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Abstract: Ceria based electrolyte materials have shown potential application in low temperature
solid oxide fuel cells (LT-SOFCs). In this paper, Sm3+ and Nd3+ co-doped CeO2 (SNDC) and pure
CeO2 are synthesized via glycine-nitrate process (GNP) and the electro-chemical properties of
the nanocrystalline structure electrolyte are investigated using complementary techniques. The
result shows that Sm3+ and Nd3+ have been successfully doped into CeO2 lattice, and has the
same cubic fluorite structure before, and after, doping. Sm3+ and Nd3+ co-doped causes the lattice
distortion of CeO2 and generates more oxygen vacancies, which results in high ionic conductivity.
The fuel cells with the nanocrystalline structure SNDC and CeO2 electrolytes have exhibited excellent
electrochemical performances. At 450, 500 and 550 ◦C, the fuel cell for SNDC can achieve an
extraordinary peak power densities of 406.25, 634.38, and 1070.31 mW·cm−2, which is, on average,
about 1.26 times higher than those (309.38, 562.50 and 804.69 mW·cm−2) for pure CeO2 electrolyte.
The outstanding performance of SNDC cell is closely related to the high ionic conductivity of SNDC
electrolyte. Moreover, the encouraging findings suggest that the SNDC can be as potential candidate
in LT-SOFCs application.

Keywords: LT-SOFCs; doped ceria; ceria-based electrolyte; electrochemical properties

1. Introduction

Solid oxide fuel cells (SOFCs), as a kind of clean energy device which can directly
convert chemical energy into electric energy, have attracted wide concern [1–3]. Gener-
ally, conventional SOFCs require high working temperature over 800 ◦C, which not only
narrows the selection range of electrolyte materials, but also limits the practical applica-
tions of cells. Therefore, it is necessary to lower the traditional operating temperature
to the range of low temperature (400–600 ◦C). Currently, a great deal of effort has been
focused on the research of LT-SOFCs. One of the key challenges in developing LT-SOFCs
is to seek electrolyte materials with high ionic conductivity as alternatives of traditional
yttrium-stabilized zirconium (YSZ) electrolyte. Extensive attempts have been devoted to
obtaining highly ionic conductors by exploring the new electrolyte materials or optimizing
the existing ones.

In recent years, cerium-based oxide (CeO2) has attracted extensive interests as the
electrolyte in the fields of fuel cell due to the characteristic to store and release oxygen via
facile Ce4+/Ce3+ redox cycles [4–6]. However, pure CeO2 has poor thermal stability and
can be easily sintered at high temperature, which causes a rapid decrease in its oxygen
storage/release capacity and catalytic activity [7,8]. In addition, pure CeO2 itself is an
insulator, its ionic conductivity is very low (10−5 S·cm−1) [9]. One approach to overcome
this limitation is to use the doping with lower valence metal cations, especially for some
trivalent rare earth (RE) cations. The doping of RE cations can lead to the ceria lattice
disorder and create stress in the ceria lattice, which could increase oxygen mobility from
ceria lattice to its surface, and decrease the activation energy of oxygen vacancy formation
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because of the charge neutrality and nonstoichiometry compensation [10]. Therefore, it is
expected that the oxygen ionic conductivity can dramatic rise due to the increase in the
oxygen vacancy concentration causing by the RE doping. For example, the conductivity
of Sm-doped ceria (Ce0.8Sm0.2O1.9, SDC) is 0.0114 S·cm−1 at 600 ◦C [11], while Gd-doped
ceria (Ce0.9Gd0.1O1.95, GDC) obtains a conductivity of 0.019 S·cm−1 at 600 ◦C [12]. The
Pr-doped CeO2 can improve the ionic conductivity by 1–3 orders of magnitude [13]. It was
found that oxygen vacancies can also be promoted in the ceria lattice by other aliovalent
doping of lower valence cations Nd3+, Ga3+ or Ca2+ [14]. Another promising approach is
co-doped or multiple ion doping route, i.e., ceria doped with two or more aliovalent cation,
which has been found to show higher ionic conductivity than single coped ceria. Banerjee
et.al. [15] reported that Ca and Sm co-doped ceria displayed an amazing ionic conductivity
of 0.122 S·cm−1 at 700 ◦C. Sr and Tm co-doped ceria designed by Zhu produced the ionic
conductivity of 0.13 S·cm−1 at 550 ◦C [16]. Fan et.al. [13] developed the SDC with Nd3+

and Pr3+ dopants and the ionic conductivity of the doped ceria reached 0.125 S·cm−1 at
600 ◦C. Aliye Arabacı et al. [17] studied the performance of Gd3+ and Nd3+ co-doped
CeO2 electrolyte (GNDC) materials, and found that the GNDC ionic conductivity was
significantly improved compared with undoped ceria. Shobit Omar et al. [18,19] found the
ionic conductivity of Sm3+ and Nd3+ co-doped ceria (SNDC) to be 30% higher that of GDC
at 550 ◦C. These results demonstrate that double or co-doping is a successful strategy and
can greatly promote the ionic conductivity of ceria-based electrolytes.

In addition, the nanotechnology approach is also very effective in enhancing the ionic
conductivity of ceria-based oxides. And it has aroused extensive interests of scientist
community in gaining good ionic conductivity. Recently, nanocrystalline ceria alone
have been introduced as the electrolyte for advance LT-SOFCs. Using nanocrystalline
electrolytes, the ionic conductivity can be further improved. Takamura [20] prepared
the CeO2-based nanoparticles and acquired the conductivity of 0.003 S·cm−1 at the low
temperature (300 ◦C). Chen et al. [21] reported that the nanocrystalline GDC electrolyte
generated a remarkable power out of 591.8 mWcm−2 with extraordinary ionic conductivity
of 0.37 S·cm−1 at 550 ◦C. The out performance is more than 3 times higher than that of
traditional high-temperature sintered GDC electrolyte. The nanocrystalline electrolyte has
presented unexceptionable properties as compared to the conventional electrolyte, which
revealed that the interface/surface conduction of nanocrystalline GDC electrolyte was
critical in improving ionic conductivity.

Given that the advantages of co-doped strategy and nanocrystalline electrolyte, in this
work, we synthesized a Sm0.075Nd0.075Ce0.85O2-δ (SNDC) material with better performance
than GDC via Sm3+ and Nd3+ co-doped ceria strategy, and further fabricated it into the
nanocrystalline SNDC electrolyte. Various experimental characterizations were carried out
to investigate the phase structure, microstructure, electrical and electrochemical properties,
as well as fuel cell performances of the nanocrystalline SNDC and pure CeO2 electrolytes.
The surface properties of the materials were studied to understand its conduction behavior.
Remarkably, the Sm3+ and Nd3+ co-doped ceria exhibited high ionic conductivity and dis-
played excellent fuel cell performance of 1070.31 mW·cm−2 at 550 ◦C. Here the mechanisms
on the greatly enhanced electrical property is also discussed.

2. Experimental
2.1. Fabrication of Materials

Sm3+ and Nd3+ co-doped CeO2 (Sm0.075Nd0.075Ce0.885O2-δ, SNDC) and pure CeO2
powders were prepared by glycine-nitrate method. Stoichiometric amounts of
Ce (NO3)3·6H2O (≥99%), Sm2O3 (99.9%), Nd2O3 (99.9%), C2H5NO2 (99.5~100.5%), HNO3
(65~68%) were used as original materials. The corresponding mass of Sm2O3 and Nd2O3
were weighed and dissolved completely in an appropriate amount of concentrated nitric
acid to form nitrate solution, respectively. Further, Ce (NO3)3·6H2O was dissolved in
distilled water. Then, they were mixed together to obtain a mixed solution, and an appro-
priate amount of glycine (C2H5NO2) was added to the solution at the ratio of glycine to



Nanomaterials 2021, 11, 2231 3 of 12

metal cation was 1.2:1. The mixed solution was heated and stirred slowly in a constant
temperature magnetic stirrer until it formed a glutinous colloid and finally boiled and
spontaneously ignited, resulting in a fluffy yellowish powder. The precursor powders
were calcined at 800 ◦C for 2 h to remove the residual organic matter in the sample, and
the cubic fluorite structure SNDC powder sample was obtained. CeO2 powders were also
prepared by the similar process.

2.2. Fabrication of Fuel Cells

The two types of fuel cells were prepared with the nanocrystalline structure SNDC and
CeO2 electrolytes, respectively. Foam-Ni-NCAL was used as the electrode layer, and SNDC
or CeO2 powders was used as electrolyte layer. The foam-Ni-NCAL electrode layer was
prepared using commercial Ni0.8Co0.15Al0.05LiO2-δ (NCAL) oxide powder (Tianjin Bamo
Science and Technology Joint Stock Limited, Tianjin, China) and nickel foam (Ni-foam).
The Ni-foam was first made into a round shape with a diameter of 13 mm using a punch.
The NCAL powders, terpineol and alcohol were mixed into slurry, and the slurry was
coated onto the Ni-foam and dried at 120 ◦C to form the electrode layer (foam-Ni-NCAL)
of the cell. Then a piece of the foam-Ni-NCAL electrode was placed at the bottom of the
mold, then 0.32 g SNDC electrolyte powder was weighed and spread evenly as the middle
layer, and then another foam-Ni-NCAL electrode was placed on the SNDC powder. Finally,
the three layers with electrodes and electrolyte were pressed under 450 MPa into a single
cell constructed in a symmetrical configuration of foam-Ni-NCAL/SNDC/NCAL-Ni-foam.
The effective electrode area of the cell was 0.64 cm2. The thickness and diameter of the
cell are 2 mm and 13 mm, respectively. Hydrogen and air were passed into the electrode
for measurement as fuel and oxidant, respectively. The foam-Ni-NCAL/CeO2/NCAL-Ni-
foam cell with the nanocrystalline structure CeO2 electrolyte was also made by the same
method, as described above.

2.3. Characterizations

The phase structures of CeO2 and SNDC samples were determined through a pow-
der X-ray diffraction (XRD, MiniFlex 600, Rigaku Corporation, Rigaku, Japan) at room
temperature and 2θ varying from 20◦ to 80◦ by steps of 10◦. Raman spectra analysis was
performed by using a Horiba Raman scope (Raman, Horiba Jobin Yvon U1000, HORIBA
Scientific, Paris, France) equipped with an Olympus LMPlan optical microscope and a
charge-coupled device (CCD) camera. The microstructural characterization was carried out
using scanning electron microscopy (SEM, Phenom Pro, Phenom-World B.V., Eindhoven,
Netherlands), High resolution transmission Electron Microscope (HR-TEM, Titan G2 60-300,
FEI, Hillsboro, OR, USA) and Energy dispersive X-ray analysis (EDS, X-MaxN150, Oxford
Instruments, Oxford, UK). The oxidation states and surface chemical properties of CeO2
and SNDC samples were studied by X-ray photoelectron spectroscopy (XPS, ESCALAB-
250Xi, Thermo-fisher Scientific Co., Thermo-fisher Scientific Co., Waltham, MA, USA). The
current–voltage performances of the symmetrical cells were tested at temperatures from
450 to 550 ◦C using an electronic load (ITECH DC ELECTRONIC LOAD, IT8511, ITECH
Electrical Co., Ltd., Nanjing, China), H2 and air were supplied as the fuel and the oxidant,
respectively. The flow rates of both H2 and air were 120 mL/min. The electrochemical
impedance spectra (EIS) measurements were determined on the symmetric cells under
open-circuit conditions using Zahner Zennium electrochemical workstation (EIS, Thales
Z2.29 USB, Zahner Zennium, Germany Zahner electrochemistry Company, Kronach, Ger-
many). The frequency range of measured EIS of the cells was 0.1–106 Hz with an AC
amplitude of 5 mV.

3. Results and Discussion
3.1. Results of XRD

The phase structures of the CeO2 and SNDC materials sintered at 800 ◦C for 2 h were
analyzed by X-ray diffraction experiments. The testing range of 2θ varied from 20◦ to
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80◦. As shown in Figure 1, the diffraction peaks located at 2θ = 28.5◦, 33.1◦, 47.4◦, 56.3◦,
59.1◦, 69.4◦ and 76.6◦, can be assigned to the (111), (200), (220), (311), (222), (400) and (331)
indexed characteristic peaks with cubic fluorite structure of CeO2 according to PDF#43-
1002 [13]. The Co-doped SNDC electrolyte materials still have the same phase structure as
CeO2, both of which belong to cubic fluorite phase, indicating that Sm3+ and Nd3+ have
successfully replaced the position of Ce4+ in the lattice and traces of impurity phase are
not observed. Moreover, the peak position of SNDC is slightly shifted to lower angle
(Figure 1b). According to the Bragg formula, the crystal lattice becomes larger after doping,
which is mainly attributed to the lattice expansion caused by the bigger ionic radius of
Sm3+ (1.079 Å) and Nd3+ (1.109 Å) substitutions at Ce4+ (0.97 Å) sites [11,22].
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Figure 1. X-ray diffraction patterns of (a) CeO2 and SNDC powders and (b) magnified (111) crystal
face of the CeO2 and SNDC powders.

3.2. Raman Spectra Analysis

Raman spectroscopy is used to reveal deeply the presence of oxygen vacancies caused
by the change in the structure of the lattice chemical expansion owing to producing stresses
of constrictions by the dopant cation. Figure 2a shows the Raman spectra of the pure CeO2
and SNDC samples from 200–800 cm−1. The results of the Raman spectra are obtained and
analyzed by using the excitation laser line of 514 nm. It is known that the CeO2 has a cubic
fluorite structure, and belongs to the Fm-3 m space group. As depicted in Figure 2a, pure
CeO2 has only a single allowed Raman mode and shows a strong band at about 464.2 cm−1

(Peak α), which has F2g symmetry and can be assigned to a symmetric breathing mode
of the oxygen atoms around Ce-O8 vibration unit. In comparison to pure CeO2, the Sm3+

and Nd3+ Co-doped sample (SNDC) has shown a small systematic shift of the F2g mode
towards lower frequency, and the F2g peak becomes wider and its intensity also becomes
weaker. As reported, the shift of the F2g mode maybe result from the expansion of ceria
lattice and the increase of oxygen vacancies, while the shape change in the Raman line
is mainly related to the lattice distortion of CeO2 induced by the substitution of Sm3+

and Nd3+ ions [11,23–25]. In addition, in the Sm3+ and Nd3+ co-doped ceria sample, two
additional weak second order peaks at about 553.9 cm−1 (Peak β) and 605.5 cm−1 (Peak γ)
are detected (Figure 2b), which can be attributed to defect spaces owing to extrinsic oxygen
vacancies or structural defects caused by Sm3+ and Nd3+ dopants in ceria lattice [26,27].
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3.3. X-ray Photoelectron Spectroscopy (XPS) Analysis

XPS is employed to analyze the element valence states so as to study the surface
chemical properties of CeO2 and SNDC samples. Figure 3a shows the XPS full spectra
of samples, and it is clear that there are Ce, Sm, Nd, O, and C characteristics in SNDC
samples. In order to determine the chemical state, the core-level spectra of O 1s, Sm 3d,
Nd 3d and Ce 3d are discussed in detail, and the multi-component XPS correlation peaks
are analyzed by Shirley-type background subtraction method. The three peaks of oxygen
are related to the divergence of chemical environment in the sample, which are divided
into lattice oxygen, defect oxygen and oxygen vacancy [28]. The O 1s XPS core-level
spectra of the CeO2 and SNDC samples (Figure 3b) shows two types of different oxygen
species features, including the chemically adsorbed oxygen species (Oads) and the lattice
oxygen (Olatt) [29]. In general, the peak at 527.2–529.4 eV are attributed to Olatt (O2−),
while the signal of the binding energy at 529.5–532.1 eV corresponds to the oxide defects or
the surface oxygen species (Oads) adsorbed on the oxygen vacancies (i.e., O−, OH−, and
CO3

2−) [30]. Usually, once the doped Sm3+ and Nd3+ are incorporated into the ceria
lattice, the related Ce−O−Sm or Ce−O−Nd bonds are formed, which makes the migration
process from the inner lattice oxygen to the surface lattice oxygen easier because of a slight
change in electro-negativity of the guest and host ions [11,31]. In Sm3+ and Nd3+ co-doped
CeO2, it is interesting to observe that the Oads/Olatt value in the SNDC sample is 0.84,
which is greater than the value of un-doped CeO2 (0.32). This indicates that the lattice
oxygen in the double-doped sample is significantly reduced and the oxygen ion transfer
number is increased. Figure 3c shows the Ce 3d core-level spectra with Ce 3d5/2 and Ce
3d3/2 states of SNDC and pure CeO2 samples. The spectra deconvolution reveals that
the presences of the peaks mainly result from Ce 3d5/2 and Ce 3d3/2 contributions, and
the “v” and “u” peaks correspond to Ce 3d5/2 and Ce 3d3/2 states, respectively [16,32,33].
Moreover, the peaks labelled with v, v”, v”′, and u, u”, u”′ are due to cerium ions in the
4+ state, while v0, v′, and u0, u′ are assigned to 3+ ions [27,34], which clearly indicate the
coexistence of Ce4+ and Ce3+ ions on the surface of the samples. It has been reported that
the existence of Ce3+ is generally associated with the formation of oxygen vacancies and
a higher Ce3+ concentration implies larger amounts of oxygen vacancies [35]. As shown
in Figure 3c, the sum of the spectral peak areas related to the Ce3+ increases in SNDC
compared with CeO2, implying that higher Ce3+ ion concentration can be obtained in
SNDC sample [36], which facilitates the redox cycles between Ce3+ and Ce4+, and results
in more oxygen vacancies on the surface. Figure 3d,e shows the Sm3d and Nd 3d XPS
spectra of the as-prepared SNDC sample. In the case of Sm 3d spectra (Figure 3d), two
single peaks are fitted with a pair of Sm 3d5/2 (located at 1109.62 eV) and Sm 3d3/2 (located
at 1082.08 eV) spin-orbit coupling components by only considering the spin-orbit splitting.
The XPS results for the Nd 3d spectra (Figure 3e) fitted into the distinguishable peaks show
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that the oxidation states of Nd in the compound are 3+ and 4+ states, and Nd3+ and Nd4+

coexist in the sample. More importantly, it clearly shows that the spectra peak area of Nd3+

is obviously larger than that of Nd4+. This suggests that the oxidation state of Nd3+ is
dominant in the SNDC sample. As reported, with the increase of temperature, the high
valence cation will be reduced to low valence cation, resulting in the formation of more
oxygen vacancies [37,38]. This is very beneficial to the migration of oxygen ions and the
improvement in ionic conductivity and electrochemical performance of SOFCs.
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3.4. EDX and HR-TEM Analysis

The EDX element analysis of pure CeO2 and SNDC samples is presented in Figure 4a–h. A
similar distribution of elements can be observed for the pure CeO2 (Figure 4a–c) and SNDC
(Figure 4d–h). This demonstrates the homogeneous Sm3+ and Nd3+ ions distribution in the
CeO2 lattice. This result provides good agreement with the XRD results of SNDC sample.
It also confirms that the Sm3+ and Nd3+ ions have been successfully doped into the CeO2
lattice through co-doped approach, instead of forming second phases. Figure 4i shows
the HR-TEM images of nanocrystalline SNDC powder prepared by the glycine-nitrate
method. As shown, the SNDC powders are consisted of nano-sized particles and have
some agglomeration. The sample exhibits large domains of SNDC, with a certain ordered
framework, and non-uniform nanoparticles with a crystallite size ranging from 20 to 40 nm,
interconnected to each other. Figure 4j shows the HR-TEM images at larger magnification
of the raw nanocrystalline SNDC powder. It shows that the SNDC is highly crystalline
and display an interplanar spacing of 0.31 nm, corresponding to the (111) lattice planes
of SNDC.
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3.5. Fuel Cell Performance Analysis

Figure 5a,b shows I–V and I–P characteristics for single cells with nanocrystalline
structure CeO2 and SNDC electrolytes and the corresponding simple schematic diagram
of the cell. As reported previously, the open circuit voltages (OCVs) of cells increase
rapidly at the beginning of the test and then stays above 1 V, which is closed to the value
of SOFC reported in the literature [21], indicating that the nanoelectrolytes are effective
at separating H2 and air from each side of the cell. The achieved OCVs of the cell for the
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nanocrystalline structure SNDC electrolyte (Figure 5a) reach the 1.154, 1.148 and 1.141 V
at 450, 500 and 550 ◦C, respectively, which are more than those (1.14, 1.133 and 1.078 V at
corresponding temperatures) of cell with the nanocrystalline structure CeO2 electrolyte
(Figure 5b). The higher OCVs indicated that the nanocrystalline structure CeO2 and SNDC,
as the electrolytes of cells, can prevent the ceria electronic current leakage and achieve
better performance. Correspondingly, the peak power densities of reach 406.25, 634.38, and
1070.31 mW·cm−2 for the nanocrystalline SNDC, but those of the nanocrystalline CeO2
cell were 309.38, 562.50, and 804.69 mW·cm−2, respectively. The peak power densities are
increased by an average of about 26% compared with those of CeO2 cell. The significant
enhancement of the power density reflects higher ionic conductivity of the SNDC electrolyte
and lower electrode polarization resistance.
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In order to investigate the electrochemical mechanism in the cells, the SEM microstruc-
ture and EIS analysis were carried out. Figure 6 shows the cross-sectional SEM images of
the two symmetrical cells with a foam Ni–NCAL/electrolyte/NCAL–Ni foam structure
after the measurement. From the Figure 6, it can be observed the two cells have all similar
microstructures. The symmetric foam Ni-NCAL electrodes show porous structure and
closely combined with electrolytes (Figure 6b,e), while the nanocrystalline electrolytes
have no obvious pores, and both pure CeO2 and SNDC electrolytes present approximately
650 µm thick (Figure 6a,d). From Figure 6c,f, the pure CeO2 and SNDC electrolytes display
the nanocrystalline microstructures, and the nanocrystalline electrolyte particles are below
50 nm. However, the SNDC exhibits even smaller nanocrystalline particles. Therefore, the
significant difference in electrochemical performance of the cells can be attributed to the
change in ionic conductance caused by the lattice expansion after double-doping.

Figure 7a,b shows the impedance spectra of the cells with the nanocrystalline structure
CeO2 and SNDC electrolytes under H2/air condition at 450–550 ◦C. The equivalent circuit
obtained according to the impedance spectrum fitting is shown in the Figure 7c. The
formula used for fitting is R0 (Q1R1) (Q2R2), where R0 is the overall ohmic resistance,
R1 and R2 correspond to the high and low frequency resistance arcs from the electrode,
respectively, and Q is a constant phase element. The high frequency (R1, Q1) arc is usually
attributed to ion charge transfer process and the low frequency (R2, Q2) arc is commonly
associated with oxygen dissociation and surface diffusion processes. The high-frequency
intercept on the real axis represents the ohmic resistance (R0). The difference between the
high- and low-frequency intercepts on the real axis is related to the electrode polarization
resistance (Rp). It can be seen from Figure 7 that at 550 ◦C, the R0 value for the CeO2 cell
was 0.12 Ω·cm2, and that for SNDC cell was 0.11 Ω·cm2, while the Rp value for the CeO2
cell was 0.55 Ω·cm2, and that for SNDC cell was 0.44 Ω·cm2. Obviously, compared with
CeO2 cell, SNDC cell has smaller R0 and Rp values. In particular, the Rp value of SNDC
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cell is much lower than the Rp value of the CeO2 cell. Since the two cells adopt a foam Ni–
NCAL/electrolyte/NCAL–Ni foam symmetrical structure and both use foam Ni–NCAL
as the electrode, the intrinsic property of these electrodes should be the same. Moreover,
the NCAL is an electron conductor, and the NCAL combined with the nickel foam has
also high conductivity. Therefore, the R0 mainly originates from the electrolytes, and the
differences between their Rp are most likely owing to the difference in the nanocrystalline
electrolytes used. Combined with the results of the Raman Spectra and XPS analysis, it can
be seen that the difference in Rp of the two electrolytes can be attributed to the different
electrochemical performance in the three-phase interface caused by Sm3+ and Nd3+ dopants
in ceria lattice. After double doping, the active site of the interface between electrolyte and
electrode increases, and the three-phase interface increases, which eventually leads to the
decrease of the Rp of the cell. In addition, as for SNDC, the ionic activity increases with the
increase of test temperature, so the Rp shows a decreasing trend. The lower R0 in SNDC
indicates that the SNDC electrolyte has higher ionic conductivity than that of the pure
CeO2. In ceria-based electrolyte, the O2− transport relies on the charge transfer process
during the redox process. The XPS analysis has shown that the Ce3+ ion concentration
increases in SNDC. Therefore, at the surface of the SNDC particles, oxygen ion transfer
can be facilitated by the electron exchange resulting from the redox between Ce3+/Ce4+.
As reported, the oxygen reduction reaction (ORR) process was closely associated with the
electrode polarization loss of LT-SOFCs [39]. In this study, the lithiated transition metal
oxide (NCAL) was employed as symmetrical electrodes. The NCAL in SOFCs exhibits
superior catalytic activity for ORR in cathode and hydrogen oxidation reaction (HOR) in
anode [40]. The symmetrical NCAL electrodes can improve the anodic HOR process, while
enhancing the cathodic ORR process, and can generate more active oxygen species (e.g.,
O2−), which accumulate at the triple-phase boundary. The higher O2− ionic conductivity
in SNDC electrolyte promotes the transport of the active oxygen species (O2−) through the
SNDC electrolyte. This reduces the electrode/electrolyte interfacial polarization loss, thus
provides superior power out performance.
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4. Conclusions

We have successfully prepared Sm3+ and Nd3+ co-doped CeO2 (SNDC) and pure
CeO2 nanocrystalline electrolytes, and evaluated the chemical properties in low tempera-
ture solid oxide fuel cells. It has been found that the SNDC and CeO2 electrolytes exhibit
the nanocrystalline microstructures with a size of below 50 nm. The coexistence of Ce4+

and Ce3+ ions is on the surface of samples, and the SNDC has higher Ce3+ concentration
compared with the pure CeO2, implying higher oxygen vacancies and oxygen ionic con-
ductivity in SNDC, which is also confirmed by Raman spectra analysis. The fuel cell based
on the nanocrystalline SNDC electrolyte can achieve excellent electrochemical performance.
The peak power density of SNDC cell reaches 1070.31 mW·cm−2 at 550 ◦C, which is about
33% higher than that (804.69 mW·cm−2) of CeO2. This is mainly attributed to the high
ionic conductivity of SNDC caused by Co-doping. The fuel cell with the nanocrystalline
SNDC electrolyte can obtain high power output performance, suggesting the promising
potential applications for LT-SOFCs.
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