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A B S T R A C T

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is caused by the mutation of polycystins (PC-1 or PC-
2), in which cysts start from the collecting duct to extend to all nephron segments with eventual end stage renal
failure. The cyst development is attenuated by a vasopressin V2 receptor antagonist tolvaptan which, however,
will not affect proximal tubule cysts devoid of V2 receptor. Aquaporin-11 (AQP11) is expressed selectively in the
proximal tubule of the kidney and AQP11-null kidneys have a disruptive PC-1 trafficking to the plasma mem-
brane to develop polycystic kidneys. Here, we analyzed AQP11-null kidneys at the beginning of cyst formation
by quantitative proteomic analysis using Tandem Mass Tag (TMT). Among ~ 1200 identified proteins, 124
proteins were differently expressed by> 1.5 or< 0.8 fold change. A pancreatic stone inhibitor or a growth
factor, lithostathine-1 (Reg1) was most enhanced by 5 folds which was confirmed by western blot, while mi-
tochondria-related proteins were downregulated. The identified proteins will be new target molecules for the
treatment of proximal tubular cysts and helpful to explore the functional roles of AQP11 in the kidney.

1. Introduction

Human Autosomal Dominant Polycystic Kidney Disease (ADPKD) is
caused by the mutation of polycystin-1 (PC-1) or polycystin-2 (PC-2)
[1–3]. Cysts originate from the collecting duct in PC-1 null mice with
defective cAMP signaling [1], which are marginally attenuated by a V2
receptor antagonist, tolvaptan [4]. Since V2 receptor is absent in the
proximal tubule, tolvaptan will not affect the growth of proximal tub-
ular cysts. Moreover, the mechanism for cyst development in the
proximal tubule may not be same as in the collecting duct. The therapy
against proximal tubular cysts will improve the suboptimal efficiency of
tolvaptan therapy for ADPKD [4].

Aquaporin-11 (AQP11) is a new member of aquaporin family which
is expressed at the membrane of intracellular organelles such as the
endoplasmic reticulum (ER) [5–8]. Currently, the function of AQP11 is
not clear even as a water channel due to its unusual location in the cell.
However, AQP11-null mice revealed a striking phenotype of in-
tracellular vacuole formation in the proximal tubule at one week old
[5,9] indicating its critical role in the proximal tubule development.
Surprisingly, these cells subsequently turn to cystic epithelia to develop
polycystic kidney disease (PKD) at three week old and death at one
month old [5]. The mechanism for the development of PKD in AQP11-
null mice may not be related to its water channel function.

Our recent study on AQP11-null mice revealed a trafficking defect
of PC-1 to the plasma membrane due to its abnormal glycosylation at
the ER [10] possibly induced by abnormal environment of the ER with
defective water and/or solutes transports. Irrespective of its me-
chanism, AQP11-null mice will be a good model for ADPKD affecting
the proximal tubule selectively with intact collecting ducts, which will
be useful to examine the proximal tubular cyst formation in ADPKD. As
is the case with conditional knock-out mice of PC-1 [11], the effect of
AQP11 deletion is also developmentally dependent as cysts were not
observed with the disruption of AQP11 at ten days after birth [9].
Furthermore, these cysts may represent a very early stage of the cyst
formation as they are in fact not cysts but dilated proximal tubules [9].

To expand our previous microarray studies [12], we employed a
proteomic approach in this study to compare the differentially ex-
pressed proteins in AQP11-null kidney to identify key molecules for the
development of proximal tubule specific cysts and functional role of
AQP11 in the kidney.

2. Materials and methods

2.1. Animals

All procedures performed in animals were approved by the Meiji
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Pharmaceutical University Committee for Ethics of Experimentation
and Animal Care (approved number: 2005). Homogenous AQP11-null
mice {AQP11(-/-)} were generated as previously reported [5,12,13]. In
short, AQP11(-/-) mice were produced by mating heterozygous AQP11-
null mice {AQP11(+/-)} since AQP11(-/-) mice are fatal before ma-
tured enough to be mated. The genotypes for AQP11 gene mutation
were determined by PCR as previously reported [5].

2.2. Protein isolation

Kidneys were isolated from three AQP11-null mice and three wild
type mice anesthetized by barbiturate. The kidneys were frozen-pow-
dered with liquid nitrogen by Cryo-Press (MICROTEC CO., LTD, Chiba,
Japan), which were then homogenized in 20 volumes of 12 mM sodium
deoxycholate (SDC), 12 mM sodium lauryl sulfate (SLS), and 50 mM
triethylammonium bicarbonate. The homogenate was centrifuged at
19,000×g at 4 °C for 15 min. The supernatant containing the mixture of
proteins was collected, and the protein concentration was determined
using a RCDC protein assay kit (Bio-Rad Laboratories, Hercules, CA,
USA).

2.3. Trypsin digestion

The proteins were digested with trypsin essentially as previously
described [14,15], with following modifications. 20 μL of 200 mM
Triethylamonium bicarbonat/12 mM SDC/12 mM SLS and 2 μL of
200 mM tris (2-carboxylethyl) phosphine hydrochloride/ 120 mM
TEAB were added and then the mixture was incubating at 50 °C for
30 min. After the addition of 2 μL of 375 mM iodoacetamide, the mix-
ture was incubated in the dark for 30 min, to which 2 μL of 100 ng/μL
trypsin was added with further incubation at 37 °C for indicated per-
iods. Acetonitrile (ACN) and 5% trifluoroacetic acid, 50 μL each, were
then added to the digest, followed by the centrifugation at 19,000×g
for 15 min. The supernatant was subjected to Tandem Mass Tag (TMT)-
labeling as following.

2.4. TMT-labeling

Each 6-plex TMT labeling reagent was re-dissolved with anhydrous
ACN. A total of 12 μL of TMT solution was added to the eluate and then
incubated for 1 h at the room temperature. The reaction was terminated
by adding 2 μL of 5% hydroxyamine. Six samples labeled with TMT
reagents were combined and desalted for SCX fractionation using ‘stop
and go extraction tips’ (Stage tips) [16] filled with Empore™ C18 sea-
lant and Cation Exchange (3 M, MN, USA).

2.5. LC-MS analysis

Sage tip SCX prefractionated samples were injected into a C18
0.075- × 20-mm trap column (Acclaim PepMap 100; Thermo Fisher
Scientific) and then eluted into a C18 0.075- × 120-mm analytical
column (Nano HPLC Capillary Column; Nikkyo Technos, Tokyo, Japan)
configured to an EASY-nLC 1000 HPLC system (Thermo Scientific, San
Jose, CA, USA). The flow rate of the mobile phase was 300 nl/min;
mobile phase (A) consisted of 0.1% formic acid and mobile phase (B)
with 0.1% formic acid/100% acetonitrile. Separated peptides were
subjected to Q-ExactiveTM (Thermo Scientific) operated in data-de-
pendent mode to switch automatically between full-scan MS and MS/
MS acquisition. The ten most intense full-scan peaks were selected with
an isolation window of 2.4 Da.

2.6. Protein identification and quantification

Database searches were performed using the SEQUEST algorithm
incorporated in Proteome Discoverer 1.4 (Thermo Fisher Scientific).
The search parameters were as follows: enzyme, trypsin; variable

modification, oxidation of M residue; static modification, TMT labeling
of N-terminal and K residues; peptide ion mass tolerance, 10 ppm;
fragment ion mass tolerance, 0.02 Da. The identified peptides were
searched against the decoy database with false discovery rate (FDR) set
as 0.01 using Percolator scoring validated by posterior error prob-
ability. Peptide quantification was also performed using Proteome
Discoverer 1.4. Both peptide identification and quantification were
performed in an overall workflow in Proteome Discoverer. KEGG
pathway and Swiss-Prot keywords of proteins were assigned by using
the DAVID Bioinformatics Database.

2.7. Western Blotting

Protein of 20 μg in each lane was separated on sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels (e-PAGEL
15%, ATTO CORPORATION, Tokyo, Japan) according to the manu-
facturer's protocol. After completion of electrophoresis, proteins were
transferred onto PVDF membranes and detected with a mouse antibody
against lithostathine-1 (Reg1) (1: 2000; R&D System, Minneapolis, MN,
USA). Alkaline phosphatase conjugated secondary antibodies (Merck
KGaA, Darmstadt, Germany) were diluted 1: 30,000. To calibrate the
expression levels of Reg1, β- actin was used as an internal control with a
rabbit anti-β-actin monoclonal antibody (Abcam, Cambridge, UK).
Antigens on the membrane were detected with ProtoBlot® II AP Systems
with Stabilized Substrate (Promega, Fitchburg, WI, USA). Gel images
were converted to densitograms using Image J software 1.45I (http://
rsb.info.nih.gov/ij/).

3. Results

3.1. Proteomic analysis of the kidney

Proteins from six kidneys (three AQP11-null mice and three wild
type mice: SET1) were extracted and digested. Each sample was labeled
with 6-plex TMT reagent and then mixed to be fractionated by C18-SCX
STAGE-Tip and analyzed by LC-MS/MS. We also analyzed another set
(SET2) of each three mouse kidneys by the same protocol. A total of
2044 proteins were identified by combining two LC-MS/MS analyses,
1420 and 1835 protein each, in which the proteins were mostly shared
(~ 1200). The selected proteins whose average three reporter ion ratios
of AQP11-null mouse were> 1.5 or< 0.80 were 126 (62 down-regu-
lated and 162 up-regulated in AQP-null mouse) (Table 1 and Table 2,
respectively)(see supplements Tables 1 and 2 in more details).

These proteins were functionally classified by Swiss-Prot Keywords.
As shown in Table 3, phosphoproteins and acetylation-related proteins
were predominant in both groups. Cytoplasm, metal-binding, and Ubl
conjugation proteins were up-regulated, while mitochondrial, trans-
porting and nucleotide-binding proteins were down-regulated
(Table 3).

Fig. 1 and 2 illustrated SET2 proteins with altered expressions in
AQP11-null and wild type mouse kidneys in Tables 1 and 2. Extra-
cellular matrix proteins such as fibulin-5 (Fbln5), fibronectin (Fn1), and
annexin A2 (Anexa2) were enhanced in AQP11-null kidneys, which
agrees with the results of previous PKD mouse models [17,18]. More-
over, vimentin (Vim), prosaposin (Psap) and angiotensinogen (Agt)
were also enhanced, which were unique to this study. On the other
hand, mitochondrial-function-related proteins including L-xylulose re-
ductase (Dcxr) and sodium/potassium-transporting ATPase subunit
alpha-1 (Atp1a1) were depressed in AQP11-null kidneys, suggesting a
mitochondrial defect of the cyst epithelium.

3.2. Expression of Reg1 transcript in the kidney

Notably, a pancreatic growth factor, lithostathine-1 (Reg1) was
most increased by 8 folds. To further verify the identified proteins,
western blotting analysis was performed to determine the increase of
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Reg1 protein in AQP11 null or wild type mice (Fig. 3). Densitometry
analysis on the expression levels of Reg1 protein was shown in Fig. 3(b).
Reg1 was 4.8 times highly expressed in AQP11-null mice than in wild
type mice. Thus, the increase of Reg1 protein in the KO mouse kidney
was confirmed.

4. Discussion

This is the first report on proteomic analyses of AQP11-null kidneys,
a unique proximal-tubule-specific model for PKD [10]. As the cyst
formation in ADPKD and most PKD animal models is initiated from the
collecting duct [1], our results will give a clue to understand the me-
chanism for the cyst formation and the basis to identify key molecules
for the development of proximal tubular cysts in ADPKD. The results
should also be useful to speculate the function of AQP11, which has not
yet been well characterized.

First, the predominant up-regulation of Reg1 in this study is note-
worthy. Furthermore, the increase in Reg1 by LC-MS was validated by
western blot (Fig. 3). Reg1 was first identified in the pancreas as an
anti-stone forming molecule [19,20]. However, it also has a function of
a growth factor for pancreas. As Reg1 is predominantly expressed in the
pancreas, it may be trapped in the kidney and the kidney may not
produce it. We examined the Reg1 transcript by PCR and indeed found
it (supplement Fig. 1). Furthermore, it has been also identified in
human kidney and urine which is increased in diabetic patients [21,22],
suggesting that Reg1 may be involved in diabetic kidney hypertrophy as
a kidney growth factor. As EGF in the fluid of collecting duct cysts has
been shown to stimulate the cyst growth, a similar role of Reg1 in
proximal tubule cysts will be anticipated [1]. Reg1 may also be in-
volved in the kidney development albeit with a limited phenotypic
report on Reg1-null mice [23]. Further studies are necessary to examine
the role of Reg1 in cyst growth and kidney development to document its
importance.

Another interesting observation in this study was decreased

cadherin and increased fibronectin in AQP11-null kidneys. Both are
markers for epithelial-mesenchymal transition (EMT) [24–27], which
has been shown to be associated with kidney cyst formation in ADPKD
and pck rats [28–30]. Moreover, proteins related to wound healing such
as fibronectin1 and Ptk7 were also induced in AQP11-null kidneys. In
fact, the increase in extracellular matrix proteins such as vimentin has
also been reported in jck mouse, a polycystic kidney disease model of
the collecting duct [18]. Thus, EMT may also be involved in cyst for-
mation and development in the proximal tubule.

The observed increases of prosaposin (Pap) and angiotensinogen
(Agt) have not been reported in previous proteomic analyses of PKD
[17,18]. Prosaposin, a precursor of saposins, is expressed mainly in the
brain but it is also highly expressed in the kidney [31]. Saposin is in-
dispensable for lysosomal hydrolysis of sphingolipids in the brain and
has been shown to promote neurite outgrowth and nerve regeneration
as well as to prevent cell death [32], whose expression has been
markedly increased in response to brain injury such as ischemia
[33,34]. Therefore, saposins may also be involved in the survival of the
proximal tubule in the absence of intracellular AQP11 and important

Table 1
Up-regulated proteins in AQP11-null kidneys.

UniProt accession Description Gene name Average Set 1 Set 2

P43137 Lithostathine-1 Reg1 9.69 15.33± 7.28 4.05± 2.52
Q91VW3 SH3 domain-binding glutamic acid-rich-like protein 3 Sh3bgrl 2.59 3.15± 0.62 2.04± 0.82
Q04447 Creatine kinase B-type Ckb 2.49 1.99± 0.36 2.98± 0.94
Q9ET54 Palladin Palld 2.39 2.29± 0.38 2.50± 1.00
P20152 Vimentin Vim 2.33 2.82± 0.35 1.84± 0.51
Q60847 Collagen alpha-1(XII) chain Col12a1 2.27 2.61± 0.15 1.93± 0.42
P97314 Cysteine and glycine-rich protein 2 Csrp2 2.25 2.97± 0.29 1.53± 0.42
Q8BFW7 Lipoma-preferred partner homolog Lpp 2.22 1.19± 0.09 3.25± 0.91
P08905 Lysozyme C-2 Lyz2 2.22 1.85± 0.53 2.58± 0.93
P39061 Collagen alpha-1(XVIII) chain Col18a1 2.17 2.17± 0.17 2.18± 0.49
Q61207 Prosaposin Psap 2.15 2.56± 0.26 1.74± 0.35
P68033 Actin, alpha cardiac muscle 1 Actc1 2.03 2.38± 0.21 1.68± 0.11
P11859 Angiotensinogen Agt 2.03 2.62± 0.87 1.43± 0.34

Table 2
Down-regulated proteins in AQP11-null kidneys.

UniProt accession Description Gene name Average Set 1 Set 2

Q8QZW3 Protein FAM151A Fam151a 0.28 0.26± 0.11 0.30± 0.04
O35728 Cytochrome P450 4A14 Cyp4a14 0.37 0.67± 0.31 0.06± 0.12
Q8BH00 Aldehyde dehydrogenase family 8 member A1 Aldh8a1 0.41 0.70± 0.11 0.12± 0.11
Q91×52 L-xylulose reductase Dcxr 0.44 0.58± 0.25 0.30± 0.05
Q8K0L3 Acyl-coenzyme A synthetase ACSM2, mitochondrial Acsm2 0.44 0.54± 0.15 0.34± 0.09
Q8CHT0 Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial Aldh4a1 0.47 0.55± 0.19 0.39± 0.09
P13707 Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic Gpd1 0.48 0.54± 0.17 0.42± 0.09
Q9D964 Glycine amidinotransferase, mitochondrial Gatm 0.48 0.62± 0.13 0.34± 0.06
P16460 Argininosuccinate synthase Ass1 0.48 0.60± 0.14 0.36± 0.06
Q8BWT1 3-ketoacyl-CoA thiolase, mitochondrial Acaa2 0.49 0.57± 0.13 0.42± 0.07
O88338 Cadherin-16 Cdh16 0.50 0.55± 0.12 0.46± 0.07

Table 3
Swiss Prot-keywords classification of significantly up-regulated and down-regulated
proteins in AQP11-null kidneys.

SP-keyword All Up-regurate Down-regurate

Count % Count % Count %

Phosphoprotein 1278 62.6 41 65.1 37 60.7
Acetylation 1084 53.1 31 49.2 38 62.3
Cytoplasm 797 39.0 21 33.3
Nucleus 490 24.0
Alternative splicing 455 22.3
Metal-binding 376 18.4 17 27.0
Mitochondrion 335 16.4 31 50.8
Transport 330 16.2 11 18.0
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for the survival of the cyst epithelium in the proximal tubule of PKD.
Angiotensinogen (Agt) may facilitate wound healing by local pro-

duction of angiotensin II which has proinflammatory and profibrotic
functions. In fact, active inflammation and fibrosis have been observed
in PKD [35,36]. Based on these results, angiotensin II receptor blockers
(ARB) and angiotensin converting enzyme inhibitors (ACEI) have been
tried to inhibit the cyst development in animal models [37] and pa-
tients [35,37,38]. However, the results were equivocal. Although the
receptor for angiotensin II is expressed both in the proximal tubule and
in the collecting duct, the effect of these drugs will be more dominant
on the proximal tubule as Agt has been shown to be expressed primarily
in cysts originated from the proximal tubule and in cyst-derived cells
with proximal tubule characteristics [39]. AQP11-null kidneys with
selective proximal tubular cysts will be useful to examine the effect of
these drugs on cyst progression, which will be our future project.

On the other hand, the decrease of mitochondrial proteins of
AQP11-null kidneys in this study as well as in a previous report by
microarray analysis [12] is unique to proximal tubular cysts. The de-
crease of mitochondrial proteins will lead to cellular damages especially
in proximal tubular cells as they have many mitochondria [40] as re-
vealed by intracellular vacuole formation in AQP11-null kidneys [5,9].
In fact, granular swollen epithelial proximal tubular cells have been
reported in mitochondrial nephropathy [41]. Therefore, the formation
of intracellular vacuoles in AQP11-null kidneys may be caused by mi-
tochondrial defect. Furthermore, mitochondria may also play a role in
the development of kidney cysts, especially the proximal tubular cysts.

In conclusion, our proteomic data at the beginning of the cyst for-
mation in AQP11-null kidneys identified several interesting molecules
involved in PKD development specifically in the proximal tubule. These
will be useful for the development of new therapy against proximal
tubular cysts in ADPKD as well as for exploring the role of intracellular
AQP11 in the kidney.
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