease. One
plausible, recently proposed mechanism is that factors known
as adipocytokines, produced by adipose tissue, directly impact
the atherogenic environment of the vessel wall by regulating
gene expression and function in endothelial, arterial smooth
muscle, and macrophage cells. The reduction of visceral fat
mass leads to amelioration of these risk factors and potentially
prevents cardiovascular events [15]. Although multiple mole-
cular mechanisms contribute to the development of obesity-
related complications, recent data suggest that inflammation,
and especially monocytes/macrophages, is a central axis in the
pathophysiology of many obesity-related disorders [16].

In the present study, we found that plasma leptin levels
were significantly higher in type 2 diabetic participants than in
healthy controls irrespective of the stage of diabetic nephro-
pathy. Considering that the study groups were not significantly
different in body weight and BMI, these results suggest that
diabetes is the main cause of elevated leptin concentrations in
diabetic participants, rather than obesity. Interestingly, plasma
levels of leptin had an increased tendency according to the
status of diabetic nephropathy, and we detected a positive
correlation with urinary albumin excretion.

Considering that albuminuria is a surrogate marker of
vascular dysfunction, these results suggest that plasma leptin
levels are elevated in participants with a high risk of
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Figure 4. Effects of leptin on activation of MEK and ELK protein in cultured VSMCs. (A) Representative western blot of phospho-specific MEK protein
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ELK protein in response to different concentrations of leptin for 6 hours with or without high glucose conditions. (C) Densitometric analysis of phospho-
specific MEK protein. (D) Densitometric analysis of phospho-specific ELK protein. Control group means cultured VSMCs without leptin treatment under
normal glucose condition. Data are shown as mean + SEM.
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ELK, E26-like transcription factor; ERK, extracellular signal-regulated kinase (ERK1/2); MCP-1, monocyte chemotactic peptide 1; VSMC, vascular smooth
muscle cell.
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Figure 5. Effects of leptin on activation of MEK, ERK, and ELK protein in cultured VSMCs. (A) Representative western blot of phospho-specific MEK
protein, phospho-specific ERK protein, and phospho-specific ELK protein in cultured VSMCs in response to 100 ng/mL leptin treatment at 30 min, 1 hour,
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ELK, E26-like transcription factor; ERK, extracellular signal-regulated kinase (ERK1/2); MCP-1, monocyte chemotactic peptide 1; VSMC, vascular smooth
muscle cell.
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cardiovascular disease; however, we did not detect significant
differences in plasma leptin levels between the normal and
microalbuminuric participants. Furthermore, plasma leptin
levels were negatively correlated to creatinine clearance,
which is in agreement with previous reports [17]. Although
there is a possibility that a decreased clearance of leptin in a
low glomerular filtration rate (GFR) state may contribute to
increased plasma leptin levels, or that increased plasma leptin
levels may induce renal injury, the mechanism by which
plasma leptin levels increase with decreased GFR remains
unclear. It is also unclear whether circulating leptin levels are
influenced by renal function, because there are not enough
data on circulating leptin levels according to GFR in partici-
pants with chronic kidney disease (CKD). In the present study,
we included participants with early stages of CKD in type
2 diabetic nephropathy; however, most participants did not
exhibit stage 4 or 5 CKD.

Plasma MCP-1 levels were similarly elevated in diabetic
participants and controls. Plasma MCP-1 levels were the only
independent risk factor for plasma leptin levels after adjust-
ments for all parameters. Collectively, these findings suggest
that plasma concentrations of leptin and MCP-1 are elevated
under diabetic conditions.

Leptin is a peptide hormone synthesized by adipose tissue
and plays a role in the regulation of food intake and energy
expenditure. Elevated leptin levels, which often coexist with
diabetes and metabolic syndrome, have been considered as an
independent risk factor for the progression of cardiovascular
diseases, including atherosclerosis and hypertension. The
classic effect of leptin on food intake and energy expenditure
is mediated by the long form of leptin receptor, which is
mainly expressed in the hypothalamus, but the roles of short
forms of leptin receptors that are widely expressed in the
body are not yet clear [18]. Growing evidence shows that
leptin plays additional roles in the regulation of the hypotha-
lamic-pituitary-peripheral axis, insulin resistance, and immu-
nity [19,20]; however, the role of leptin in the pathogenesis of
atherosclerosis remains unclear. VSMCs play a vital role in
arterial intimal thickening and vascular remodeling. Bohlen
and colleagues [21] reported that a short form of leptin
receptor, leptin receptor (OB-R), was mainly expressed com-
pared to the long isoform, in cultured human VSMCs.

We further investigated the effect of leptin on MCP-1
synthesis to define the molecular mechanism and direct the
effects of leptin in cultured VSMCs. We observed that MCP-1
synthesis was significantly increased by leptin stimuli. In addi-
tion, we observed that leptin-induced MCP-1 synthesis was
significantly inhibited by a MEK inhibitor. This result suggests
that leptin-induced MCP-1 production might be mediated by
the MEK-MAPK (ERK) pathway. Furthermore, we observed that
leptin stimulation sequentially activated upstream MEK, MAPK,
and downstream ELK signaling pathways.

Increasing evidence demonstrates that circulating leptin
levels may contribute to the pathogenesis of atherosclerosis.
In a relatively large cohort study, high leptin levels were an
independent risk factor for coronary heart disease [22].
Additionally, leptin levels were higher in type 2 diabetes
participants with coronary artery calcification measured with
electron beam tomography [23]. In another study, high leptin
levels were also a predictor of angiographic coronary artery
atherosclerosis [24]. Furthermore, exogenous leptin injection
promoted atherosclerosis in apolipoprotein E-deficient mice
[25]; however, several human studies showed contradictory

results that low leptin levels were associated with low
cardiovascular mortality, and leptin levels were significantly
lower in participants with coronary artery stenosis than in
control participants [26,27]. It should be noted that the study
sampled used in the previous report is different from that
used in our study.

There is not enough evidence for the direct effects of leptin
on VSMC physiology. Previous studies have observed that
leptin induces a proliferation and migration of VSMCs that is
important in the pathogenesis of atherosclerosis [3]. In other
studies, leptin stimulated the proliferation of VSMCs by
promoting transition from the G1 to S phase [3], and through
a protein kinase C-dependent activation of Nicotinamide
Adenine Dinucleotide Phospate Reductase (NAD(P)H) oxidase
[28]. In this study, we observed for the first time that leptin
stimulates MCP-1 synthesis via the MEK-MAPK pathway.
These results are in agreement with those of recent reports
that leptin increases MCP-1 production in hepatocytes, and
that leptin-induced MAPK activation may be associated with
VSMC proliferation and the progression of atherosclerosis
[28-31].

In conclusion, this study suggests a new physiologic role of
leptin in atherosclerosis in diabetic participants. Plasma levels
of leptin are markedly increased in diabetic participants
irrespective of the stage of nephropathy. Plasma leptin levels
were independently associated with plasma levels of MCP-1.
In addition, leptin increased MCP-1 production and this
stimulating effect of leptin on MCP-1 expression was reversed
by MEK inhibitor PD98059. Overall, these findings suggest
that activation of leptin synthesis in a diabetic environment
may promote MCP-1 activation via the MAPK pathway in
VSMCs, and possibly contributes to the acceleration of
atherosclerosis.
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