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Abstract
Dijksma, I, Hof, MHP, Lucas, C, and Stuiver, MM. Development and validation of a dynamically updated prediction model for
attrition from Marine recruit training. J Strength Cond Res 36(9): 2523–2529, 2022—Whether fresh Marine recruits thrive and
completemilitary training programs, or fail to complete, is dependent on numerous interwoven variables. This study aimed to derive
a prediction model for dynamically updated estimation of conditional dropout probabilities for Marine recruit training. We undertook
a landmarking analysis in a Cox proportional hazard model using longitudinal data from 744 recruits from existing databases of the
Marine Training Center in the Netherlands. Themodel provides personalized estimates of dropout fromMarine recruit training given
a recruit’s baseline characteristics and time-varying mental and physical health status, using 21 predictors. We defined non-
overlapping landmarks at each week and developed a supermodel by stacking the landmark data sets. The final supermodel
contained all but one a priori selected baseline variables and time-varying health status to predict the hazard of attrition fromMarine
recruit training for each landmark as comprehensive as possible. The discriminative ability (c-index) of the prediction model was
0.78, 0.75, and 0.73 in week one, week 4 and week 12, respectively. We used 10-fold cross-validation to train and evaluate the
model. We conclude that this prediction model may help to identify recruits at an increased risk of attrition from training throughout
the Marine recruit training and warrants further validation and updates for other military settings.
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Introduction

Whether fresh marine recruits thrive and complete military
training programs, or fail to complete, is dependent on nu-
merous interwoven variables. More than 50% fail to com-
plete Marine recruit training, and nearly 1 of the 4 dropouts
do so due to musculoskeletal injuries (7). Factors consistently
affecting the risk of dropout include body composition,
baseline fitness, injury history, smoking, and psychological
resilience (8,11,19). At the Marines Training Center (MOC)
of the Royal Netherlands Marine Corps (RNLMC), a digital
recruit monitoring survey (RMS) is used weekly to measure
the status of well-being and recognize declines in an in-
dividual or group.

The RMS is one of many investments of the MOC to in-
novate enlistment, selection and preparation of recruits, as
well as to improve monitoring, training, and recuperation. It
is applied by embedded monitors with a physical therapy
background to carefully monitor recruits during Marine re-
cruit training. The monitors collaborate closely with the
medical department (i.e., general practitioner and physical
therapist), sports instructors, and the military training staff.

These professionals are all part of the same team dedicated to
training the recruits to the highest achievable level. The RMS
contains self-report items regarding physical, psychological,
and social psychological concepts. This includes musculo-
skeletal pain, coping strategies, motivation, performance
ratings, sleep quality ratings, self-esteem, physical and mental
fitness, and general health estimations. Mental challenges,
fatigue, and musculoskeletal discomfort are more of a
rule rather than an exception during the Marine recruit
training but—obviously—these challenges and symptoms
vary over time.

To date, the RMS has been used to inform training staff based
on a pragmatic approach without applying formal algorithms to
the acquired data. This approach may discard potentially valu-
able information because it does not take into account the in-
teraction of the covariates with baseline characteristics and the
dynamical changes over time. The interpretation and hence ef-
fectiveness of the RMS might be improved by using the in-
formation in more formal algorithms to detect recruits at a high
risk of dropout throughout their training. Training staff could
then act accordingly.

Two previously developed predictionmodels for the prediction
of dropout from military training have been published. One of
these models was derived in the RNLMC (3,11). These models
include physical characteristics such as body fat percentage and
body mass index, as well as self-reported measures such as self-
estimated health and self-confidence. Although both models
showed promising accuracy for the identification of recruits at a
high risk for dropout, they have not been externally validated (4).

This model is programmed in shiny (6) from R and is available upon request.
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More importantly, both models used baseline measurements
alone. As factors such as motivation, sleep quality, and perceived
physical fitness are prone to variation over time, the risk of
dropout due to these factors varies as well. We hypothesized that
a time-updated model based on landmarking (17), using baseline
characteristics as well as repeated self-reported health status,
might increase the accuracy and practical value of the model.
With landmarking, the follow-up period is divided into several
intervals. For each landmark, the probabilities can then be esti-
mated by fitting a survival model to the data from the individuals
still in training at that moment, thus accounting for changes in
predictor status over time (15).

The objective of this study was to develop and validate a pre-
diction model allowing for dynamically updated estimates of
conditional dropout probabilities for attrition from a 24-week
Marine recruit training using mental and physical health
predictors.

Methods

Experimental Approach to the Problem

With a view to the implementation of the prediction model, all
procedures in data collection and administrationwere conform to
the usual procedure, i.e., recruits are asked once weekly by email
to respond to the RMS digitally. All predictors were defined a
priori through selecting biologically relevant variables, which
have been suggested to be associated with the risk of musculo-
skeletal injuries and attrition from military training
(3,6,11,12,19).

Subjects

We undertook a landmarking analysis using prospectively regis-
tered data of all recruits starting 24-week marine recruit training
(MRT) from January 2016 to August 2018. The minimum age
requirement for employment is 17 years and 6 months, with a
maximum age of 27 years and 11 months. The minimal height is
1.65 m and minimal body mass is 65 kg. Data were extracted
from existing databases of the MOC, Rotterdam, the Nether-
lands. We collected baseline demographics, baseline fitness,
weekly measured mental and physical health status, self-reported
musculoskeletal pain, and attrition status of all recruits from 8
consecutive Marine recruit training cohorts. All subjects in these
cohorts weremen. Starting from on average 90 recruits per cohort
with a presumed dropout rate of 50% and 22 a priori determined
predictors, data of 5 cohorts were needed to achieve a predictor:
event ratio of 1:10. However, because at the time of model de-
velopment data of 8 cohorts were available, we chose to use all
available data to achieve a 1:17 predictor:event ratio (14).

The Medical Research Ethical Committee of the University
Medical Center Utrecht, the Netherlands, confirmed that the
Medical Research Involving Human Subjects Act does not apply
to this study (protocol number: 17-502/C) and waived the study
from formal approval. Ethical standards adhered to the World
Medical Association’s Declaration of Helsinki (10). All subjects
signed writen informed consent, authorizing to use their anony-
mized data for scientific purposes.

Procedures

Baseline characteristics included body composition (height, body
mass, and body fat percentage) and level of education. Baseline

physical fitness wasmeasured through the defense physical fitness
test, which included a Cooper test (12-minute run for distance)
and maximal repetitions of push-ups and sit-ups each in 2 mi-
nutes. This test was taken to conform to usual practice, by ex-
perienced military sports instructors. Minimal fitness
requirements for entry to Marine recruit training include a min-
imum of 2.7 km on the Cooper test, 30 push-ups, and 30 sit-ups.
For this prediction model, we chose a parsimonious set of 6
mental and physical health concepts of the RMS, represented by 6
statements including I feel in a good health; I felt motivated last
week; I do not experience muscle soreness or muscle stiffness; In
the past week I slept well; I feel mentally fit; I feel physically fit.
Recruits are asked once weekly to respond to these statements on
a 10-point Likert-scale. Self-reportedmusculoskeletal pain, in any
area, was also measured by marking a location and rating the
severity on a Numerical Pain Rating Scale (NPRS) from 0 to 10.
We dichotomized this variable (“yes” if any location was marked
with a corresponding NPRS score and “no” if no injuries were
reported) for further analyses, retaining this state (experienced
any injury/did not experience any injury) over subsequent time.

The primary outcome for this study was attrition fromMarine
recruit training that was registered by the secretary initial military
training courses of the MOC. In case of dropout, the date and
reason (i.e., discharge on individual request, injury, military
competences, or other reasons) were also registered. In addition,
an embedded monitor sent the recruit an exit survey. We
extracted 5mental and physical health concepts of the exit survey
to explore the self-reported reasons for dropout in those domains.
Recruits were asked to rate these statements on a 10-point Likert-
scale. Concerned statements were as follows:Mypreparation was
insufficient; Apparently my physical fitness is lacking; I found it
too hard mentally; I stopped on the advice of the military physi-
cian; Injuries forced me to quit.

Statistical Analyses

All analyses were performed using R, version 3.5.2 (13). Reasons
for dropout were described as frequencies. In case of dropout in
the first 4 weeks, responses on the exit survey at or above 7 were
described as the main reason(s) for early dropout.

For the time-updated prediction model, we used a Cox pro-
portional hazard landmark approach for which we defined non-
overlapping landmarks at each week. The training took 24 weeks,
thus, we were able to identify S5 23 landmarks. For each landmark
time, we created a data set including all recruits who were still in
military training up to that landmark time point. We defined a su-
permodel by stacking the landmark data sets (18). The hazard for
individual i at landmark s5 1,…S was defined as follows:

hðtjZðsÞ; sÞ ¼ h0ðtÞexpðZiðsÞðb1 1b2sÞ1XigÞ;
where h0ðtÞ was the baseline hazard function, ZiðsÞ was the

updated values of the time-varying mental and physical health
status of individual i at the start of landmark s, and Xi was the
baseline characteristics of individual i at the start of the training
with corresponding regression coefficients g. Note that the hazard
ratios (HRs) of the time-varying characteristics were allowed to
change over landmarks. Parameter estimates of the models as
obtained in the imputed data sets were pooled using Rubin’s rules
and reported as HRs with a 95% confidence interval (95%CI). A
detailed description of the landmarking approach for dynamic
prediction of survival is provided by van Houwelingen and
Putter (18).
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Missing Data. In case of missing baseline measurements, we used
single mean imputation to impute continuous normally distrib-
uted baseline characteristics to optimize the sample size and
prevent omitting useful information (20). Missing data in the
weekly measured time-varying mental and physical health status
were imputed using the “last observation carried forward”
(LOCF) approach (17), after checking for appropriateness. If it
was not possible to impute the mental and physical health status
using LOCF for a particular landmark, this landmark was re-
moved from the analysis. For instance, this meant that with
missing observations at the first landmark, the follow-up period
of this individual started at the landmark at which the time-
varying covariates were first observed (i.e., left truncation).

Model Validation. We used 10-fold cross-validation to train and
test the prediction model and repeated this procedure 500 times.
In 10-fold cross-validation, subjects of the original sample are
randomly partitioned into 10 equal size subsamples. Of the 10
subsamples, a single subsample is retained as the validation data
for testing the model, and the remaining 1021 subsamples are
used as training data.

Model Assessment. We assessed the discriminative ability of the
model (c-index) based on the area under the time-dependent re-
ceiver operating characteristic (ROC) curve (AUC) (2,9). In ad-
dition, AUC values were calculated for each landmark s for the
prediction of attrition from training at week 1, week 4 (because
most of the dropout occurs during the first month in training),
andweek 12 (longer term follow-up half way in training).We also
determined time-dependent sensitivity and specificity at the cor-
responding time points. We defined a reference subject for in-
terpretability of the regression coefficients by averaging the values
of the predictor variables. Our reference subject was 23-year-old
and 1.80 meters tall, body mass 80 kgs, had 14% body fat, ran
2.8 km on the Cooper test, did 55 push-ups and 55 sit-ups in 2
minutes each, and scored a neutral (5) score on the mental and
physical health status. Finally, to quantify the added value of the
time-updated approach, we compared the prediction accuracy of
the model with a conventional Cox proportional hazard model
including baseline variables only (15).

Results

Data were available from 744 recruits, of whom 408 (54.8%)
dropped out from training. Ten (1.4%) individuals dropped out
in the first week without any mental and physical health status
observations. Therefore, they were excluded from further analy-
sis. From 64 (8%) recruits one or more baseline measurements
were missing and imputed by means. In 32 (4%) recruits, the
time-varying characteristics were left truncated. Baseline char-
acteristics are described in Table 1.

Of the 408 dropouts, 137 recruits dropped out because of
musculoskeletal pain, 240 recruits were discharged on individual
request (because of lack of motivation to follow through), and 27
recruits due to other reasons. Self-reported reasons for early
dropout (first 4 weeks of Marine recruit training; 22%, multiple
options possible, missing data n5 25) were as follows: “I found it
too hard mentally” n 5 21, “Apparently my physical fitness is
lacking” n5 17, “Injuries forced me to quit” n5 11, “I stopped
on the advice of the military physician” n 5 8, and “My prepa-
ration was insufficient” n 5 7.

The final time-updated supermodel contained all but one of
the a priori selected baseline variables and time-varying

covariates to predict the hazard of attrition from Marine re-
cruit training for each landmark as comprehensive as possible.
The statement “I feel mentally fit” was excluded from the
model because most recruits had no measurements (61%) and
its variance was close to zero. Hazard ratios with 95%CI of the
models with and the without time-updated predictors are
presented in Table 2.

The linear predictor for an individual at each point in time
reflects the hazard of attrition from Marine recruit training
given a subject’s baseline characteristics and updated mental
and physical health status. Figure 1 shows the dynamic ROC
curves with the thresholds of the linear predictor that leads to
the highest sensitivity and specificity at particular follow-up
times.

The AUCs of the landmark supermodel were 0.78 (95% CI
0.74–0.82), 0.75 (0.72–0.77), and 0.73 (0.69–0.75) in week 1,
week 4, and week 12, respectively. The time-dependent AUC
declined slightly over time as the number of events—dropouts
from training—increased. The AUC can be interpreted as the
probability that a recruit who drops out on landmark s had a
model score (linear predictor) higher than that of a recruit who
retains beyond s. The sensitivity and specificity were 66%,
71%, in week 1; 64%, 70% in week 4; and 60%, 68% in week
12, respectively. Figure 2 shows the time-dependent discrimi-
native ability of the Cox model as the AUC over time in days
(t), in the observed data and corrected for over optimism using
10-fold cross-validation as the AUC over time in days (t). The
estimated AUC(t) function tends to decline over time, but
discriminative ability remains fair (.0.70 AUC(t)). The over
optimism corrected AUCs in week 1, 4, and 12 were 0.75
(0.72–0.79), 0.73 (0.71–0.75), and 0.71 (0.69–0.73), re-
spectively. This model is programmed in Shiny (5) from R and
is available on request. For the use of this model, baseline
variables and weekly values of the RMS can be implemented in
the Shiny app to obtain individual linear predictors that can be
held against the time-dependent threshold to quantify in-
dividualized and time-updated risk of dropout from training.

The AUCs of the conventional Cox proportional hazardmodel
including only baseline variables were 0.65 (0.61–0.69), 0.65
(0.62–0.68), and 0.64 (0.61–0.67) for predicting dropout in week
1, week 4, and week 12, respectively.

Discussion

The purpose of this study was to develop a prediction model to
derive dynamically updated estimates of conditional dropout

Table 1

Baseline characteristics of the recruits included for model
development and model validation.

Variable
All observations, N 5 744

Mean 6 SD

Age (y) 21 6 2.4

Height (m) 1.81 6 6.4

Body mass (kg) 77.9 6 7.9

Body fat % 13.6 6 3.1

Cooper test (km) 2.87 6 1.58

Push-ups in 2 minutes 54.2 6 11.5

Sit-ups in 2 minutes 55.0 6 7.5

Secondary vocational education (level 2 higher than 1) Level 1: 184 (25%)

Level 2: 130 (17%)

Unknown: 430 (58%)
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probabilities of an individual in Marine recruit training.
Through landmarking, we efficiently used longitudinal data by
exploring information from the same individual at several
landmarks and incorporating time-updated covariates. The
prediction model includes baseline characteristics and time-
varying mental and physical status with an AUC of 0.71
(0.69–0.73) in week 12 of Marine recruit training. Although
the estimated AUC (t) function in the validation data set
showed some decline over time, discriminative ability
remained fair. By evaluating the model performance using 10-
fold cross-validation we demonstrated that the discriminative
ability of the model remained.0.70 AUC (t). Thus, the model
showed no clear signs of overfitting (i.e., there was a limited
decrease in AUC) that suggests the model is robust and appli-
cable in practice.

The model confirmed that body mass and baseline physical
fitness are strong predictors for dropout fromMRT. Notably, the
HR for muscle strength (i.e., the maximum number of push-ups
and sit-ups that could be completed) seems to be small. However,
this might be a consequence of the small range in observations in
this sample and the fact that all recruits met the minimum fitness
criteria. In addition, one should keep in mind that the HR reflects
a change in risk per 10 repetitions change (10 push-ups/10 sit-ups
more). Thus, with further decrease in muscle strength, the in-
dividual dropout risk still increases accordingly.

One of the previously published models also included “train-
ers’ judgment”—which was based on the degree to which the
trainers believed the recruits showed the necessary effort (“mili-
tary quality”) and capacity to complete the training—which
seemed to be a strong predictor (3). The effect also held for the

Table 2

Parameter estimates showing the effect of multivariable factors on the risk of attrition from 24-week Marine recruit training.*†

Cox proportional hazard landmark supermodel hazard ratio (95% CI) p

1

Height (m) 0.674 (0.064–7.143) 0.743

2

Body mass (kgs) 0.957 (0.938–0.977) ,0.001

3

Age (y) 0.967 (0.922–1.015) 0.175

4

Education 1 0.913 (0.71–1.174) 0.478

5

Education 2‡ 0.675 (0.483–0.944) 0.022

6

Body fat (%) 1.034 (0.991–1.079) 0.125

7

Cooper test (per km) 0.157 (0.076–0.325) ,0.001

8

Push-ups (n, per 10) 0.984 (0.876–1.106) 0.788

9

Sit-ups (n, per 10) 0.999 (0.852–1.17) 0.987

10

Health 0.984 (0.799–1.211) 0.877

11

Motivated 0.655 (0.578–0.741) ,0.001

12

Muscle soreness 1.053 (0.945–1.173) 0.353

13

Sleep 1.048 (0.922–1.191) 0.473

14

Physical fitness 0.792 (0.651–0.964) 0.020

15

Self-reported MSI 0.673 (0.182–2.489) 0.553

16

Health: landmark 0.992 (0.971–1.012) 0.418

17

Motivated: landmark 1.018 (1.005–1.031) 0.007

18

Muscle soreness: landmark 0.998 (0.987–1.009) 0.713

19

Sleep: landmark 1.004 (0.992–1.017) 0.507

20

Physical fitness: landmark 1.007 (0.987–1.027) 0.505

21

Self-reported MSI: landmark 0.999 (0.909–1.097) 0.984

*CI 5 confidence interval n 5 number.

†The first 15 predictors are baseline variables, and variables 16 to 21 represent the regression coefficients of the landmarks.

‡Secondary vocational education, Level 2 higher than 1, included as dummy variables; MSI, self-reported musculoskeletal injury; hazard ratios for continuous variables refer to one unit change; landmark

variables for the time-updated predictors can be interpreted as Health:1, Health:2, Health:3 and so on.
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judgments made after the first 2 weeks, indicating very early
predictions. We speculate, however, that the strong effect of
trainers’ judgment is an example of the Golem effect—which

relates to the negative effects of self-fulfilling prophecies, distor-
tions in information processing, biases, and stereotypes (1). The
Golem effect describes the phenomena that people of whom little

Figure 1.Unsmoothed and smoothed dynamic ROC curves demonstrating the
discriminative performance of the prediction model for attrition from Marine
recruit training at day 7, 28, and 84 (week 1, 4, and 12, respectively). The
accuracy of the model, which is measured by the area under the curve, at week
1, 4, and 12 was 0.78, 0.75, and 0.73, respectively, as depicted by the ROC.
The unsmoothed ROCs are from time points that are located in a period of 2
weeks around the time point of the smoothed ROC (i.e., day 28: day 21 to day
35). The raw curves represent follow-up times with one or more events oc-
curring. The numbers in the graph (i.e.,20.19) represent the optimal threshold
for the linear predictors (log hazard ratio) at each follow-up time point. *Our
reference subject was 23–year-old and 1.80 meters tall, body mass 80 kgs,
had 14% body fat, ran 2.8 km on the Cooper test, did 55 push-ups and 55 sit-
ups in 2 minutes each, and scored a neutral (5) score on the mental and
physical health status. ROC, receiver operating characteristic.

Figure 2. Time-dependent AUC curve, follow-up time in days. Dynamic AUC plots all observations (left) and 500 times 10-fold
bootstrap cross-validation (right), representing the accuracy of the model score (linear predictor) under the assumption of
proportional hazards.
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is expected perform less well, resulting in even lower expectations
and performing even worse (1). We believe that this effect is un-
desirable and should be minimized by fostering a growth mindset
of recruits as well as their trainers. In such a situation, subjective
judgment is likely a less useful predictor. Hence, we did not in-
clude subjective trainers’ judgment and instead focused on re-
cruits’ self-reported status.

The regression coefficients of the time-updated predictors
are close to the neutral value, which is due, in part, to the fact
that we identified S 5 23 landmarks, which resulted in small
time-updated effects per landmark. Only the effect of both the
baseline value and time-updated effect over the landmarks of
the variable “I felt motivated last week” —typically prone to
variation—was statistically significant. The baseline re-
gression coefficient (0.66, log odds ratio of 20.42) shows that
high levels of self-reported motivation at entry military train-
ing indicates a lowered risk of dropout from training. In ad-
dition, the regression coefficient of the landmarks (1.02, log
odds ratio 0.02) indicates that the effect of this covariate
weakens as time passes—moving from a log odds ratio of 2
0.42 at s5 1 to20.40 at s5 2 and so on. Yet, the AUCs of the
landmark supermodel compared with the AUCs of the Cox
proportional hazard model showed that the addition of the
time-updated predictors resulted in a meaningful increase in
the discriminative ability of the model meaningfully. More-
over, contrary to previously developed prediction models for
attrition in the RNLMC (3) we did not select predictor vari-
ables based on the p value of their regression coefficients
because the risk of overfitting the model using such a data-
driven approach is relatively high (16). Thus, we believe that
this model will likely yield better predictions of dropout risk
compared with previous models. However, external validation
should still be performed to confirm the predictive accuracy
when the model is applied to new individuals.

In our sample, nearly 60% of recruits did not complete
Marine recruit training. Notably, 22% of the dropouts oc-
curred in the first 4 weeks of training. The statement “It was
too hard mentally” was predominantly reported as the main
reason for dropout in the exit survey. However, because the
majority was missing (i.e., 316 recruits [61%] had no obser-
vations) and the available data contained little variation, the
regression coefficient of the time-varying covariate “I have a
good mental fitness” could not accurately be estimated and
was therefore not included in the prediction model. We hy-
pothesize that these values were missing not at random (i.e., the
value of the observation caused the missingness of the obser-
vation itself). This emphasizes the importance of measuring
mental fitness accurately. We suggest substituting this item in
the RMS because it does not seem to capture signs of dejection
or apathy. Possibly one or multiple items measuring person-
ality traits would be useful and should be investigated for their
possible contribution to future updates of the prediction
model.

We developed this prediction model to the best of our
abilities by making a priori choices of inclusion of variables
that are readily available in practice, to prevent developing an
overly data-driven or hard-to-implement model. However,
various sources of uncontrolled variables raise uncertainties
in the interpretations of the outcomes. First, we used data that
were previously collected as a usual procedure to monitor the
training status of the recruits. Therefore, we had no control
over how the data were registered prospectively. Second, by
using self-reported measures we relied on the honesty of the

recruits on the time-varying variables. Third, there were re-
markably few self-reported musculoskeletal injuries in the
RMS. As a result, the regression coefficient for this predictor
shows strong statistical uncertainty as reflected by the
wide CI.

Practical Applications

We conclude that the prediction model developed in the cur-
rent study, which includes baseline characteristics and time-
varying mental and physical status, could be useful to identify
recruits at an increased risk of attrition from training
throughout the Marine recruit training. Using the model and
corresponding Shiny app, embedded monitors can detect
fluctuations in individual attrition risk by obtaining individual
linear predictors that can be held against the time-dependent
threshold to quantify individualized and time-updated risk of
dropout from training. Subsequently, they can educate and
advise training staff to make adaptions both on the group and
individual level. Possible strategies to provide timely adjust-
ments in the case of an elevated dropout risk can be in-
dividualization of training programs; offering flexible training
times for individuals to optimize training adaptations; routine
monitoring of training load; and clearly defined flexible
updated guidelines for training load and managing adherence
to those guidelines. We consider it worthwhile to attempt
validation and/or updating of the model in other military
settings. Suggestions for further research are investigating the
association between personality traits and their association to
(early) dropout from Marine recruit training to further
strengthen the model and implementation research to assess
the performance and impact of this prediction model when
applied in daily military practice.
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