
13©  R A D C L I F F E  C A R D I O L O G Y  2 0 1 9

Ischaemic Heart Disease

Access at: www.ECRjournal.com

Evaluating stress-induced myocardial perfusion defects by non-

invasive myocardial perfusion imaging (MPI) modalities has taken a 

leading role in the identification of flow-limiting epicardial coronary 

artery disease (CAD); it has excellent diagnostic and prognostic value. 

Non-invasive MPI can be performed using conventional and novel 

gamma cameras or PET/CT.1 A range of imaging techniques has 

become available and more sophisticated reconstruction algorithms 

have improved the accuracy of each method, with the crucial benefit 

of dose reduction.2–4 In addition, the possibility of obtaining a variety of 

perfusion and functional parameters by using semi-quantitative scores 

has given a good insight into cardiac function.

The latest single photon emission CT (SPECT) MPI guidelines 

recommend reporting the extent, severity and reversibility of 

perfusion defect, ventricular dilatation and transient ischaemic 

dilation (TID).5 In particular, the TID ratio adds value to clinical and 

perfusion data to identify the presence of severe CAD in patients with 

suspected or known CAD, especially in those with diabetes.6 When 

ECG-gated CT is performed, it is necessary to evaluate regional wall 

motion and thickening and to report the ejection fraction after stress 

and/or at rest.

Non-invasive quantification of myocardial blood flow (MBF) and 

coronary flow reserve (CFR) by PET/CT increase the scope of 

conventional SPECT MPI from the evaluation of advanced CAD to 

the assessment of early stages of atherosclerosis or microvascular 

dysfunction and the identification of balanced ischaemia with 

reduction of MBF in all three major coronary arteries.7 Integrating 

functional data with information derived from coronary CT provides 

incremental information about coronary artery morphology and 

coronary calcium burden.8–10 New software has allowed novel 

parameters that may have a role in the identification of early marks 

of cardiac impairment to be evaluated.

We aim to give an overview on niche parameters obtainable by SPECT 

and PET/CT MPI that may help clinicians to detect the initial signs of 

cardiac damage and new therapy targets.

MPI Niche Parameters
Left Ventricular Geometry
Left ventricle (LV) geometry changes in response to exposure to 

cardiovascular risk factors. This is significant, given that LV remodelling 

is associated with poorer outcomes.11 The LV can change its structure 

considerably in relatively short periods of time, with the potential for 

pathological remodelling to be reversed to some degree.12 Previous 

studies have examined the relationship between cardiac volumes, 

ejection fraction and remodelling.13

Several non-invasive imaging techniques can be used to evaluate 

different structural modifications in myocardial tissue. Ultrasound and 

MRI studies take a two-dimensional approach to evaluate LV geometry 
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by manual measurements obtained from perpendicular views.14–15 

However, these techniques are subject to variability and depend on the 

experience of the operator.

Quantitative gated SPECT allows 2D and 3D LV geometry to be 

evaluated, providing remodelling parameters, such as eccentricity and 

the end-diastolic and end-systolic LV shape index (LVSI), which are 

automatically generated by QGS software (QGIS Development Team).16 

Specifically, eccentricity is a measure of the elongation of the LV, and 

varies from 0 (sphere) to 1 (line); it is calculated from the major and the 

minor axes of the ellipsoid that best fits the mid-myocardial surface, 

while LVSI is calculated as the ratio of the maximum 3D short- and 

long-axis LV dimension, at end-diastole and at end-systole by applying 

the algorithm proposed by Abidov et al.17 

The closer the dimensions of the axes are, the more the ellipsoid 

takes the shape of a sphere (Figure 1). These parameters are highly 

repeatable and have been shown to have clinical utility in identifying 

not only patients with an exacerbation of cardiac heart failure but 

also early LV remodelling in patients with diabetes, demonstrating 

a prognostic value, even in the presence of normal myocardial 

perfusion.18–20 However, no studies to examine the role of these indices 

in the evaluation of reverse remodelling have yet been conducted.

Phase Analysis
Speckle-tracking echocardiography, cardiac MRI and nuclear  

imaging have allowed LV mechanical dyssynchrony to be evaluated, 

providing quantitative measurements of mechanical delay.21  

Phase analysis by gated SPECT evaluates temporal sequence of 

contraction, using continuous Fourier harmonic functions, to analyse 

LV synchronic contraction.

Phase analysis parameters of gated SPECT at rest can be calculated 

using dedicated software and provides five quantitative indices (P, 

SD, B, S, and K) from the phase histogram to describe the phase  

histogram’s characteristics (time of onset, dispersion, symmetry 

and envelope) of the LV regional onset of mechanical contraction 

to quantify dyssynchrony. P is the most frequent phase (the phase 

corresponding to the peak of the phase histogram). SD is the standard 

deviation of the phase distribution. B includes 95% of the elements  

in the phase distribution. S indicates the symmetry of the histogram 

(positive S indicates the histogram skewed to the right with a longer 

tail to the right of the peak phase). K (kurtosis) indicates the degree to 

which the histogram has peaked; a histogram with a higher peak within 

a narrower band has higher kurtosis.22 Recently, cut-off values for SD, 

bandwidth (BW), skewness (S) and kurtosis (K) obtained from gated SPECT 

that show a good discriminatory capacity between healthy patients and 

those with varying degrees of cardiac mechanical dyssynchrony were 

suggested.23 Evaluation of mechanical dyssynchrony predicts response 

to resynchronisation therapy with long-term prognostic value.24–25

A method that automatically integrates the myocardial viability polar 

map and the polar map of LV regional contraction synchronicity from 

gated SPECT could be used to detect the latest contracting viable left 

ventricular segments and help guide resynchronization therapy.26 In 

a small population of patients with acute MI and multivessel disease 

who had undergone successful revascularisation of the culprit arteries, 

stress phase SD and stress histogram BW were independent predictors 

of events, which suggests an intriguing application of phase analysis.27

In the light of high prognostic value of such parameters, standardised 

cut-off values could potentially help cardiologists to interpret imaging 

to provide more tailored therapeutic strategies. 

Relative Flow Reserve
Alongside widely validated quantitative parameters derived from PET, 

such as MBF and CFR, the concept of relative flow reserve (RFR) has 

been proposed; this is defined as the ratio of hyperaemic MBF in a 

stenotic area to hyperaemic MBF in a normally perfused area.28 The 

increasing interest on this new variable originates from the need to find 

an accurate, noninvasive indicator of flow-limiting coronary stenosis.

The literature has reported discrepancies regarding the relationship 

between conventional PET-derived measurements and invasive index 

significant epicardial stenosis. For example, fractional flow reserve 

A: Patient with heart failure and abnormal geometry indices (end-diastolic LVSI: 0.91 and end-
systolic LVSI 0.84). B: Patient with atypical angina and suspected CAD and normal geometry 
indices (end-diastolic LVSI: 0.64 and end-systolic LVSI 0.42). ANT = anterior; INF = inferior; LVSI 
= left ventricular shape index; SEPT =  septum.

Figure 1: Examples of Abnormal and Normal Geometry

A

B

Cardiac CT images of two patients of similar age with suspected coronary artery disease 
and different epicardial adipose tissue (EAT) values. A: EAT volume 20.2 cm3. B: EAT volume 
260.65 cm3. .

Figure 2: Cardiac CT Images of Two Patients with Different 
Epicardial Adipose Tissue Values

A

B
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(FFR) has a well-established inverse relationship with outcomes; 

lesions with lower FFR values receive greater absolute benefits  

from revascularisation.29,30

Even if hyperaemic MBF had a better correlation with FFR than CFR, the 

parameters look at different pathophysiological processes: hyperaemic 

MBF not only measures the entire single coronary vascular bed affected 

by an epicardial stenosis but also indicates microvascular resistance. 

Therefore, a reduced hyperaemic MBF may be an epiphenomenon 

of two different kind of coronary vascular damage and it cannot 

separate the effects of a specific lesion from those of microvascular 

dysfunction. RFR shows a linear correspondence with FFR and it has 

been reported that RFR of 0.70–0.80 predicts FFR ≤0.8 with good 

diagnostic performance.31 A recent study used PET-derived CFR and 

RFR as references to compare the diagnostic performance between 

FFR and resting indices in predicting ischaemia.32 However, prognostic 

data are needed to validate this new variable.

Vascular Age
From hybrid techniques for MPI, such as PET/CT, some parameters have 

emerged as additional, earlier marks of cardiovascular impairment. 

Vascular age, for example, is a novel variable based on the logarithmic 

transformation of the coronary artery calcium (CAC) score measured 

in Agatston units into a theoretical age in years that better identifies 

degeneration in the vascular system than chronological age due to 

calcium deposit.33 Calculating the CAC score already has a primary 

role in atherosclerosis evaluation. Clinical practice guidelines in the US 

and Europe consider CAC scoring could improve cardiovascular risk 

assessment in asymptomatic people and guide preventive therapies.34,35 

Of note, it has been widely demonstrated that patients with suspected 

CAD without evidence of coronary calcium do not need further cardiac 

imaging investigations.36–39

This emerging concept of assigning a vascular age to patients 

undergoing coronary CT is based on evidence that plaques in elderly 

patients are more calcified than those in younger patients. The 

findings of large-scale studies, including the Multi-Ethnic Study of 

Atherosclerosis (MESA) and the St Francis Heart Study, demonstrate 

that vascular age is better for risk assessment because it is a much 

stronger predictor of cardiovascular events than chronological age.40,41

Recently, we demonstrated that coronary vascular age, assessed using 

CAC score, is associated with stress-induced myocardial ischaemia 

in patients with suspected CAD and this marker appears to be more 

accurate than chronological age in predicting ischaemia.42 Therefore, 

vascular age has a better clinical utility when making decisions on 

therapies and healthier lifestyles. 

Epicardial Adipose Tissue
Epicardial adipose tissue (EAT) is the heart’s fat storehouse. It is located 

between the myocardium and pericardium, sharing the same perfusion 

of the heart with no barrier.43 It produces different bioactive substances 

that can affect cardiac function.44

It is increasingly thought that the traditional anthropometric indices of 

pathological obesity such as BMI and body surface area may not identify 

obese patients who have an increased risk of cardiovascular events.45,46 

EAT can be measured using different modalities and indicators. While 

echocardiography allows the evaluation of EAT thickness with good 

reproducibility, it does not provide an estimation of the total epicardial 

fat amount; however, cardiac CT (Figure 2) and MRI give detailed 

volumetric quantification of fat load with high reproducibility.47

It has been recently observed that increased EAT volume is associated 

with coronary calcium burden, inflammatory markers and poorer 

outcomes; it also associated with cardiac sympathetic denervation, 

which can lead to catecholamine production in a cardiac response to 

sympathetic stimuli.48,49

Therefore, EAT evaluation could play a part in the atherosclerosis 

development and may be considered a marker and a therapeutic 

target at the same time.

Behind and Beyond Myocardial Perfusion 
Imaging: Myocardial Innervation
Both myocardial perfusion and innervation can be studied by 

conventional and novel gamma cameras. Cardiac neuronal function 

is compromised in a number of cardiac diseases. Therefore, 

the evaluation of functional and electrophysiological properties 

of the autonomic nervous system at cardiac level has become 

a focus of interest in the field of cardiovascular imaging.50 A 

number of radiopharmaceuticals are used to investigate autonomic 

neuronal functions.51 It has been widely demonstrated that the 

status of catecholamine storage at the level of the myocardial 

sympathetic presynaptic fibres can be assessed with 123I-labelled 

meta-iodobenzylguanidine (123I-MIBG).52–54 In addition to the traditional 

evaluation of heart:mediastinum (H:M) ratios obtained by early and 

late planar acquisitions, the innervation defect size can be measured 

by performing supplementary tomographic imaging.

From SPECT images, tracer uptake can be assessed semi-

quantitatively using the 17-segment model and a 5-point scale: 

0 = normal uptake; 1 = mildly reduced uptake; 2 = moderately 

reduced uptake; 3 = severely reduced uptake; and 4 = no uptake. 

Figure 3: Patient with Heart Failure and Reduced Early 
and Late Heart:Mediastinum Ratios

Early
H/M = 1.52  

Late
H/M = 1.55

123I-MIBG findings with D-single photon emission CT planogram in a patient with heart failure 
and reduced early and late heart:mediastinum ratios. H/M = heart:mediastinum ratio.
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The total defect score (TDS) can be calculated on the polar maps 

by the sum of the 17 segmental tracer uptake scores. Therefore, the 

innervation defect size can be expressed as percentage of the total 

enervated myocardium (% LV) using the formula: TDS/68 × 100, 

where 68 is the maximum TDS in the 17-segment model. Defect 

severity, as defined by TSD on 123I-MIBG SPECT using a conventional 

Anger camera, is significantly associated with inducible ventricular 

tachyarrhythmia in patients with left ventricular dysfunction  

and previous MI.56

Imbriaco et al. recently showed that sympathetic neuronal damage 

evaluated by TDS obtained from 123I-MIBG imaging might detect  

cardiac involvement at an early stage in patients with Anderson-Fabry 

disease, leading to straight therapeutic strategies in patients prone to 

LV fibrosis development.57

The addition of SPECT method on 123I-MIBG imaging overcomes the 

limitations in the interpretation of planar acquisition, such as the 

superposition of noncardiac structures and lack of segmental analysis, 

and improves the clinical utility of this technique for diagnosis and 

prognosis. However, visual scoring of 123I-MIBG SPECT images is 

challenging and they need to be compared to normal data files. 

Moreover, SPECT requires longer acquisition time so can be performed 

only in fully collaborative patients.

Future directions
The recent introduction of solid-state cardiac cameras with cadmium-

zinc-telluride (CZT) detectors, which have higher photon sensitivity 

and spatial resolution than standard cameras, may allow parameters 

obtained by 123I-MIBG SPECT imaging to be used to gain a more 

accurate evaluation of cardiac adrenergic activity (Figure 3). Moreover, 

the possibility of obtaining both planar equivalent images and SPECT 

data during the same acquisition, thanks to the advanced geometry of 

these cameras, makes the examination shorter and more comfortable. 

Furthermore, the narrower energy windows and better photon 

energy discrimination of CZT technology allow simultaneous 99mTc-

sestamibi/123I-MIBG dual isotope imaging with a significant reduction 

in down-scatter of the two isotopes’ photopeaks.58–61 From this 

perspective, the possibility of viewing myocardial perfusion and 

innervation in one imaging session (Figure  4), combined with the 

opportunity to obtain more accurate parameters for innervation 

evaluation such as TSD, offers significant potential.

The extensive pool of available data has prepared the ground for the 

challenge of the future that is the use of machine learning and artificial 

intelligence for clinical applications. Machine learning is the area of 

computer science that exploit available information to produce reliable 

and repeatable choices to guide clinical decision-making. This approach 

seems very promising in the era of personalised medicine.62–64

The integration of information derived from traditional and novel 

parameters with data obtained from demographics may have a role in 

driving diagnostic work-up in individual patients, making medical care 

more personalised. However, this requires a great deal of measurement 

and evaluation, from image acquisition, through imaging parameters 

generation and developing decision-making algorithms before a critical 

clinical choice therapy based on human critical thinking rather than 

choice generated by machine algorithm can be made.

Figure 4: Extensive Left Ventricular Adrenergic 
Denervation and Preserved Myocardial Perfusion

These dual isotope 99mTc sestamibi/123I MIBG images, obtained simultaneously using a 
cadmium zinc telluride camera, show extensive left ventricular adrenergic denervation 
(upper slices) involving the inferior and lateral walls and preserved myocardial perfusion in 
the same territories (lower slices) with innervation/perfusion mismatch.
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