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Abstract: Tephritidae fruit flies (Diptera: Tephritidae) are regarded as important damage-causing
species due to their ability to cause great economic losses in fruit and vegetable crops. Bactrocera
minax and Bactrocera tsuneonis are two sibling species of the subgenus Tetradacus of Bactrocera that
are distributed across a limited area of China, but have caused serious impacts. They share similar
morphological characteristics. These characteristics can only be observed in the female adult
individuals. The differences between them cannot be observed in preimaginal stages. Thus, it is
difficult to distinguish them in preimaginal stages morphologically. In this study, we used molecular
diagnostic methods based on cytochrome c oxidase subunit I and species-specific markers to identify
these two species and improve upon the false-positive results of previous species-detection primers.
DNA barcode sequences were obtained from 900 individuals of B. minax and 63 individuals of
B. tsuneonis. Based on these 658 bp DNA barcode sequences of the cytochrome c oxidase subunit I
gene, we successfully designed the species-specific primers for B. minax and B. tsuneonis. The size of
the B. minax specific fragment was 422 bp and the size of the B. tsuneonis specific fragment was 456 bp.
A series of PCR trials ensured the specificity of these two pairs of primers. Sensitivity assay results
demonstrated that the detection limit for the DNA template concentration was 0.1~1 ng/µL for these
two species. In this study, we established a more reliable, rapid, and low-cost molecular identification
method for all life stages of B. minax and B. tsuneonis. Species-specific PCR can be applied in plant
quarantine, monitoring and control of B. minax and B. tsuneonis.
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1. Introduction

Tephritidae, consisting of the true fruit files, is one of the largest families in Diptera. Tephritidae
includes over 5000 species classified into 500 genera [1,2], and is distributed worldwide except in
Antarctica [1]. The members of the genus Bactrocera of Tephritidae, distributed primarily in tropical Asia,
Australia and South Pacific regions, are regarded as damage-causing species due to their devastation
of fruit and vegetable crops [1]. Bactrocera minax (Chinese citrus fly) and Bactrocera tsuneonis (Japanese
orange fly) are two sibling species of subgenus Tetradacus of Bactrocera that are native to the East Asia
region. At present, there are two theories on the origin of B. minax. The first theory indicates that
B. minax was first detected in Jiangjin County, Sichuan Province (now Jiangjin District, Chongqing City)
in 1943. The second theory demonstrates that B. minax was detected in Guizhou in the Ming dynasty.
Both theories suggest that B. minax is native to China [3]. A paper published in 1956 demonstrated
that B. tsuneonis is native to the southern part of Japan [4]. The above two species are considered to be
major pests of citrus crops [5,6], causing large-scale economic losses, doing great harm to the export of
citrus, suppressing international trades, and leading to trade barriers. In 2008, there was an outbreak of
a serious epidemic in the orangeries of Wangcang County, Guangyuan City, Sichuan Province, where
countless B. minax individuals devastated the normal production of citrus, causing an enormous panic
among consumers, and the citrus market shrank rapidly nationwide [7]. According to many studies
on B. minax and B. tsuneonis, we found that the host range of the two species is different. Although
the two species are considered to be major pests of citrus crops, they have different preferences to the
species of citrus. B. minax has been recorded from Citrus aurantium, C. lemon, C. maxium, C. medica,
C. paradist, C. reticulata, C. sarcodactylis, C. sinensis, C. tingerina, C. unshiu, Fortunella X crassifolia, and
Poncinus trifoliata [8–10]. While B. tsuneonis has been recorded from C. kinokuni, C. deliciosa, C. unshiu,
and Fortunella japonica [11,12]. B. minax has a wider host range and this species can infest both thin skin
and thick skin citrus species. However, B. tsuneonis can only infest thin skin species. This difference
might due to the distinction of ovipositors of B. minax and B. tsuneonis. B. minax has a longer ovipositor
than that of B. tsuneonis.

B. minax and B. tsuneonis are both univoltine insects. Adult females have a large and powerful
ovipositor to lay eggs through the skin of unripe citrus. When the eggs hatch, the larvae eat the inside
of the host citrus. Infested fruit will be precocious, yellow early and caduceus, seriously affecting
the quality and yield of citrus [13–15]. B. minax is widely distributed in countries including China,
Bhutan, and India [16]. Since it was first detected in Sichuan Province in the 1940s [3], B. minax has
spread rapidly in China and is reported to be distributed in Guangxi, Guizhou, Hubei, Hunan, Shaanxi,
Sichuan and Yunnan Provinces. In contrast, B. tsuneonis is limited to China (Guangxi, Hunan, Sichuan),
Japan (Ōita-ken, Miyazaki-ken, Kagoshima, Kumamoto-ken, Amami-Ō-shima) and Vietnam [17].
According to recent surveillance data, researchers have firstly trapped B. tsuneonis in an orchard
(24.3000◦ N, 123.7200◦ E) located 30 km northwest of Huaiji County, in northwestern Guangdong
Province, China, on 29 April 2016, which suggests that it is spreading in China [18]. At present, there
are still no demonstrated lures for the specific trapping of B. minax and B. tsuneonis. We therefore cannot
carry out effective monitoring for these two species. They cannot be mass reared in the laboratory
for three reasons: first, B. minax and B. tsuneonis would diapause in winter [19]; second, they do not
prefer an artificial diet; and third, they cannot lay eggs after mating indoors. The above reasons have
limited physiological, biological, and biochemical studies and integrated management of B. minax and
B. tsuneonis.

The morphological characteristics used for distinguished B. minax and B. tsuneonis can only be
observed in the adult stage. Moreover, these characteristics are usually present in female adults,
which creates great difficulties in identifying the male adult. Intercepted samples are generally in
early developmental stages (e.g., eggs and larvae), for which morphological keys are lacking [20].
In different sites, the plantation structures are different. The two species have different geographic
distributions, which could be due to different host needs. Inability to distinguish them may lead to
their invasion. For example, in thick skinned citrus species planting regions, if someone identified
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B. minax as B. tsuneonis and did not take measures to control it, it would infest the fruits and cause
huge economic losses.

Normally, the intercepted immature samples are reared in the laboratory over a period of
7–8 months [21] and identified by using adult taxonomic characteristics, which seriously affects the
efficiency of plant quarantine. In this case, more reliable methods need to be established.

Molecular diagnostic methods enable precise, reliable identification of immature life stages and
infesting males, down to the species level [22]. In 2003, Hebert indicated that the divergence values
of DNA barcode sequences between species are generally greater than 3%. In fact, when this value
was employed as a threshold for species diagnosis, it led to the recognition of 196 out of the 200 (98%)
species recognized through a prior morphological study [23]. However, the limits among species
are very variable. Based on DNA barcode sequences, a clear intraspecific threshold was 2.5% for
herbivorous fly identification [24], while that threshold was between 5.6–6.0% for dwelling water
mite species identification [25]. Renaud et al. (2012) assessed COI sequences of some species of
Diptera and indicated the mean pairwise intraspecific distances (range 0.17–1.20%) and maximum
intraspecific distances (range 3.00–5.40%) [26]. A 658 base-pair region of cytochrome c oxidase subunit
I (COI) is used as a DNA barcode, and this standard sequence provides the taxonomic resolution to
discriminate closely related species. In this case, DNA barcodes were employed as an efficient tool
to identify species. DNA barcoding based on COI gene sequencing has recently become an effective
tool for insect identification. This method has been applied successfully for the identification of fruit
flies. DNA barcoding has made a great contribution to plant quarantine approaches. Armstrong et al.
(2005) analyzed the COI sequences of fruit fly samples intercepted from ports of New Zealand over
the past decade, and the identification results were consistent with previous results from restriction
fragment length polymorphisms (RFLPs). In addition, identification by using DNA barcodes identified
species that could not be identified by RFLP analysis [27]. Buahom et al. applied the method of DNA
barcoding to amplify the sequence of the COI gene from five larvae fruit flies collected from guava
fruit from Thailand in 2011, resulting in identification of the flies as B. correcta [28]. Barr et al. (2017)
used 539 DNA sequence records from 74 species of Anastrepha and demonstrated that these barcode
data could distinguish four plant pests: Anastrepha grandis, A. ludens, A. serpentina and A. striata [29].
Manger et al. (2018) genetically characterized 10 fruit fly species of the genus Bactrocera by using
the standard DNA barcoding region of the COI gene, and the identification of eight species was
straightforward [30]. However, the limitations of this method are also evident; for example, it is
time-consuming and expensive.

Based on the COI gene, several rapid diagnostic methods have been developed, such as the
PCR-RFLP, real-time PCR, loop-mediated isothermal amplification (LAMP) and microfluidic dynamic
array techniques. These approaches have been applied successfully in the detection of multiple
economically important fruit fly species.

These approaches have been applied successfully in the detection of some economically important
fruit fly species. There have been several studies on the application of PCR-RFLP in fruit fly identification.
For example, Onah et al. (2017) successfully applied PCR-RFLP based on the COI gene to identify
B. dorsalis and Ceratitis anonae (Graham) infesting citrus in southeastern Nigeria [31]. Raquin et al.
(2018) also developed a PCR-RFLP assay for identifying Drosophila melanogaster among field-collected
larvae, and they discriminated D. melanogaster from other ecologically relevant species of Drosophila at
the larval stage. The target sequence was a COI gene sequence [32]. Recent studies have also used
real-time PCR to identify economically important fruit flies. Li et al. (2019) performed real-time PCR
assays for the rapid detection of Zeugodacus cucumis and B. jarvisi in New Zealand, and although
it was difficult to identify them in the immature stage, real-time PCR successfully distinguished
Z. cucumis from B. jarvisi [33]. The advanced method of LAMP is also used to distinguish economic
fruit fly species. Blaser et al. (2018) established the LAMP method for providing reliable differentiation
between tested regular and nonregular insect species, including some economically important fruit
fly species [20]. In addition to these methods, microfluidic dynamic array analysis is a new method
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that has broad potential to become one of international standards for use in plant quarantine and
invasive species detection. Jiang et al. (2016) established a standardized reaction system for detecting
economically important tephritid species in six genera (Anastrepha, Bactrocera, Carpomya, Ceratitis,
Dacus, and Rhagoletis) based on a microfluidic dynamic array [34].

The main objective of this study was to establish a rapid, economical and precise molecular
diagnostic method based on DNA barcodes and species-specific PCR to distinguish B. minax from
B. tsuneonis. The number of applications for species-specific PCR is not small. Chua et al. (2010)
successfully designed two pairs of species-specific primers based on a 1517 bp sequence of the mtDNA
COI gene that could distinguish B. papayae and B. carambolae under the conditions of regular PCR
assays [35]. Asokan et al. (2011) designed species-specific primers based on DNA barcode sequences to
establish a method for B. dorsalis and B. zonata identification, and this method could reliably identify all
life stages of the target species [36]. It is worth noting that in 2014, Jiang et al. designed species-specific
primers of B. minax and B. tsuneonis based on the DNA barcoding sequences from Guizhou, Sichuan
and Hunan Provinces [37]. We found false-positive results when we used these primers for the
identification of the two Tetradacus species collected from Guizhou, Sichuan, Yunnan, Hubei, and
Chongqing Provinces or city areas, which were not involved in the previous study. The design of more
reliable and specific primer pairs is urgently needed for their diagnoses.

In this study, 963 samples were collected from 44 locations from eight provinces in China that
covered all distribution areas of these two species. Based on the 963 DNA barcode sequences,
we redesigned the species-specific primers for B. minax and B. tsuneonis and tested the specificity of the
primers. The results showed that the primers designed in this study were effective in distinguishing
these two species. This study could be a robust supplement to the morphological diagnostic method,
and our approach could be applied for pest monitoring in the field, providing guidance for pest
management and the prevention of their spread.

2. Materials and Methods

2.1. Sample Collection

A total of 963 individuals of B. minax and B. tsuneonis were collected from 44 locations in 8 provinces
and areas of China (Guizhou, Hunan, Sichuan, Hubei, Shaanxi, Guangxi, Yunnan and Chongqing).
Larvae were collected from rotted fruits, and adults were trapped by a mixture of water, sugar, vinegar
and white spirits (water:sugar:vinegar:white spirits = 10:4:2:1), a yellow sticky trap or a green trap
ball. In total, we obtained 52 adults and 911 larvae. All of the adults were identified using taxonomic
keys, and all samples were preserved in 100% ethanol and stored at −20 ◦C in the Plant Quarantine
and Invasion Biology Laboratory of China Agricultural University (CAUPQL) until the forthcoming
molecular diagnostic procedures.

2.2. Morphological Diagnostic Method

Currently, the main diagnostic method depends on the morphological characteristics of adults [38].
Unfortunately, B. minax and B. tsuneonis are closely related and are distinguished by only four relatively
evident characteristics. Firstly, B. tsuneonis has 1–2 pairs of postsutural supra-alar setae, which are
absent in B. minax. Secondly, B. minax has only one pair of scapular setae, and B. tsuneonis has two
pairs of scapular setae. Thirdly, the oviscape of B. minax is comparatively long, at least equal in length
to tergites 3–5 as seen directly from the dorsal view; however, that of B. tsuneonis is relatively short,
less than or equal in length to tergites 5–6 as seen directly from the dorsal view. Finally, the aculeus
of B. minax is slender and sharply pointed at the apex, whereas that of B. tsuneonis is trilobed at the
apex [5]. The above characteristics can only be seen in adults or female individuals. A full description
of B. minax was provided by White and Elson-Harris (1994) [39]. However, the larva of B. tsuneonis
remains unknown and the characters given may to a large extent also apply to that species, making
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larval identification unreliable. The two species share similar morphological characteristics in the larva
stage, and so these characteristics cannot be used to distinguish these species.

2.3. DNA Extraction, PCR Amplification and Sequencing

Total genomic DNA was extracted from a whole larva or the muscular tissue of the adult using
the TIANamp Genomic DNA Kit (DP304, TIANGEN, China) following the manufacturer’s protocol
for animal tissue. All DNA template concentrations were estimated by spectrophotometry (UV-Vis
spectrophotometer Q5000, QUAWELL, USA). The remainder of the DNA was stored at −20 ◦C as
a voucher.

PCR amplifications of the 658 bp mtDNA COI barcode sequences of 963 samples were performed
using the universal primers LCO1490/HCO2198 [40]. PCR amplification in a total volume of 25 µL
was performed using the following components: 19.5 µL of 2 × Taq PCR MasterMix, 1 µL of forward
primer (10 µM), 1 µL of reverse primer (10 µM), 9.5 µL of ddH2O and 1 µL of template DNA. The PCR
cycling conditions were as follows: initial denaturation at 94 ◦C for 3 min, followed by 35 cycles of
denaturation at 94 ◦C for 1 min, annealing at 50 ◦C for 1 min, extension at 72 ◦C for 1 min, and a final
extension at 72 ◦C for 10 min. Each PCR product (5 µL) was tested by using 1.5% gel electrophoresis
in 1 × TAE buffer, and the results were examined under UV light after anthocyanidin staining. PCR
products were then sent to Sangon Biotech (Shanghai) Co., Ltd. The DNA barcoding sequence of each
individual was identified via the identification module at BOLD (Barcode Of Life Data) or the BLAST
strategy at NCBI. Considering the results of several previous studies synthetically, in this study, the
clear intraspecific threshold was 3% (similarity > 97%). Sequences were virtually translated to amino
acids by MEGA 7.0 software [41] to detect frameshift mutations and nonsense codons, the results show
there was no amplified pseudogenes. After that, sequences were deposited in GenBank.

We obtained 963 DNA barcode sequences, 911 DNA barcode sequences were from larvae and 52
DNA barcode sequences were from adults. Distributional information for the two species is presented
in Figure 1, and the samples’ detailed location information and GenBank accession numbers of the
sequences are provided in Supplementary Material Table S1. These sequences were sequenced by
ourselves and uploaded onto GenBank.
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represent areas of sympatry.
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2.4. Specific Primer Design and Specificity Test

Species-specific primer pairs were manually designed based on variations in COI barcodes. Firstly,
the haplotypes of B. minax and B. tsuneonis were generated by DnaSP v6 [42] for specific primer design.
In order to guarantee the reliability of results, some 658 bp standard DNA barcode sequences of
various Bactrocera species obtained from GenBank were added for specific primer design. Detailed
information of sequences downloaded from GenBank is provided in Supplementary Material Table S2.
Then, sequence alignment of these haplotypes and standard DNA barcode sequences were performed
by using MEGA 7.0 software [41]. C or G sites with intraspecific crosstalk and interspecific variation
were selected, and species-specific primers were designed to cover species-specific sites, this process
was performed by BioEdit software [43]. Thereafter, one B. minax DNA barcode sequence was input
into Oligo 7.0 software [44]. The length of the primers was set as 25 bp. Species-specific sites were
placed at the 3’-ends of the forward and reverse primers to ensure specificity between the two species.
The length between forward and reverse primers was not less than 200 bp. The species-specific
primer sequences were checked by Oligo 7.0 software. These sequences were checked according to the
following indexes: (a) check the Key info; the absolute value of 3’ ∆G cannot be higher than 9; (b) check
the Duplex Formation index; the absolute value of ∆G cannot be higher than 4.5, and the number
of binding sites base pairs cannot be higher than 3, for evaluating the forward and reverse primers,
respectively; (c) check the Hairpin Formation index; the absolute value of ∆G cannot be higher than
4.5, and the number of binding sites base pairs cannot be higher than 3, for evaluating the forward and
reverse primers, respectively; (d) check the Composition and Tm information; GC content should be
40~60%, Tm should between 50~70 ◦C, and the difference in Tm between the forward and reverse
primers should be less than 5 ◦C; (e) the false priming efficiency should be lower than 100; (f) the length
of the primers should be 20~30 bases. The species-specific primers for B. tsuneonis were designed in
the same manner. The primers were synthesized by Sangon Biotech (Shanghai, China) Co., Ltd.

The specific primers were tested according to the following principles: one species-specific primer
could only amplify the specific sequence of its target species, and another eight nontarget species, used
as negative controls, showed no evident band when the species-specific primers were matched to the
specific sequences of the target species through agarose gel electrophoresis. One individual from each
geographical population was selected to carry out the primary specificity test (Supplementary Material
Table S3). PCR amplification in a total reaction volume of 50 µL was performed using the following
components: 25 µL of 2 × Taq PCR MasterMix, 1.5 µL of forward and reverse primers, 19 µL of ddH2O,
and 3 µL of template DNA. The PCR cycling conditions were as follows: initial denaturation at 94 ◦C
for 3 min, followed by 30 cycles of denaturation at 94 ◦C for 1 min, annealing at 65 ◦C for 1 min, and
extension at 65 ◦C for 1 min, and a final extension at 65 ◦C for 10 min. Each PCR product (5 µL) was
tested by using 1.5% agarose gel electrophoresis in 1 × TAE buffer, and the results were examined
under UV light after anthocyanidin staining.

Besides the above experiments, 2–5 individuals from each geographical population were selected
for a further specific test. They were amplified with the two optimal species-specific primers respectively
for the reliable and accurate verification of the species-specific primers.

2.5. Sensitivity Test

B. minax and B. tsuneonis samples from different locations were tested for the reliable and accurate
sensitivity. We selected one individual from each province to perform this test. A dilution series
of template DNA was dissolved in ddH2O, and the template DNA concentrations were 100 ng/µL,
10 ng/µL, 1 ng/µL, 0.1 ng/µL, 0.01 ng/µL, and 0.001 ng/µL. The PCR amplification conditions were the
same as those described above.
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3. Results and Discussion

3.1. DNA Barcode Sequence Analyses

The concentrations of DNA varied from 60~900 ng/µL. Through DnaSP analysis, 51 haplotypes
of B. minax and 12 haplotypes of B. tsuneonis (Supplementary Material Table S4) were obtained.
These sequences were used to design species-specific primers. We also downloaded 56 barcode
sequences of B. minax, 20 barcode sequences of B. tsuneonis and barcode sequences of other fruit
fly species from GenBank for the primer design (Supplementary Material Table S2). A total of
900 individuals from Hubei, Hunan, Guizhou, Chongqing, Yunnan, and Shaanxi were identified as
B. minax (similarity from 97.44% to 100%), and 63 individuals from Sichuan, Hunan, Yunnan, Guangxi,
and Guizhou were identified as B. tsuneonis (similarity from 98.07% to 100%). Taking all the DNA
barcode sequences into consideration, 51 haplotypes of B. minax and 12 haplotypes of B. tsuneonis
(Supplementary Material Table S4) were obtained from DnaSP analysis.

3.2. Species-Specific Primer Selection, Specificity Test and Sensitivity Test

We firstly used the primers designed by Jiang et al. (Table 1) [38] to test specificity. The agarose
gel electrophoresis results of the specificity tests of the previously reported species-specific primers
presented nonspecific bands, as shown in Figures 2 and 3. B. tsuneonis samples from Sichuan, Guizhou
and Yunnan exhibited a false-positive result amplified by using the primers BTmina-F/BTmina-R.
B. minax samples collected from Hubei, Hunan, Guizhou and Chongqing also presented a false-positive
result amplified by using the primers BTtsun-F/BTtsun-R.

Referring to the B. minax and B. tsuneonis DNA barcode sequences, a pair of B. minax-specific
primers and a pair of B. tsuneonis-specific primers were designed (Table 2). The sites of the
species-specific primers in the COI barcode sequences for the target species are presented in Figure 4.
The specificity of the species-specific primers was tested by performing PCR assays with the samples
listed in Supplementary Material Table S3. We successfully designed specific primers after testing
all geographical populations. Products were only amplified for the target species; the lengths of the
amplified products were 422 bp and 456 bp respectively; and there were no nonspecific amplicons in
any of the other species trials (Figures 5 and 6). The results of the further specificity test are shown in
Supplementary Material Figures S1–S37.

In a previous study, researchers collected the fruit fly samples only in Guizhou, Sichuan and
Hunan provinces. Jiang et al. only obtained three DNA barcode sequences from B. minax and two
DNA barcode sequences from B. tsuneonis [37]. In this case, more reliable species-specific primers
were successfully redesigned based on DNA barcode sequences obtained from 963 individuals and
download from GenBank with the highest abundance possible, which almost covered all distribution
spots of B. minax and B. tsuneonis in China. We increased the number of samples from Shaanxi, Hubei,
Chongqing, Yunnan and Guangxi compared with a previous study. Moreover, we added DNA barcode
sequences of other species of Bactrocera for designing primers. Thus, we confirmed the specificity of
the species-specific primers for B. minax and B. tsuneonis diagnosis based on DNA barcodes.
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Figure 3. Specificity of the previous Btsun-F/Btsun-R B. minax-specific primer pair Lanes 1–29:
B. minax from 29 geographical populations (Table S3); lanes 30–38: B. tsuneonis from nine geographical
populations (Table S3); lane 39: B. correcta, lane 40: B. dorsalis; lane 41: B. latifrons; lane 42: B. tryoni;
lane 43: B. zonata; lane 44: Zeugodacus cucurbitae; lane 45: Z. scutellatus; lane 46: Z. tau; lane M: D2000.
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Table 1. List of specific primer sequences for B. minax and B. tsuneonis designed by Jiang et al. (2014).

Species Primer Primers Sequence (5’-3’) Size (bp)

B. minax
BTmina-F CTTGTTCGAGCAGAACTAGGC

499BTmina-R GGACTGGGAGGGATAGTAAGAGG

B. tsuneonis
BTtsun-F CCATCCCTTACCCTATTGTTACTC

337BTtsun-R AGGATGTATTTAGGTTTCGGTCC

Table 2. List of specific primer sequences for B. minax and B. tsuneonis.

Species Primer Primers Sequence (5’-3’) Size (bp) Tm (◦C)

B. minax
Bm-F AATTTATAACGTAATCGTTACAGCC

422
53.9

Bm-R AAGTATTGTGATAGCTCCGGCTAGG 60.2

B. tsuneonis
Bt-F TAATGTAATCGTTACTGCTCACGCC

456
59.9

Bt-R CTGGGTCAAAGAAGGATGTATTTAG 56.1

Insects 2020, 11, x FOR PEER REVIEW 9 of 14 

 

Table 1. List of specific primer sequences for B. minax and B. tsuneonis designed by Jiang et al. 

(2014). 

Species Primer Primers Sequence (5’-3’) Size (bp) 

B. minax 
BTmina-F CTTGTTCGAGCAGAACTAGGC 

499 
BTmina-R GGACTGGGAGGGATAGTAAGAGG 

B. tsuneonis 
BTtsun-F CCATCCCTTACCCTATTGTTACTC 

337 
BTtsun-R AGGATGTATTTAGGTTTCGGTCC 

Table 2. List of specific primer sequences for B. minax and B. tsuneonis. 

Species Primer Primers Sequence (5’-3’) Size (bp) Tm (°C) 

B. minax 
Bm-F AATTTATAACGTAATCGTTACAGCC 

422 
53.9 

Bm-R AAGTATTGTGATAGCTCCGGCTAGG 60.2 

B. tsuneonis 
Bt-F TAATGTAATCGTTACTGCTCACGCC 

456 
59.9 

Bt-R CTGGGTCAAAGAAGGATGTATTTAG 56.1 

 

Figure 4. Alignment of COI sequences of 10 species of quarantined fruit flies in China. The sequences 

indicated by the arrows are the sites of the B. minax and B. tsuneonis-specific primers in the DNA 

barcode sequences of the target species. The arrow is in the 5’-3’ direction. 

Figure 4. Alignment of COI sequences of 10 species of quarantined fruit flies in China. The sequences
indicated by the arrows are the sites of the B. minax and B. tsuneonis-specific primers in the DNA
barcode sequences of the target species. The arrow is in the 5’-3’ direction.



Insects 2019, 10, 447 10 of 14
Insects 2020, 11, x FOR PEER REVIEW 10 of 14 

 

. 

Figure 5. Specificity of the Bm-F/Bm-R B. minax-specific primer pair. Lanes 1–29: B. minax from 29 

geographical populations (Table S3); lanes 30–38: B. tsuneonis from nine geographical populations 

(Table S3); lane 39: B. correcta, lane 40: B. dorsalis; lane 41: B. latifrons; lane 42: B. tryoni; lane 43: B. 

zonata; lane 44: Zeugodacus cucurbitae; lane 45: Z. scutellatus; lane 46: Z. tau; lane M: D2000. 

 

Figure 6. Specificity of the Bt-F/Bt-R B. tsuneonis-specific primer pair. Lanes 1–29: B. minax from 29 

geographical populations (Table S3); lanes 30–38: B. tsuneonis from nine geographical populations 

(Table S3); lane 39: B. correcta, lane 40: B. dorsalis; lane 41: B. latifrons; lane 42: B. tryoni; lane 43: B. 

zonata; lane 44: Zeugodacus cucurbitae; lane 45: Z. scutellatus; lane 46: Z. tau; lane M: D2000. 

Figure 5. Specificity of the Bm-F/Bm-R B. minax-specific primer pair. Lanes 1–29: B. minax from 29
geographical populations (Table S3); lanes 30–38: B. tsuneonis from nine geographical populations
(Table S3); lane 39: B. correcta, lane 40: B. dorsalis; lane 41: B. latifrons; lane 42: B. tryoni; lane 43: B. zonata;
lane 44: Zeugodacus cucurbitae; lane 45: Z. scutellatus; lane 46: Z. tau; lane M: D2000.

Insects 2020, 11, x FOR PEER REVIEW 10 of 14 

 

. 

Figure 5. Specificity of the Bm-F/Bm-R B. minax-specific primer pair. Lanes 1–29: B. minax from 29 

geographical populations (Table S3); lanes 30–38: B. tsuneonis from nine geographical populations 

(Table S3); lane 39: B. correcta, lane 40: B. dorsalis; lane 41: B. latifrons; lane 42: B. tryoni; lane 43: B. 

zonata; lane 44: Zeugodacus cucurbitae; lane 45: Z. scutellatus; lane 46: Z. tau; lane M: D2000. 

 

Figure 6. Specificity of the Bt-F/Bt-R B. tsuneonis-specific primer pair. Lanes 1–29: B. minax from 29 

geographical populations (Table S3); lanes 30–38: B. tsuneonis from nine geographical populations 

(Table S3); lane 39: B. correcta, lane 40: B. dorsalis; lane 41: B. latifrons; lane 42: B. tryoni; lane 43: B. 

zonata; lane 44: Zeugodacus cucurbitae; lane 45: Z. scutellatus; lane 46: Z. tau; lane M: D2000. 

Figure 6. Specificity of the Bt-F/Bt-R B. tsuneonis-specific primer pair. Lanes 1–29: B. minax from 29
geographical populations (Table S3); lanes 30–38: B. tsuneonis from nine geographical populations
(Table S3); lane 39: B. correcta, lane 40: B. dorsalis; lane 41: B. latifrons; lane 42: B. tryoni; lane 43: B. zonata;
lane 44: Zeugodacus cucurbitae; lane 45: Z. scutellatus; lane 46: Z. tau; lane M: D2000.

To determine the sensitivity of the selected species-specific primers under the above-mentioned
PCR conditions, a tenfold dilution series of template DNA was dissolved in double-distilled water
from one individual of each species used. The concentrations of DNA are presented in the Materials
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and Methods. The results showed that the B. minax species primers presented evident sensitivity
at a concentration of 1 ng/µL for the Shaanxi, Hunan, Guizhou, Yunnan, and Hubei sample DNA
templates but presented an evident sensitivity of 0.1 ng/µL for the Chongqing sample DNA template
(Supplementary Material Figures S38–S43). In contrast, the B. tsuneonis species primers presented
an evident sensitivity of 1 ng/µL for the Yunnan, Guangxi, and Guizhou sample DNA templates but
presented an evident sensitivity of 0.1 ng/µL for the Sichuan, and Hunan sample DNA templates
(Supplementary Material Figures S44–S48). The sensitivity levels of both the B. minax and B. tsuneonis
species primers were between 0.1~1 ng/µL. However, the B. tsuneonis species primers presented
a sensitivity of 0.1 ng/µL for two DNA templates. Compared with the B. minax species primers,
the B. tsuneonis species primers provided a higher sensitivity. While the results of the sensitivity test
carried out by Jiang et al. demonstrated that the detection limit of the DNA template concentration was
1 ng/µL for B. minax and 0.1 ng/µL for B. tsuneonis [37]. It was confirmed that the new species-specific
primers of these two target species could be used in rather low-DNA-concentration conditions,
which increased the feasibility of using these new methods for the identification of B. minax and
B. tsuneonis. Furthermore, the sensitivity of the new species-specific primers was not lower than that of
previous primers.

3.3. Advantages of This Diagnosis Method

With the development of international trade, potential invasion pests can easily invade new
suitable areas via long-distance transport, which could cause serious economic loss and great harm to
food security. A rapid and accurate diagnostic method urgently needs to be established and applied to
prevent the further spread of such species. At present, although substances such as ammonium acetate
and putrescine, or a mixture of water, sugar, vinegar and white spirits in a 10:4:2:1 ratio can be used for
the surveillance of fruit flies, there are still no demonstrated lures for the specific trapping of B. minax
and B. tsuneonis. This results in failure of target species detection, further infestation and failure of
quarantine identification. Phytosanitary departments should pay more attention to these two species
and prevent their further spread and circumvent their establishment in pest free areas.

B. minax and B. tsuneonis lack pronounced morphological characteristics except the female
ovipositor [5]. Therefore, it is difficult to identify these two species by morphological methods.
Inaccurate monitoring and identification of B. minax and B. tsuneonis would lead to pest invasion and
serious economic loss in pest-free areas.

Molecular diagnostic methods have been considered an effective method for supplementing
morphological methods. In this study, false-positive results of previous studies using B. minax and
B. tsuneonis species-specific primers were discovered when we tested the reliability of previous primers
using the samples from new locations that were not involved in the previous study. In this study, the
PCR cycling conditions were simplified into two steps, the annealing and extension processes shared
the same temperature of 65 ◦C, in this case, annealing and extension could be regarded as one process.
Thus, the process of identification took less time, moreover, the specificity of the trials was increased
and the possibility of mis-pairing between the primers and nontarget templates was reduced.

The present assays show several advantages over others assays. Firstly, unlike LAMP methods,
the species-specific primers for traditional PCR are more easily designed, and only one pair of primers
is needed for each species. In contrast, a set of six primers is needed for each species in LAMP assays,
including forward inner primer (FIP) and backward inner primer (BIP) as inner primers, backward
outer primer (B3) and forward outer primer (F3) as outer primers, and backward loop primer and
forward loop primer as the loop primers [45]. Secondly, the equipment needed for this method
includes only an electrophoresis apparatus, PCR instrument and water bath. These instruments are
relatively easy to obtain. Thirdly, these methods are cost effective compared with DNA barcoding
and save both time and money because no sequencing process is involved, and the PCR assays are
simplified. Fourthly, the concentrations of DNA templates needed in the assays are rather low, which
increase the practicability of microscale DNA template identification. Finally, the procedures of this



Insects 2019, 10, 447 12 of 14

methodology can be performed by nonspecialists who have limited knowledge of molecular biology.
The samples examined in this study all came from China, and the results represent the Chinese
populations’ circumstances.

The results of this study present potential for application in quarantine inspections at ports. Plant
quarantine is extremely important for pest management and prevents dangerous pests from spreading
from colonized regions to pest free regions. The identification of pests is the pivotal procedure in
quarantine measures. According to the correct identification results, proper measures were developed
to manage B. minax and B. tsuneonis, and reduce the losses caused by these species.

4. Conclusions

Based on DNA barcode and species-specific markers, we established molecular diagnostic methods
for B. minax and B. tsuneonis in China, corrected previous mistakes and provided a reliable, rapid
identification method. To promote the monitoring of dangerous pest and plant quarantine, the present
study provides further guidance for the development of control and management strategies for B. minax
and B. tsuneonis. In addition, this study provides further biological study of B. minax and B. tsuneonis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/10/12/447/s1,
Figures S1–S37: Specificity of the Bm-F/Bm-R B. minax-specific primer pair and the Bt-F/Bt-R B. tsuneonis-specific
primer pair, Figures S38–S43: Sensitivity of the Bm-F/ Bm-R B. minax species-specific primer pair, Figures S44–S48:
Sensitivity of the Bt-F/ Bt-R B. tsuneonis species-specific primer pair, Table S1: Sample information for the 36
Bactrocera minax populations and 8 Bactrocera tsuneonis populations used in this study, Table S2: Sample information
for 658bp standard DNA barcode sequences of Bactrocera minax, Bactrocera tsuneonis and other species used in this
study, Table S3: Sample information for primer specificity verification by agarose gel electrophoresis analysis,
Table S4: Haplotypes of Bactrocera minax and Bactrocera tsuneonis included in this study.
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