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ABSTRACT: Herein, we report the synthesis of two new manganese-based luminescent metal−
organic frameworks (LMOFs) [Mn0.5(tipe)(1,4-ndc)]n (1) and [Mn(tipe)(1,4-ndc) (H2O)·(DMF)2·
(H2O)3]n (2) [tipe = 1,1,2,2-tetrakis(4-(1H-imidazol-1-yl)phenyl)ethene (tipe) and 1,4-ndc = 1,4-
naphthalenedicarboxylic acid] constructed from an aggregation-induced emission (AIE) chromo-
phore ligand. Compound 1 can undergo a facile single-crystal-to-single-crystal transformation to form
compound 2, which results in an increase in dimensionality from a two-dimensional (2D) network to
a three-dimensional (3D) network. Both compounds demonstrate excellent performance for the
solution-phase detection of Fe3+ ions through a significant and rapid quench in luminescence
emission. Fluorescence titration experiments reveal that compound 2 is more selective toward Fe3+

compared to compound 1 because of its 3D stacking mode. The Ksv value for compound 2 (32 378
M−1) is twice as large as that for compound 1 (15 854 M−1) for the detection of Fe3+ ions. We
attribute this significant increase in performance to the increase in dimensionality. In addition,
compound 2 demonstrates high selectivity and sensitivity for the detection of Cr3+ cations and
Cr2O7

2− anions.

■ INTRODUCTION
In recent years, chemical sensors have attracted significant
attention due to their potential for applications in gas storage
and separation, luminescence-based sensing, detection of
analytes in the gas or liquid phase, and catalysis, to name a
few.1−6 Luminescence-based detection of harmful analytes is of
particular importance due to the general simplicity of the
approach. The development of low-cost, portable, precise, and
real-time luminescent sensors for the detection of harmful
chemical contaminants provides a promising alternative to
more resource-intensive detection methods. The rapid
detection of heavy metal ions in aqueous systems is of
particular importance. Moderate concentrations of metal ions
are required in living systems, and various biological disorders
may occur from a lack of metal ions, such as Fe3+ and Cr3+, in
organisms.7,8 However, high concentrations of metal ions can
cause a threat to human health. The use of fluorescent sensors
provides a simple technique to selectively detect Fe3+ ions.7,9

Unfortunately, these metal ions coexist in aqueous systems
with a wide variety of other metal ions. Thus, the selective
fluorescence-based detection of metal ions is of specific interest
because materials designed for this purpose need to account
for competitive interactions that may occur with other metal
ions. In turn, selectively detecting a single metal ion over
others can result in an arduous task.
As a family of new porous materials, metal−organic

frameworks (MOFs)10−12 have found significant potential in
applications related to chemical sensing, catalysis, gas storage
and separation, drug delivery, bioimaging, etc.13−22 These
highly crystalline materials result from the self-assembly of

inorganic metal ions with organic linkers into three-dimen-
sional (3D) extended networks. MOFs are endowed with
permanent porosity and large surface areas largely attributed to
open cavities that remain upon outgassing these materials. The
entrance of guest species may be limited by the pore size or
aperture of the resulting structure. Among MOFs, luminescent
metal−organic frameworks (LMOFs)23−28 possess outstanding
luminescent properties that result after excitation with a light
source. Through various types of interactions and mechanisms,
guest species that are encapsulated within the pores of these
frameworks can result in an enhancement or quenching effect
that alters the luminescence of the host, making LMOFs
promising candidates for use as chemical sensors.29−35

In previous research, we have reported LMOFs for the
selective detection of aromatic volatile organic compounds
(VOCs) by introducing an organic chromophore that contains
the highly fluorescent tetraphenyl ethylene (TPE) core
chromophore with an aggregation-induced emission (AIE)
effect.25 Herein, we report two new LMOFs Mn0.5(tipe)(1,4-
ndc) (1, JUST-12 or LMOF-317) and [Mn(tipe)(1,4-
ndc)(H2O)]·(DMF)2·(H2O)3 (2, JUST-13 or LMOF-318)
based on another TPE-core ligand, 1,1,2,2-tetrakis(4-(1H-
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imidazol-1-yl)phenyl)ethane (tipe)16 (Figure S1). From a
structural perspective, both compounds possess uncoordinated
N atoms and O atoms that decorate the walls of the resulting
1D channels and provide open sites for metal ions to interact.
Subsequently, we discovered that both materials undergo rapid
and selective luminescence quenching when exposed to Fe3+

ions. Compound 1 can be used to prepare compound 2
through a two-dimensional (2D)→ 3D single-crystal-to-single-
crystal transformation.36,37

■ RESULTS AND DISCUSSION
Structural and Topological Analyses. Single-crystal X-

ray diffraction (SXRD) studies reveal that 1 crystallizes in the
monoclinic system with space group P21/n (Table 1). In 1,

every Mn atom takes an octahedral geometry by binding to
four N atoms from the imidazolyl groups of four tipe ligands
and, in a monodentate fashion, to two O atoms from the
carboxylic acid groups of 1,4-ndc. In this structure, the Mn
atoms do not form clusters; instead, a primary building unit
(PBU) extends the structure into a two-dimensional (2D) net
(Figure 1a). The bond distances of Mn−N range from 2.273 to
2.320 Å, and the bond distances of Mn−O are all 2.150 Å
(Table S1).39,40 A closer look at the structure reveals that every
tipe molecule within the structure possesses two uncoordi-
nated N atoms and that every 1,4-ndc molecule possesses a
single uncoordinated O atom. These uncoordinated atoms lie
between the 2D layers and decorate the walls of the pore
(Figure 1b). These 2D layers can then pack with one another
through weak intermolecular interactions (Figure 1c). The
framework was simplified as a 4-c net with Schlafl̈i symbol by
Topos Pro41,42 (Figure 1d). These uncoordinated functional
groups within the structure provide an active site for the
interaction between the parent framework and the heavy metal
ions.
Compound 2 crystallizes in the monoclinic system with

space group P21/n (Table 1). Compared to 1, each Mn atom is
coordinated to three N atoms from the imidazolyl groups of
three tipe ligands and, in a monodentate fashion, to three O

atoms from carboxylic acid groups of two 1,4-ndc ligands,
forming an octahedral coordination environment (Figure 2a).
The bond distances of Mn−N and Mn−O range from 2.241 to
2.271 and 2.121 to 2.232 Å, respectively (Table S1). Similar to
compound 1, one uncoordinated N atom of each tipe and one
O atom from the carboxylic acid groups of 1,4-ndc ligand lie in
the channel of the structure, providing open sites for a possible
interaction between the framework and guest species. The
adjacent Mn atoms are bridged by the tipe ligands or 1,4-ndc
ligands to generate a 3D framework (Figure 2b). Compound 2
has one-dimensional (1D) channels along the crystallographic
b-axis with a pore size of 8.3 × 9.8 Å with a 30.3% solvent-
accessible volume calculated by Platon (Figure 2c). Simplifi-
cation of the structure using tipe as a 3-c node, the framework
may be seen as a 2-nodal net with (3, 4)-c net with the Schlafl̈i
symbol {4.82.103} (Figure 2d).

Optical Properties. The solid-state luminescent properties
of both compounds were studied at room temperature (Figure
3a). 1, 2, and tipe all exhibit blue emission at 448 nm (397 nm
excitation), 478 nm (380 nm excitation), and 455 nm (378 nm
excitation), respectively. The luminescent property of these
compounds originates from the AIE TPE-core.16,25,43−45 The
Commission International de I’Eclairage (CIE) coordinates of
1, 2, and tipe are (0.158, 0.129), (0.174, 0.260), and (0.175,
0.187), respectively (Figure 3b). Upon outgassing the porous
structure 2, we notice a red shift (17 nm) in the emission peak
compared to the as-made sample (Figure S2). This indicates
that the luminescence of compound 2 may be altered by the
guests’ species, in this case dimethylformamide (DMF) and
water, located within the pores of materials that interact weakly
with the organic linker.

Porosity Analyses. The permanent porosity of compound
2 was assessed by N2 adsorption−desorption experiments
conducted at 77 K. The Brunauer−Emmett−Teller (BET)
surface area of 276.17 m2/g was estimated from the nitrogen
isotherms. The powder X-ray diffraction (PXRD) pattern of
compound 2 remained intact after N2 isotherms and
demonstrated that this material is permanently porous (Figures
S3b and S4).

Sensing of Metal Ions. Based on the above structure
analysis, the interaction sites and porous nature of 1 and 2
render them as good candidates for luminescence-based
sensing of suitable guest molecules. Since the luminescent
properties of both compounds may depend on the solvents
contained within the pores, we exposed them to various
organic solvents to study their stability and change in
luminescence (Figures S3 and S5). Samples underwent solvent
exchange every 4 h at room temperature for 24 h, and then, 1
and 2 were dispersed through ultrasonication to a concen-
tration of 1 mM for 30 min before collecting fluorescence data.
The results indicate that although there exist some minor
differences on small peaks caused by solvent effects, frame-
works of compounds 1 and 2 are still stable. Also, both
compounds experience a luminescence enhancement upon
submerging in water (Figure S5). Based on the solvent-stability
results, further experiments to detect metal ions were
conducted in an aqueous environment. Various metal ion
solutions of 1 mM were injected into 10 mM suspensions of
MOF samples in water after which the changes in
luminescence were recorded at room temperature under 365
nm excitation (Figure 4).
As shown in Figure 4, Fe3+ ions quenched luminescence

emission of 1 and 2. For 1 (Figure 4a), the addition of Gd3+,

Table 1. Crystallographic Data for 1 and 2

1 2

empirical formula C50H35Mn0.5N8O4 C50H34MnN8O5

formula weight 839.33 881.79
space group P21/n P21/n
a (Å) 13.774(12) 18.176(5)
b (Å) 11.863(11) 8.907(3)
c (Å) 25.44(2) 33.063(10)
α (o) 90 90
β (o) 91.679(10) 95.363(4)
γ (o) 90 90
V (Å3) 4155(6) 5329(3)
Z 4 4
Dc (g/cm

3) 1.342 1.099
μ (mm−1) 0.230 0.295
F (000) 1742.0 1820.0
θ range [deg] 1.602−24.309 2.475−24.999
collected reflections 6725 9239
unique reflections 4509 5235
R1, wR2 [I > 2σ(I)] 0.0856, 0.2497 0.0843, 0.2099
R1, wR2 [all data] 0.1222, 0.2924 0.1427, 0.2341
GOF 1.033 1.020
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Cd2+, Eu3+, Pb2+, Mg2+, Na+, Zn2+, Ni2+, and Co2+ ions resulted
in a slight enhancement of emission, but the addition results in
a slight quench in the case of Cu2+, Fe2+, and Cr3+. As for 2, the
addition of Zn2+ and Cd2+ results in a slight enhancement in
emission, but nearly no obvious spectral changes were
recorded in the case of alkali metal cations, such as Na+ and
Mg2+, and rare-earth metal cations, such as Gd3+, Eu3+, and
Sm3+, while Fe3+, Ni2+, Cu2+, and Co2+ ions result in a slight
quench in emission. Furthermore, after completing the
fluorescence detection experiments, both compounds 1 and
2 experience a significant change after exposure to Fe3+ and
convert to a yellow color within 1 min, indicating the
adsorption of the metal ions from the solution. The selectivity
toward Fe3+ was then tested by placing the compounds with
adsorbed Fe3+ ions in aqueous solutions of Ni2+, Cu2+, and
Co2+ for a week (Figures S6 and S7). To our surprise, the
compounds both retain their yellow color, indicating that both
compounds 1 and 2 prefer to selectively bind the yellow Fe3+

ions over other heavy metal ions. To further study the
competitive adsorption of heavy metal ions, we introduced
samples to multiple equivalents of other metal ions and
discovered that the luminescent response induced by Fe3+ is
not altered, suggesting that 1 and 2 can sense Fe3+ with
remarkable selectivity. Compared to 1, 2 also can detect Cr3+

ions, though the quenching effect of Fe3+ is superior to that of
Cr3+. The mechanism of luminescence quenching induced by
Fe3+ or Cr3+ is due to the interaction of Fe3+ or Cr3+ with the
uncoordinated N atom of tipe and O atoms of 1,4-ndc,

reducing the efficiency of ligand to metal charge transfer
(LMCT).22

The quenching effects of anions for 2 were also studied
(Figure S8). The result reveals that only Cr2O7

2− anions
completely quench the fluorescence of 2. Out of the inorganic
anions that we tested, HCO3−, NO3−, Br−, SO4

2−, and Cl− all
result in a slight enhancement in emission, while ClO4

−, I−,
and CO3

2− cause a slight quench in emission.
To evaluate the sensing performance of 1 and 2,

fluorescence titration experiments were performed by monitor-
ing the fluorescent changes induced upon the gradual addition
of analytes. As shown in Figures 5 and S9, the luminescent
intensities of 1 and 2 decrease gradually with the addition of
analytes. The quenching efficiency was quantified using the
Stern−Volmer (SV) equation46−50

= [ ] +I I K/ Q 10 sv

Io and I are the luminescent intensities of suspensions before
and after the addition of analytes, respectively, [Q] is the molar
concentration of analytes, and Ksv is the quenching constant
that was used to quantitatively evaluate the sensing efficiency
of the two compounds.
From the Stern−Volmer analysis, we clearly see that the

quench in emission of compounds 1 and 2 as a function of the
concentration of analytes injected follows a linear relationship.
For compound 1, we calculate the Ksv to be 15 854 M−1 for
Fe3+ as deduced from the Stern−Volmer (SV) equation. As for
compound 2, the Ksv for Fe

3+ can be calculated to be 32 378
M−1, which is comparable to those of previously reported

Figure 1. (a) Coordination environment of 1: Mn atoms connect to four N atoms and two O atoms. (b) Two N atoms from two different
imidazolyl groups of each tipe ligand and one O atom from one carboxylic acid group of each 1,4-ndc ligand are uncoordinated. (c) Depiction of
the 3D packing of the 2D nets. (d) Topological structure of 1. The framework was simplified as a 4-c net with Schlafl̈i symbol. In all structures,
hydrogen atoms have been omitted for clarity.
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MOF-based sensors for detecting Fe3+ and twice as large as for
compound 1. The limit of detection (LOD = 3σ/Ksv) values of
1 and 2 were then calculated to be 1.01 × 10−5 M−1 and 4.82 ×
10−6 M−1, respectively.51−55 The results indicated that
compound 2 has better selectivity toward Fe3+ because of its
3D structure. The Ksv value for Cr3+ was 6258 M−1, half that
for Tb(3+)@Cd-MOF,56 and the value is far less than that for

Fe3+. So, the quenching effect of Fe3+ is superior to that of Cr3+

remarkably. Fluorescence titration and analysis by the Stern−
Volmer equation reveal that compound 2 has a Ksv value of

10 113 M−1 for Cr2O7
2−, a value comparable to those of

materials previously reported for the sensing of Cr6+ ions

(Figure S9).53,57

Figure 2. (a) Coordination environment of 2: Mn atoms connect to three N atoms and three O atoms. (b) One uncoordinated N atom of each
tipe and one O atom from the carboxylic acid groups of 1,4-ndc ligand lie in the channel. (c) 2 has 1D channels along the b-axis with a pore size of
8.3 × 9.8 Å. (d) Topological structure of 2. The framework may be expressed as a 2-nodal net (3,4)-c net with Schlafl̈i symbol {4.82.103}. In all
structures, hydrogen atoms have been omitted for clarity.

Figure 3. (a) Excitation and emission spectra of 1 (blue), 2 (black), and tipe (red). (b) CIE coordinates of 1 (blue), 2 (black), and tipe (red).
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■ CONCLUSIONS
In summary, we have successfully prepared two novel
manganese LMOFs based on an AIE chromophore ligand,
1,1,2,2-tetrakis(4-(1H-imidazol-1-yl)-phenyl)ethane and 1,4-
naphthalenedicarboxylic acid. Compound 1 forms a 2D layered
structure, while compound 2 forms a 3D extended network.
The walls of the resulting pores are decorated with
uncoordinated N and O atoms, endowing the materials with
an excess of open coordination sites to interact with Fe3+ ions.
Furthermore, compound 1 can undergo a facile single-crystal-
to-single-crystal transformation to convert into compound 2.
The Ksv value of compound 2 (32 378 M−1) is double that for
compound 1 (15 854 M−1) because of the increase in
dimensionality from a 2D to 3D network. Finally, compound
2 also demonstrates high selectivity and sensitivity for Cr3+

cations and Cr2O7
2− anions. These properties make both of

these materials good candidates for luminescence-based
chemical sensors for the detection of these ions.

■ EXPERIMENTAL SECTION
Materials and Methods. All reagent-grade chemicals and

solvents were obtained from commercial sources and were
used without further purification. The luminescence spectra of
these compounds were recorded at room temperature on a
spectrofluorometer FS5. Powder samples were uniformly
coated on quartz slides. Thermogravimetric analyses (TGA)
of compounds 1 and 2 were carried out on a TA Q5000
analyzer. Crystal samples were loaded onto a platinum pan and
heated at a ramp rate of 15 °C/min from 30 to 800 °C under a
nitrogen flow (50 mL/min). Powder X-ray diffraction (PXRD)

patterns were recorded on an Ultima IV with Cu Kα radiation
(λ = 1.5406 Å). The data was collected at room temperature in
the 2θ range of 5−50° with a scan speed of 6°/min and an
operating power of 40 kV and 40 mA.

Synthesis of Ligands and Compounds. Ligand Syn-
thesis. 1,1,2,2-Tetrakis(4-(1H-imidazol-1-yl)phenyl)ethane
(tipe) was synthesized as previously reported (Figure S1).34,38

Preparation of Mn0.5(tipe)(1,4-ndc) (1). MnCl2·4H2O (7.9
mg, 0.04 mmol), tipe (5.96 mg, 0.01 mmol), 1,4-
naphthalenedicarboxylic acid (1,4-H2ndc) (4.3 mg, 0.02
mmol), DMF (1 mL), and H2O (2 mL) were mixed in a 25
mL glass vial and agitated by ultrasonication for 10 min. They
were then placed in a preheated oven at 90 °C for 48 h.
Colorless crystals of 1 were obtained with a yield of 43% based
on tipe. Anal. calcd (%) for C50H35Mn0.5N8O4: C, 71.55; H,
4.17; N, 13.35. Found: C, 71.42; H, 4.11; N,13.32.

Preparation of [Mn(tipe)(1,4-ndc)(H2O)]·(DMF)2·(H2O)3
(2). Method 1. Compound 1 (8.4 mg, 0.01 mmol) was
added into a 25 mL glass vial with MnCl2·4H2O (7.9 mg, 0.04
mmol), DMF (1 mL), and H2O (0.25 mL). The mixture was
then heated to 90 °C for 48 h. Yellow rodlike single crystals of
2 were obtained with a yield of 77.5% based on compound 1.
Anal. calcd (%) for C56H56MnN10O10: C, 62.05; H, 5.17; N,
12.92. Found: C, 62.08; H, 5.19; N, 12.81.

Method 2. MnCl2·4H2O (7.9 mg, 0.04 mmol), tipe (5.96
mg, 0.01 mmol), 1,4-naphthalenedicarboxylic acid (1,4-H2ndc)
(4.3 mg, 0.02 mmol), DMF (2 mL), and H2O (1 mL) were
added into a 25 mL glass vial. The resulting suspension was
stirred at 90 °C until it became a clear solution; it was then

Figure 4. Luminescence spectra of 1 (a) and 2 (c) upon addition of (1 mM) metal ions. Changes in luminescence of 1 (b) and 2 (d) upon
addition of Fe3+ ions to 1.5 mM.
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maintained at 90 °C for 48 h to produce yellow rodlike crystals
of compound 2 with a yield of 47% based on tipe.
Single-Crystal X-ray Diffraction (SXRD). Single-crystal

diffraction data for 1 and 2 were collected using a Bruker
SMART APEX II CCD diffractometer with graphite-
monochromatic Mo Kα radiation (λ = 0.71073 Å). Data
processing, including empirical absorption correction, was
performed using SADABS. The structures of 1 and 2 were
solved by direct methods and refined by the full-matrix method
based on F2 by means of the SHELXLTL software package.
The SQUEEZE routine within the crystallographic program

PLATON was employed to treat the disordered solvent
molecules in the crystal. Nonhydrogen atoms were refined
anisotropically using all reflections with I > 2σ(I). All H atoms
were placed at the calculated positions (C−H= 0.930 Å for
benzene and 0.960 Å for methyl) and refined riding on the
parent atoms with U(H) = 1.2 Ueq (bonded C of both benzyl
and methyl group atoms) and U(H) = 1.5 Ueq (bonded C of
the methyl group). CCDC numbers of 1 and 2 are,
respectively, 1588880 and 1539779.

Fluorescence Titration Experiment Details. Fluores-
cent titration experiments with compounds 1 and 2 were
carried out at room temperature to accurately determine their
sensing capability toward metal ions. Briefly, approximately
0.01 mmol either compound was well dispersed in 20 mL of
water using ultrasonication coupled with vigorous stirring for
30 min. We then transferred a 4 mL portion of this suspension
into a quartz cuvette. Aliquots of dissolved heavy metal ion
solutions were injected into the quart cuvette with stirring, and
after 1 min, fluorescence measurements were collected using a
365 nm excitation wavelength. The concentration ranges of the
analytes were 0−250 μM (Fe3+) for 1 and 0−50μM (Fe3+), 0−
250μM (Cr3+), and 0−500 μM (Cr2O7

2−) for 2 (Scheme 1).
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Figure 5. SV curves of 1 (a) and 2 (b) for detecting Fe3+.

Scheme 1. Synthetic Scheme for the Synthesis of
Compounds 1 and 2
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1H NMR spectrum of 1,1,2,2-tetrakis(4-(1H-imidazol-1-
yl)phenyl)ethene (tipe) (Figure S1); solid photo-
luminescence spectra of 2’ as-made and degassed
samples at room (Figure S2); PXRD of 1 and 2 at 2θ
angle of 5−50° (Figure S3); N2 adsorption−desorption
curve of compound 2 with a surface area of 276 m2/g
(Figure S4); fluorescence spectra of 1 and 2 dispersed in
different solvents (Figure S5); PXRD of 1 and 2 at 2θ
angle of 5−50° after absorbing Fe3+, Co2+, Cu2+, and
Ni2+ (Figure S6); time-dependent fluorescence spectra
of 1 (Figure S7); luminescence spectra of 2 (1 mM)
upon adding anions to 10 mM (Figure S8); SV curves of
2 for Cr3+ and Cr2O7

2− (Figure S9); TG curves of 1 and
2 (Figure S10); and selected bond lengths (Å) of 1 and
2 (Table S1) (PDF)
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