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A B S T R A C T   

This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia 
using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the 
patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and 
segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and recon-
struction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful 
information contained in multiple related tasks to improve both segmentation and classification performances, 
and on the other hand to deal with the problems of small data because each task can have a relatively small 
dataset. Our architecture is composed of a common encoder for disentangled feature representation with three 
tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification 
respectively. The proposed model is evaluated and compared with other image segmentation techniques using a 
dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of 
different kinds of pathology. The obtained results show very encouraging performance of our method with a dice 
coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the 
classification.   

1. Introduction 

The novel coronavirus disease (COVID-19) spread rapidly around the 
world, changing the daily lives of billions of people. The infection can 
lead to severe pneumonia that can causes death. Also, COVID-19 is 
highly contagious, which is why it must be detected quickly, in order to 
isolate the infected person very fast to limit the spread of the disease. 
Today, the gold standard for detecting COVID-19 is the Reverse Tran-
scription Polymerase Chain Reaction (RT-PCR) [42], which consists of 
detecting viral RNA from sputum or nasopharyngeal swab. The limita-
tion with the RT-PCR test is due to the time needed to get the results, the 
availability of the material which remains very limited in hospitals [42] 
and its relatively low sensitivity, which does not meet the major interest 
of rapidly detecting positive cases as soon as possible in order to isolate 
them [39]. An alternative solution for rapid screening could be the use of 
medical imaging such as chest X-ray images or computed tomography 

(CT) scanners [39]. 
Identifying COVID-19 at an early stage through imaging would 

indeed allow the isolation of the patient and therefore limit the spread of 
the disease [39]. However, physicians are very busy fighting this dis-
ease, hence the need to create decision support tools based on artificial 
intelligence to not only detect but also segment the infection at the lung 
level in the image [42]. Artificial intelligence has seen a major and rapid 
growth in recent years with deep neural networks [43] as a first tool to 
solve different problems such as object detection [29,37]speech recog-
nition [37], drug interaction [27] and image classification [10]. More 
specifically, convolutional neural networks [22] showed astonishing 
results for image processing [21]. For image segmentation, several 
works have shown the power and robustness of these methods [5]. CNNs 
architectures for medical imaging also have been used with very good 
results [14], for both image classification [3,6] or image segmentation 
[19]. 
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1.1. Related work 

For the detection of COVID-19 and the segmentation of the infection 
at the lung level, several deep learning works on chest X-ray images and 
CT scans have emerged and reported in Ref. [34]. In Ref. [25] Ali Narin 
et al. created a deep convolutional neural network to automatically 
detect COVID-19 on X-ray images. To that end, they used transfer 
learning based approach with a very deep architectures such as 
ResNet50, InceptionV3 and Inception-ResNetV2. The algorithms were 
trained on the basis of 100 images (50 COVID vs 50 non-COVID) in 5 
cross-validation. Authors claimed 97% of accuracy using InceptionV3 
and 87% using Inception-ResNetV2. However, due to the very limited 
size of the dataset and the very deep models, overfitting would rise and 
could not be ruled-out, hence the need to validate those results in a 
larger database is necessary. Also in Ref. [15], Hemdan et al. created 
several deep learning models to classify X-ray images into COVID vs 
non-COVID classes reporting best results with an accuracy of 90% using 
VGG16. Again, the database was very limited with only 50 cases (25 
COVID vs 25 non-COVID). A resembling study was conducted by wang 
and wang [38] where they trained a CNN on the ImageNET database 
[11] then fine-tuned on X-ray images to classify cases into one of four 
classes: normal, bacterial, non-COVID-19 viral and COVID-19 viral 
infection, with an overall performance of 83.5%. For CT images, Jinyu 
Zhao et al. [45] created a container for CT scans initially with 275 CT 
COVID-19 on which they also applied a transfer learning algorithm 
using chest-x-ray14 [40] with 169-layer DenseNet [17]. The perfor-
mance of the model is 84.7% with an area under the ROC curve of 
82.4%. As of today, the database contains 347 CT images for COVID-19 
patients and 397 for non-COVID patients. 

Instead of using CNNs, other works have used network capsules 
which were first proposed in Refs. [16] to solve the problems of CNNs 
architectures which need a large amount of data and many parameters. 
In Ref. [2] the authors opted for this method. They created a capsule 
network to identify COVID-19 cases in X-ray images. The results were 
encouraging with an accuracy of 95.7%, sensitivity at 90% and speci-
ficity at 95.8%. They compared their results with Sethy et al. [33] where 
they created a model based on resnets50 with SVMs and obtained a 
performance of 95.38%, a sensitivity of 97.29% and a specificity of 
93.47%. 

In [18], Jin et al. created and deployed an AI tool to analyze CT 
images of COVID-19 in 4 weeks. To do this, a multidisciplinary team of 
30 people collaborated together using a database of 1136 images 
including 723 positive COVID-19 images from five hospitals, to achieve 
a sensitivity of 0.974 and a specificity of 0.922. The system was 
deployed in 16 hospitals and performed over 1300 screenings per day. 
They proposed a combined model for classification and segmentation 
showing lesion regions in addition to the screening results. The pipeline 
is divided into 2 steps: segmentation and classification. They used 
several models including 3D U-NET++, V-NET, FCN-8S for segmenta-
tion and InceptionV3, ResNet50 and others for classification. They were 
able to achieve a dice coefficient of 0.754 using 3D U-NET ++ trained on 
732 cases. The combination of 3D U-NET ++ and ResNet50 resulted in 
an area under the OCR curve of 0.991 with a sensitivity of 0.974 and a 
specificity of 0.922. In practice, the model continued to improve by 
re-training. The model proved to be very useful to physicians by high-
lighting regions of lesions which improved the diagnosis. What should 
be noted here is that the two models are independent and therefore they 
cannot help each other to improve both classification and segmentation 
performances. 

Other works have also emerged recently with interesting results. In 
Ref. [26] T. Ozturk et al. proposed a deep neural network called Dark-
CovidNet to detect automatically COVID-19 cases on X-ray images. The 
model inspired from Darknet-19, is a classifier model that forms the 
basis of a real-time object detection system named YOLO (You only look 
once) [30]. They implemented a 17 convolutional layers network 
achieving a results of 98.08% for binary classes and 87.02% for 

multi-class cases. In Ref. [27], Y. Pathak et al. used a transfer learning 
approach to classify COVID-19 infected patients. They introduced a 
top-2 smooth loss function with cost-sensitive attributes to handle noise 
and imbalanced dataset. The model was trained on a public dataset of 
chest CT images, and then used to classify COVID-19 infected patients. 
The model achieved an accuracy of 0.93, a sensitivity of 0.91 and a 
specificity of 0.94. Other works such as in S. Dilbag et al. [35] tried a 
multi-objective differential evolution–based convolutional neural net-
works to classify COVID-19 patients from chest CT images. 

1.2. Motivation 

Multi-task learning (MTL) [8] is a type of learning algorithm whose 
goal is to combine several pieces of information from different tasks to 
improve the performance of the model and its ability to better generalize 
[44]. The basic idea of MTL is that different tasks can share a common 
features representation [44], and therefore, training them jointly. The 
use of different datasets of different tasks makes it possible to learn an 
effective feature representation that is common to all tasks, because all 
datasets are used to obtain it, even if each task has a small dataset, which 
leads to improve the performance of each task. Different approaches 
have been proposed in MTL such as hard parameter sharing [8] or soft 
parameter sharing [32]. Hard parameter sharing is the most commonly 
used approach to MTL in neural networks and greatly reduces the risk of 
overfitting [32], see Fig. 4. It is generally applied by sharing the hidden 
layers between all tasks, while keeping several task-specific output 
layers. Soft parameter sharing defines a model for each task with its own 
parameters, and the distance between the parameters of the model is 
regularized in order to encourage the parameters to be similar. 

In this work, we propose a novel multi-task deep learning model for 
jointly detecting COVID-19 image and segmenting lesions. The main 
challenges of this work are: 1) the lack of data and annotated data, 
because the databases were collected from multiple sources with a huge 
variation in images and most of the images are noisy (see Fig. 3). 2) 
instead of expensive models like ResNet 50 or DenseNet, developing a 
multitasking approach to reduce overfitting and improve results. In 
Fig. 1 we can see an example of different image formats (png (B C E F), 
Nifti (D), DICOM (A), different scales of visualisation window (strong 
centering on lung (B E C), low (A,D, F), different image sizes, with/ 
without annotations (with (C,D E), without (A B F). Facing these chal-
lenges, we proposed to train our neural network with three tasks: 
reconstruction, classification and segmentation, in order to both classify 
COVID/Non-COVID images and to segment the lesion regions. We add 
the reconstruction task often used in unsupervised learning, to better 
learn the disentangled feature representation with a single common 
encoder. Based on this features representation, three neural networks 
are designed to finally accomplish the three tasks. 

The paper is organized as follows. In Section 2, we describe our 
multi-task model, which is mainly based on classification and segmen-
tation tasks. Section 3 presents the experimental studies. In section 4, we 
describe the validation methodology used in this study. Section 5 is 
showing the results of our work. Section 6 and 7 are for discussion and 
conclusion respectively. 

1.3. Data 

In this study, three datasets from different hospitals including one 
thousand three hundred and ninety-six CT images are used. The first one 
is a public available data set coming from Refs. [45] which includes 347 
COVID-19 images and 397 non-COVID images with different types of 
pathologies. The database was pre-processed and stored in png format. 
The dimension varies from 153 to 1853 with an average of 491 for the 
height, while the width varies from 124 to 383 with an average of 1485. 
The second dataset coming from [http://medicalsegmentation.com 
/covid19/] in which 100 COVID-19 CT scan with ground truths le-
sions segmentation are available. The ground truth was defined by the 
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physicians of different hospitals. Three lesion labels are provided: 
ground glass, consolidation and pleural effusion. As all lesion labels are 
not given in all images, for the purpose of this study, we merged the 
three labels into one lesion label (See Fig. 2). The third dataset coming 
from the Henri Becquerel Cancer Center (HBCC) in Rouen city of France 
includes 425 CT scans of normal patients and 98 of lung cancer. All the 
three image datasets were resized to have the same size 256 × 256 and 
the intensity normalized between 0 and 1 prior to analysis. Table 1 
summarizes how to split the datasets for training, validation and test. 

Fig. 1. An example of exams heterogeneities between different CT images for COVID (upper) and non-COVID (bottom). Patient images do not have the same 
resolution. Also, images show different image formats (Dicom(A), png (B C E F), Nifti (D). 

Fig. 2. Example of COVID-19 segmentation on CT scan for 2 patients: first column - original CT scanner; Second column - one label segmentation, Third column - 3 
labels segmentation: ground glass (green), consolidation (blue) and pleural effusion (yellow). 

Fig. 3. The different databases used in this study.  
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2. Method 

2.1. Model description 

We propose a new MTL architecture based on 3 tasks: 1) COVID vs 
Normal vs Other Infections classification, 2) COVID lesion segmentation, 
3) image reconstruction. The two first tasks are essential ones, while the 
third task is added to enhance the feature representation extracted. In 
this work, we choose to use a hard parameter sharing to share param-
eters between the different tasks (see Fig. 4). We create a common 
encoder for the three tasks which takes a CT scan as input, and its output 
is then used to the reconstruction of the image via a first decoder, to the 
segmentation via a second decoder, and to the classification of COVID vs 
Normal vs Other Infections classification image via a multi-layer 
perceptron. 

Each convolutional layer, denoted C(m), consists of F(m) feature maps, 
where m is the layer number. For the first layer, C(1), each feature map is 
obtained by convolving the volume of interest with a weight matrix Wi

(1) 

to which a bias term bi
(1) is added, where i is the feature map number. 

Then, the output goes through a non linear function f(x), where x is the 
input to a neuron, such as: 

c(1)i = f
(
b(1)

i +W(1)
i * x

)
with  i = 1,…..,F(1). (1) 

Each element of a feature map, ci
(1), is obtained by convolving the 

input x with a kernel. The F(1) weight matrices (one matrix per feature 
map) are learned by looking at different position of the input, leading to 
the extraction of the description of features. Thus, the weight parameters 
are shared for all lesion or infection input sites, so that the layer has an 
equivariance property and is invariant to the input lesion trans-
formations (such as translation and rotation). It also results in a sparse 
weight, which means that the kernel can detect small, but meaningful 
features. 

In order to extract high-level features from the low-level ones ob-

tained in the initial layer, other layers are added. Each feature map in 
the other layers are obtained as follow: 

c(n)i = f

(

b(n)
i +

∑P(n− 1)

s=1
W(n)

i * P(n− 1)
s

)

with i = 1,…..,F(n). (2)  

2.1.1. The encoder-decoder 
The encoder-decoder is based on the U-NET architecture [31] for 

both reconstruction and segmentation tasks (Fig. 5). The encoder is used 
to obtain the disentangled feature representation. It includes a con-
volutional block followed by skip connection. In order to maintain the 
spatial information, we use a convolution with stride = 2 to replace 
pooling operation. It’s likely to require different receptive fields when 
segmenting different regions in an image. All convolutions are 3 × 3 and 
the number of filter is increased from 64 to 1024. Each decoder level 
begins with upsampling layer followed by a convolution to reduce the 
number of features by a factor of 2. Then the upsampled features are 
combined with the features from the corresponding level of the encoder 
part using concatenation. 

2.1.2. The reconstruction task T1 
We trained the model with a linear activation for the output and a 

mean squared error for the loss function (Lrecon) and used accuracy as 
the metric: 

Lrecon=
1
n

∑n

t=1

(
y true − y predict

)2 (3)  

where y_true is the true label and y_predict is the predicted label. 

2.1.3. The segmentation task T2 
We used the same architecture as the reconstruction except for the 

activation function for the output, which is a sigmoid. The loss function 
is based on the dice coefficient loss (Lseg) which is considered as the 
metric: 

dice coef =
2*|X ∩ Y| + ε
|X| + |Y| + ε (4)  

Lseg= − dice coef (5)  

where ε is the smoothing factor and used to avoid a division by zero. 

Fig. 4. Hard parameter sharing for multi-task learning in deep neural networks used in our proposed architecture.  

Table 1 
Data split.   

Train Validation Test Total 

Normal 325 50 50 425 
COVID-19 349 50 50 449 
Other Infections 395 50 50 495 
Total 1069 150 150 1369  
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2.1.4. The classification task T3 
The resulting set of feature maps, encloses the entire spatial local 

information, as well as the hierarchical representation of the input. 
Then, each feature map is flattened out, and all the elements are 
collected into a single vector V of dimension K, providing the input for a 
fully connected hidden layer, called h, consisting of H units. The acti-
vation of the i(th) unit of the h hidden layer is given by: 

hi = f (bi +Whi * V) with  i = 1,…..,H. (6) 

In details, the output of the encoder is a tensor of mini_batch x 32 ×
32 x 1024 to which we add a convolutional layer followed by a max-
pooling, and then a flatten operation to convert the data to a mono- 
dimensional tensor to perform the classification. The multilayer per-
ceptron consist of a two Dense layer with 128 and 64 neurons respec-
tively, with a dropout of 0.5 and the activation function elu. The last 
layer is a Dense layer with three neurons for image classification using a 
sigmoid activation and a binary cross entropy is used as the loss function 
(Lclass): 

Lclass= −
1
n

∑n

i=1

[

yilog
(

ŷi

)

+(1 − yi)log
(

1 − ŷi

)]

(7)  

which is a special case of the multinomial cross-entropy loss function for 
m = 2: 

L(θ)= −
1
n
∑n

i=1

∑m

j=1
yijlog

(

ŷij

)

(8)  

where n is the number of patients, y is the class label. The output layer 
consists of 3 neurons, each one output a binary value such as: ŷij∈ (0,1): 
∑

j ̂yij = 1 ∀i,j is the prediction of a COVID presence for the first neuron. 
The second neuron returns 1 if the patient is normal, 0 otherwise, and for 
the third neuron 1 if the patient has another infection and 0 otherwise. 
The patient is positive if he has the COVID-19. In our experiments, the 
Adam optimizer [20] algorithm was used with a mini batches of 4 and a 
learning rate of 0.0001. The global loss function (loss glob) for the 3 
tasks is defined by: 

loss glob=Lrecon + Lseg + Lclass (9) 

Our model was trained for 500 epochs with an early stopping of 10. 

2.2. Implementation 

The implementation of our method was done using the keras library 
with tensorflow in backend. The model was performed on an nvidia 
p6000 quadro gpu with 24 GB, and 128 RAM. 

3. Experiments 

Three experiments are conducted to evaluate our model. 
Experiment 1: The first experiment consisted of tuning the hyper-

parameters and add/remove a task to find the best model using only the 
training dataset. Several models were developed by combining the tasks 
2 by 2 and the 3 tasks with different resolutions of images (512 × 512 
and 256 × 256). The combination of the first task and the second one is 
only to evaluate segmentation results, since it is for image reconstruc-
tion and infection segmentation, while the peer T1 and T3 is for 
classification. 

Experiment 2: The second experiment is to compare our model with 
state of the art method U-NET in order to evaluate the performance on 
the segmentation task. Two U-NET with different resolutions were 
trained: 512 × 512 and 256 × 256. 

Experiment 3: Different state of the art models were compared to 
ours on the classification task. We use: Alexnet, VGG-16, VGG-19, 
ResNet50, 169-layer DenseNet, InceptionV3, Inception-ResNet v2 and 
Efficient-Net. We have also added an 8 layer deep neural network with 6 
convolutional layers, where each one is followed by a Maxpooling and a 
Dropout regularization of 25% to prevent the model from overfitting. 
The feature maps go from 8 to 256 by a factor of 2 between each two 
layers. We used 3 × 3 filter for convolution and 2 × 2 for Maxpooling. 
Then a Flatten followed by two Dense layers with 128 neurons and 3 
neurons respectively. A Dropout of 50% is also applied to the first layer 
to reduce and prevent overfitting. The activation function is elu for all 
layers except the last one which is a sigmoid. The loss function is the 

Fig. 5. Our proposed architecture, composed of an encoder and two decoders for image reconstruction and infection segmentation. A fully connected layers are 
added for classification (COVID vs Normal vs Other Infections classification). 

A. Amyar et al.                                                                                                                                                                                                                                  
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binary cross-entropy and the metric is the accuracy, with the Adam 
optimizer. The CNN was optimized in order to ensure a fair comparison 
with our proposed model. The model was trained for 500 epochs with an 
early stopping of 10, in the same condition as our model. 

To find the best hyperparameters, the influence of F, the number of 
feature maps (8–64), the number of neurons (128–4096) were evalu-
ated, as well as different receptive field sizes (3× 3, 5× 5) and different 
sizes of mini-batch (2–16). Several expressions of f(x), the activation 
function, were also evaluated (relu, elu, selu and tanh), to choose finally 
relu. 

4. Validation methodology 

For the validating methodology, we split the data for training, vali-
dation and test as shown in Table 1. Among the 349 COVID cases in the 
training, the ground truth for the infection label (segmentation task) was 
available for 50 CT scans. Twenty others were in the validation and 
thirty in the test set. For normal patients, 50 were used in validation, 50 
in test and 325 in training. For other infections, different kinds of pa-
thology such as lung cancer or cases were selected randomly in training, 
validation and test. For a fair comparison, the other methods were 
trained, validated and tested on the same group of data. The perfor-
mance of the models were evaluated using the dice coefficient for the 
segmentation task, area under the ROC curve (AUC) for the classifica-
tion, and the accuracy (Acc), sensitivity (Sens), specificity (Spec) for 
both [1], such as: 

Sens=
TP

TP  +  FN
(10)  

where TP is the true positives, FN is the false negatives and TP + FN is 
the number of patients classified positively, or the segmented lesion 
infection. 

Spec=
TN

TN  +  FP
(11)  

where TN is the true negatives, FP is the false positives and TN + FP is 
the number of patients classified negatively, or the non segmented 
region. 

ACC=
TP  +  TN

TP  +  FN  +  TN  +  FP
(12) 

For each curve, the definition of the thresholds was determined using 
the method proposed by Fawcett [13], and the optimal cut-off point was 
defined using Youden’s index. 

5. Results 

The main results of the three experiments are shown in Tables 2 and 
3. Metrics include: dice coefficient, accuracy, sensibility, specificity and 
the area under the ROC curve. The neural network was trained for 500 

epochs with an early stopping of 10. In Fig. 6, the learning curve and the 
loss curve obtained from the train and validation sets respectively show 
the stability of our model. From Fig. 6 we can observe that the training 
and validation losses decrease to a point of stability, and have a small 
gap between them. Early stopping of the training provides a robust 
mechanism to avoid overfitting, like the behavior of our model. 

Experiment 1: As shown in Table 2 for the segmentation and Table 3 
for the classification, the best dice coefficient = 88%, accuracy (ACC =
0.94.7) and area under the curve (AUC = 0.97) were obtained with the 
combination of the three tasks of image reconstruction, infection seg-
mentation and image classification, with all images resized to 256 ×
256. The results of 4 other experiments were also shown with multi-task 
learning but with a higher resolution of 512 × 512, and the combination 
2 by 2 of the other tasks. The major differences between our best model 
and the model with higher resolution are in sensitivity (0.96 vs 0.94) 
and specificity (0.92 vs 0.85). Compared to the peer combination of T1 
and T3 for segmentation our model proved to be more performant with 
an improvement of +9% of dice, and a higher AUC and accuracy 
compared to the peer T1 and T3 for classification only. On the ROC 
curve in Fig. 8, the advantage of using all three tasks combined can be 
seen by obtaining a significantly better area under the curve than when 
two tasks are used. The same results were observed for the peer seg-
mentation and classification without reconstruction. Those results 
confirm the usefulness of the reconstruction task to extract meaningful 
features and to help improve the results of the other two tasks. For multi- 
class classification, as we can observe from the confusion matrix of our 
model in Fig. 10, 47 of 50 COVID cases were classified correctly, while 
only 3 were miss-classified as other infections. The same observation for 
normal patients, only 2 were misclassified as other infections, while no 
normal patient was misclassified as COVID. 

Experiment 2: In Table 2, the best results for image segmentation 
was obtained using our method with a dice_coef of 88% versus 77.69% 
and 76.69% using U-NET with 256 × 256 and 512 × 512 resolutions 
respectively. The combination of the reconstruction, segmentation and 
classification provide a higher accuracy to detect infection regions, 
compared to the use of the U-NET model alone. Fig. 7 shows a com-
parison between our model and U-NET for infection segmentation. 

Experiment 3: The results of experiment 3 are also given in Table 3. 
We compared our multi-task deep learning model with multiple deep 
convolutional neural networks. The obtained results show that our 
model outperformed the CNN in both accuracy and AUC. The ROC curve 
for experiment 3 is shown in Fig. 9. 

Finally, we compared our model with the state of the art methods on 
COVID-19 for classification and segmentation. Table 4 shows the results 
on the classification task. Results vary from an accuracy of 66.67% in 
Ref. [24] to 92.6% [38] in X-ray images, and from 84.7% to 90.8% for 
CT scans. Our model outperformed state of the art methods with an 

Table 2 
Segmentation results. Experiment 1: results with different tasks (T1: classifica-
tion, T2: Segmentation, T3: reconstruction). Experiment 2: segmentation results 
comparing with U-NET.  

Method Dice_coef ACC Sens Spec 

Experiment 1 
T1 & T2 80.3% 88.34% 76.8% 98.8% 
T2 & T3 79.34% 85.67% 74.7% 98.3% 
Ours (T1&T2&T3 512 x 512) 84.8% 91.03% 84.10% 99.41% 
Ours 256 x 256 88.0% 95.23% 90.2% 99.7% 

Experiment 2 
U-NET 512 × 512 76.03% 81.14% 69.51 97.34% 
U-NET 256 × 256 77.69% 83.40% 73.10% 98.24% 
Ours 256 x 256 88.0% 95.23% 90.2% 99.7%  

Table 3 
Classification results: Experiment 1 for optimizing hyperparameters and 
choosing the best combination of tasks. Experiment 3 for classification.   

Method ACC Sens Spec AUC 

Experiment 1 T1 & T3 78.66 0.88 0.79 0.83 
T2 & T3 79.33 0.81 0.75 0.81 
Ours (T1 & T2 & T3 512 × 512) 91.13 0.94 0.85 0.94 
Ours(T1 & T2 & T3 256 x 256) 94.67 0.96 0.92 0.97 

Experiment 3 CNN 8-layers 74.67 0.8 0.70 0.78 
Encoder-Dense 70.04 0.75 0.61 0.72 
AlexNET 56.67 0.67 0.64 0.66 
VGG-16 62.67 0.67 0.65 0.66 
VGG-19 66.14 0.77 0.61 0.69 
ResNet50 86.67 0.9 0.83 0.88 
169-layer DenseNet 83.33 0.91 0.83 0.88 
InceptionV3 82.67 0.88 0.78 0.82 
Inception-ResNet V2 85.33 0.84 0.88 0.90 
Efficient-Net 90.67 0.91 0.85 0.93 
Ours 94.67 0.96 0.92 0.97  
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accuracy of 94.67%. Zhou et al. [47], who performed only the seg-
mentation task achieved 61.0% using a modified U-NET and 69.1% 
using an attention mechanism. Other results reported in Ref. [9] reached 
a dice coefficient of 85.0%, which is less than our model with a dice 
coefficient of 88.0%. The results for the segmentation are shown in 
Table 5. 

6. Discussion 

We have developed a new deep learning multi-task model to jointly 
detect COVID-19 CT images and segment the regions of infection. Our 
architecture is general, which means that it can be used for other 
segmentation-classification applications. We have also compared with 
several state of the art algorithms such as U-NET and CNNs. To show the 
performance of our method, we tested the different combinations of 

Fig. 6. Learning curve of our proposed model. Left is the model loss and right is the model accuracy per epoch.  

Fig. 7. A comparison between our model and U-NET for infection segmentation. From left to right columns: input images, ground truth, results of U-NET, results of 
our method. 
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tasks 2 by 2 and all the 3 tasks simultaneously with different images 
resolutions. Our motivation was to leverage useful information con-
tained in multiple related tasks to improve both segmentation and 
classification performances. 

Multitasking can handle small data problems well, although each 
task can have a relatively small data set. In our study, we were able to 
increase the size of the database, in total 1044 images by the combi-
nation of several databases, to learn the disentangled representation. 
Although we have a database of 100 images for segmentation, thanks to 
the learned latent representation, we have obtained good segmentation 
results. 

The state of the art U-NET has shown impressive results to deal with 
image segmentation in recent years, just like the classification with 
Alexnet, VGG-16, VGG-19, ResNet50, DensNet. However, these seg-
mentation or classification methods usually require a large amount of 
annotated datasets to work efficiently. Due to the lack of annotated data 
in the medical imaging field, other mechanisms can be included to 
improve its generalisation ability. In this work, we propose to use a 
multitask learning approach that can jointly improve the U-NET model 
and classification models by enhancing its encoder. Indeed, by using a 
shared encoder for the classification and segmentation tasks, it is able to 
extract more meaningful information from the CT scan relating to the 
COVID-19 characteristics, which improves both tasks simultaneously 

with less annotated datasets. Furthermore, adding a third task for image 
reconstruction allows the encoder to refine the image characteristics to 
make a further improvement for both the classification and segmenta-
tion tasks. Thus, multitask learning can be used to improve U-NET and 
other classification models especially in the case where annotated data 
are limited. 

In addition to the many advantages of using CT images to spot early 
COVID-19 patients and isolate them, deep learning methods using CT 

Fig. 8. ROC curve of Experiment 1 for COVID-19 classification.  

Fig. 9. ROC curve of Experiment 3 for COVID-19 classification.  

Fig. 10. Confusion matrix of our model.  

Table 4 
A quantitative comparison between our model and state of the art for the clas-
sification task.  

Method Modality ACC Sens Spec 

Alexnet Loey et al. (2020) [24] X-ray 66.67 66.67 – 
Resnet18 Loey et al. (2020) [24] X-ray 69.47 66.67 – 
ShuffleNet + SVM Sethy and Behera [33] X-ray 70.66 65.26 – 
Googlenet Loey et al. (2020) [24] X-ray 80.56 80.56 – 
CNN Zhao et al. (2020) [45] CT 84.7 76.2 – 
Ying et al. [36] CT 86 – – 
Xu et al. [7] CT 86.7 – – 
Ozturk et al. (multiclass) [26] X-ray 87.02 – – 
Li and Zhu [23] X-ray 88.9 – – 
Hemdan et al. [15] X-ray 90 – – 
Zheng et al. [46] CT 90.8 – – 
Wang et al. [38] X-ray 92.6 – – 
Ours CT 94.67 96 92  

Table 5 
A quantitative comparison between our proposed model and state of the art for 
the segmentation task.  

Method Dice_coef 

U-Net + DL Zhou et al. (2020) [47] 61.0% 
U-Net + FTL Zhou et al. (2020) [47] 66.7% 
AU-Net + DL Zhou et al. (2020) [47] 68.5% 
AU-Net + FTL Zhou et al. (2020) [47] 69.1% 
Backbone + PPD + RA + EA Fan et al. (2020) [12] 73.9% 
JCS Wu et al. (2020b) [41] 77.5% 
JCS′ Wu et al. (2020b) [41] 78.3% 
U-net Chen et al. (2020b) [9] 82.0% 
M − A Chen et al. (2020b) [9] 85.0% 
M − R Chen et al. (2020b) [9] 84.0% 
Ours 88.0%  
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images can be used as a tool to assist physicians fighting this new 
spreading disease, as they can be used also to not only classify and 
segment images in the medical field, but also to predict the outcome of 
treatment [4,28]. 

7. Conclusion 

In this paper, we proposed a multi-task learning approach to detect 
COVID-19 from CT images and segment the regions of interest simul-
taneously. Our method can improve segmentation results even if we 
don’t have many segmentation ground truths. This thanks to the ground 
truths of classification which are relatively easy to obtain compared to 
those of segmentation. Our method shows very promising results. It 
outperformed the state of the art methods when used alone for image 
segmentation such as U-NET or image classification such as CNNs. We 
have shown that by combining jointly these two tasks, the method im-
proves for both segmentation and classification performances. More-
over, adding a third task such as image reconstruction, the encoder can 
extract meaningful feature representation which help the other tasks 
(classification and segmentation) to improve even more their 
performances. 

From experiment 2, we observe a neat improvement when using the 
multitask approach with a dice coefficient of 88% for segmentation, 
10% higher than when using the state of the U-net alone. With a spec-
ificity of 99.7% and a sensitivity of 90.2%, the segmentation results 
outperformed other models without multitask learning approach and 
when combining a peer of tasks. For the classification results, with an 
AUC = 0.97 and an accuracy higher than 94%, our model shows a big 
improvement compared to other models with results ranging from 56% 
to 90%. Our method uses only CT images. Other information, like pa-
tient information, is not included in our architecture. In addition, the 
performance of our method was performed from a dateset of 150 pa-
tients. In future work, we will study new types of networks to take into 
account other useful information and test our method on a larger 
database to confirm its good performance. 
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[28] D. Paul, R. Su, M. Romain, V. Sébastien, V. Pierre, G. Isabelle, Feature selection for 
outcome prediction in oesophageal cancer using genetic algorithm and random 
forest classifier, Comput. Med. Imag. Graph. 60 (2017) 42–49. 

[29] G. Qi, H. Wang, M. Haner, C. Weng, S. Chen, Z. Zhu, Convolutional neural network 
based detection and judgement of environmental obstacle in vehicle operation, 
CAAI Trans. Intell. Technol. 4 (2019) 80–91. 

[30] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real- 
time object detection, in: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, 2016, pp. 779–788. 

[31] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical 
image segmentation, in: International Conference on Medical Image Computing 
and Computer-Assisted Intervention, Springer, 2015, pp. 234–241. 

[32] S. Ruder, An Overview of Multi-Task Learning in Deep Neural Networks, 2017 
arXiv preprint arXiv:1706.05098. 

[33] P.K. Sethy, S.K. Behera, Detection of Coronavirus Disease (Covid-19) Based on 
Deep Features, 2020. 

[34] F. Shi, J. Wang, J. Shi, Z. Wu, Q. Wang, Z. Tang, K. He, Y. Shi, D. Shen, Review of 
Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation and 
Diagnosis for Covid-19, 2020 arXiv preprint arXiv:2004.02731. 

[35] D. Singh, V. Kumar, M. Kaur, Classification of covid-19 patients from chest ct 
images using multi-objective differential evolution–based convolutional neural 
networks, Eur. J. Clin. Microbiol. Infect. Dis. (2020) 1–11. 

[36] Y. Song, S. Zheng, L. Li, X. Zhang, X. Zhang, Z. Huang, J. Chen, H. Zhao, Y. Jie, 
R. Wang, et al., Deep Learning Enables Accurate Diagnosis of Novel Coronavirus 
(Covid-19) with Ct Images, medRxiv, 2020. 

[37] C. Szegedy, A. Toshev, D. Erhan, Deep neural networks for object detection, in: 
Advances in Neural Information Processing Systems, 2013, pp. 2553–2561. 

[38] L. Wang, A. Wong, Covid-net: A Tailored Deep Convolutional Neural Network 
Design for Detection of Covid-19 Cases from Chest Radiography Images, 2020 
arXiv preprint arXiv:2003.09871. 

[39] S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, X. Meng, et 
al., A Deep Learning Algorithm Using Ct Images to Screen for Corona Virus Disease 
(Covid-19), medRxiv, 2020. 

[40] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, R.M. Summers, Chestx-ray8: hospital- 
scale chest x-ray database and benchmarks on weakly-supervised classification and 
localization of common thorax diseases, in: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2017, pp. 2097–2106. 

[41] Y.H. Wu, S.H. Gao, J. Mei, J. Xu, D.P. Fan, C.W. Zhao, M.M. Cheng, Jcs: an 
Explainable Covid-19 Diagnosis System by Joint Classification and Segmentation, 
2020 arXiv preprint arXiv:2004.07054. 

[42] X. Xu, X. Jiang, C. Ma, P. Du, X. Li, S. Lv, L. Yu, Y. Chen, J. Su, G. Lang, et al., Deep 
Learning System to Screen Coronavirus Disease 2019 Pneumonia, 2020 arXiv 
preprint arXiv:2002.09334. 

[43] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep 
neural networks?, in: Advances in Neural Information Processing Systems, 2014, 
pp. 3320–3328. 

A. Amyar et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0010-4825(20)30368-1/sref1
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref1
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref1
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref1
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref2
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref2
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref2
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref2
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref3
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref3
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref3
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref3
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref4
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref4
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref4
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref5
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref5
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref5
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref6
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref6
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref7
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref7
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref8
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref9
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref9
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref10
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref10
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref10
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref11
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref11
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref11
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref12
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref12
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref12
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref13
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref13
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref14
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref14
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref14
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref15
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref15
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref15
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref16
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref17
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref17
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref17
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref18
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref18
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref18
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref19
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref19
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref20
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref20
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref21
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref21
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref21
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref22
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref22
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref23
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref23
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref24
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref24
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref24
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref25
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref25
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref25
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref26
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref26
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref26
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref27
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref27
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref28
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref28
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref28
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref29
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref29
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref29
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref30
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref30
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref30
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref31
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref31
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref31
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref32
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref32
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref33
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref33
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref34
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref34
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref34
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref35
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref35
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref35
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref36
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref36
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref36
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref37
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref37
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref38
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref38
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref38
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref39
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref39
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref39
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref40
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref40
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref40
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref40
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref41
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref41
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref41
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref42
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref42
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref42
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref43
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref43
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref43


Computers in Biology and Medicine 126 (2020) 104037

10

[44] Y. Zhang, Q. Yang, A Survey on Multi-Task Learning, 2017 arXiv preprint arXiv: 
1707.08114. 

[45] J. Zhao, Y. Zhang, X. He, P. Xie, Covid-ct-dataset: A Ct Scan Dataset about Covid- 
19, 2020 arXiv preprint arXiv:2003.13865. 

[46] C. Zheng, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, X. Wang, Deep Learning- 
Based Detection for Covid-19 from Chest Ct Using Weak Label, medRxiv, 2020. 

[47] T. Zhou, S. Canu, S. Ruan, An Automatic Covid-19 Ct Segmentation Based on U-Net 
with Attention Mechanism, 2020 arXiv preprint arXiv:2004.06673.  

Amine Amyar, Publications: 
1- Amyar, A. et al. “ 
3-D RPET-NET: development of a 3-D pet imaging con-

volutional neural network for radiomics analysis and outcome 
prediction.” IEEE Transactions on Radiation and Plasma Medical 
Sciences 3.2 (2019): 225-231. 

2-Amyar, Amine, et al. “Radiomics-net: Convolutional 
neural networks on FDG PET images for predicting cancer 
treatment response.” Journal of Nuclear Medicine 59.supplement 
1 (2018): 324-324 

3- Amyar, Amine, et al. “Weakly supervised pet tumor 
detection usingclass response.” arXiv preprint arXiv:2003.08337 
(2020).  

Romain Modzelewski, Publications: 
1- Belharbi, Soufiane, et al. “Spotting L3 slice in CT scans 

using deep convolutional network and transfer learning.” 
Computers in biology and medicine 87 (2017): 95-103. 

2- Paul, Desbordes, et al. “Feature selection for outcome 
prediction in oesophageal cancer using genetic algorithm and 
random forest classifier.” Computerized Medical Imaging and 
Graphics 60 (2017): 42-49. 

3- Lanic, Hélène, et al. “Sarcopenia is an independent 
prognostic factor in elderly patients with diffuse large B-cell 
lymphoma treated with immunochemotherapy.” Leukemia & 
lymphoma 55.4 (2014): 817–823.  

Hua Li, Publications: 
1- Use of image registration and fusion algorithms and 

techniques in radiotherapy: Report of the AAPM Radiation 
Therapy Committee Task Group No. 132. KK Brock, S Mutic, TR 
McNutt, H Li, ML Kessler Medical physics 44 (7), e43-e76 

2- Vessels as 4-D curves: Global minimal 4-D paths to 
extract 3-D tubular surfaces and centerlines H Li, A Yezzi IEEE 
transactions on medical imaging 26 (9), 1213-1223 

3- Current status of Radiomics for cancer management: 
Challenges versus opportunities for clinical practice H Li, I El 
Naqa, Y Rong Journal of applied clinical medical physics 21 
(7), 7  

Su Ruan, Publications: 
1- Nie, Dong, et al. “Medical image synthesis with context- 

aware generative adversarial networks.” International Confer-
ence on Medical Image Computing and Computer-Assisted Inter-
vention. Springer, Cham, 2017. 

2- Joint tumor segmentation in PET-CT images using co- 
clustering and fusion based on belief functions C Lian, S 
Ruan, T Denoeux, H Li, P Vera IEEE Transactions on Image 
Processing 28 (2), 755-766 

3- Segmenting multi-source images using hidden markov 
fields with copula-based multivariate statistical distributions J 
Lapuyade-Lahorgue, JH Xue, S Ruan IEEE Transactions on 
Image Processing 26 (7), 3187-3195 

A. Amyar et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0010-4825(20)30368-1/sref44
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref44
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref45
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref45
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref46
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref46
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref47
http://refhub.elsevier.com/S0010-4825(20)30368-1/sref47

