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The Cross-Industry Standard Process for Data Mining (CRISP-DM) is a widely accepted
framework in production and manufacturing. This data-driven knowledge discovery
framework provides an orderly partition of the often complex data mining processes to
ensure a practical implementation of data analytics and machine learning models.
However, the practical application of robust industry-specific data-driven knowledge
discovery models faces multiple data- and model development-related issues. These
issues need to be carefully addressed by allowing a flexible, customized and industry-
specific knowledge discovery framework. For this reason, extensions of CRISP-DM are
needed. In this paper, we provide a detailed review of CRISP-DM and summarize
extensions of this model into a novel framework we call Generalized Cross-Industry
Standard Process for Data Science (GCRISP-DS). This framework is designed to allow
dynamic interactions between different phases to adequately address data- and model-
related issues for achieving robustness. Furthermore, it emphasizes also the need for a
detailed business understanding and the interdependencies with the developed models
and data quality for fulfilling higher business objectives. Overall, such a customizable
GCRISP-DS framework provides an enhancement for model improvements and reusability
by minimizing robustness-issues.
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INTRODUCTION

Since the beginning of industry 4.0 initiatives, the concept of smart manufacturing has gained
considerable attention among researchers from academia and industry. Specifically, data-driven
knowledge discovery models are now regarded as an essential pillar for smart manufacturing. The
concept of intelligent manufacturing systems was initially discussed in Refs. (Hatvany and Nemes,
1978; Hatvany and Lettner, 1983), where the authors addressed the prospects of systems and their
complexities and emphasized that systems should be built to be resilient to unforeseen situations and
to predict trends in real time for large amounts of data.
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In recent years, the idea of smart manufacturing developed
further using the framework of multi-agent systems (MASs).
MASs are groups of independent agents that cooperate with
each other and are capable of perceiving, communicating,
reproducing, and working not only toward a common goal
but also toward individual objectives. An agent is composed of
several modules that enable it to work effectively both
individually and collectively. The acting module of a learning
agent collects data and information (percepts) from the external
world through sensors and responds through effectors, which
results in actions. The learning module and critical module of an
agent react to improve the actions and the performance standards
by interacting with each other. Furthermore, the problem
generator module enforces the exploratory efforts of the agent
to develop a more appropriate world view (Russell and Peter,
1995; Khalid et al., 1997; Monostori, 2003; Lee and Kim, 2008;
Wang et al., 2016).

The learning agent is a software program or an algorithm
that leads to an optimal solution of a problem. The learning
processes can be classified into three categories: 1) supervised,
2) unsupervised, and 3) reinforcement learning. The learning
module is a key driver of a learning agent and puts forward a
comprehensive automated smart manufacturing process for
autonomous functioning, collaboration, cooperation, and
decision making. The availability and potential of data from
an integrated business environment allow various business
objectives to be formulated, such as automated internal
functioning, organizational goals, and social and economic
benefits. Various business analytic methods, metrics, and
machine learning (ML) strategies serve to analyze these
business objectives. For instance, Gunther et al.
(Mohammad, 2017) extensively reviewed big data in terms of
their importance for social and economic benefits.
Furthermore, they highlighted three main issues of big data
in order to realize their potential and to match up with the
ground realities of business functioning (i.e., how to transform
data into information to achieve higher business goals). The
three issues considered are work-practice goals, organizational
goals, and supra-organizational goals. The availability of big
data allows us to apply various complex ML models to various
manufacturing problems that could not be addressed
previously. Ross et al. (2013) discussed the big data
obsession of business organizations rather than asking the
straightforward question of whether big data are useful and
whether they increase the value of business-related goals. They
concluded that many business applications might not need big
data to add value to business outcomes but instead need to
address other organizational issues and business rules for
evidence-based decision making founded on rather small
data. However, their paper does not discuss manufacturing
and production but instead focuses on issues related to
business management. Nevertheless, a similar understanding
may be obtained in many other production- and
manufacturing-related instances that do not require big
production data but instead require sufficient samples of
observational or experimental data to support robust data
analytics and predictive models.

Kusiak (2017) discusses key features of smart manufacturing
and considers predictive engineering as one of the essential pillars
of smart manufacturing, and (Stanula et al., 2018) discuss various
guidelines to follow for data selection for understanding business
and data in manufacturing. Wuest et al. (2014), Wuest et al.
(2016) discuss the various challenges encountered in ML
applications in manufacturing, such as data preprocessing,
sustainability, selection of the appropriate ML algorithm,
interpretation of results, evaluation, complexity, and high
dimensionality. The challenges raised by Wuest et al. (2014),
Wuest et al. (2016) requires a systematic and robust
implementation of each phase as defined via the Cross-
Industry Standard Process for Data Mining (CRISP-DM)
framework in a manufacturing environment. Kusiak
(Kristoffersen et al., 2019) discusses the five key points that
highlight the gaps in innovation and obstruct the advancement
in smart manufacturing and emphasizes that academic research
must collaborate extensively to solve complex industrial
problems. The second point is about new and improved
processes of data collection, processing, regular
summarization, and sharing. The third point is to develop
predictive models for outcome prediction. The fourth point
deals with developing general predictive models to capture
trends and patterns in the data to overcome future challenges
instead of memorizing data by feeding in large amounts. The fifth
point is to connect factories and processes that work together by
using open interfaces and universal standards. Kusiak
(Kristoffersen et al., 2019) also emphasizes that smart
manufacturing systems should adopt new strategies to measure
useful parameters in manufacturing processes to match up with
new requirements and standards. The studies discussed above
emphasize the development of ML models and their robustness
so that ML can effectively meet the new manufacturing
challenges. These robustness issues may be attributed to faulty
sensors, corrupt data, missing data or data drifting.

The papers discussed above highlight the importance of big
data in smart manufacturing and production. These studies
emphasized various issues related to robust ML prediction
models and guidelines for systematic CRISP-DM model
implementation and achieving business goals utilizing big data.
However, these studies addressed these issues largely in isolation
and did not consider, e.g., systematic implementation of different
phases of data and modeling related issues considering CRISP-
DM and interactions between a data-driven Knowledge discovery
model framework (CRISP-DM) and machine learning models.
Neither have model transparency issues been considered in
sufficient depth.

The challenges at different phases of CRISP-DM are
interrelated for a data-driven model from the beginning of the
business understanding that formulates business hypotheses and
goals to the data understanding and preparation, modeling and
model deployment that validates the business hypotheses. It is
required that the business goals and data-characteristics, models’
attributes and characteristics and users’ understanding must be
quantitatively or qualitatively recorded and evaluated. Each phase
of CRISP-DM shows sensitivity towards internal parameters and
the external parameters (that is caused by the other phases).

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 5768922

Tripathi et al. Data-Driven Knowledge Discovery Models

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Therefore a robust CRISP-DM must consider the hypothesis,
which tests the influence between phases, i.e.,

H0 : ρ(a, b|B,Dx,Ma,Mb,Ux,Ti) � ρ(a, b
∣∣∣∣B,Dy,Ma,Mb,Uy,Tj)

H1 : ρ(a, b|B,Dx,Ma,Mb,Ux,Ti)≠ ρ(a, b
∣∣∣∣B,Dy,Ma,Mb,Uy ,Tj)

(1)

Here, ρ(a,b) measures the influence between two phases of
CRISP-DM a to b, B is a business goal, Dx and Dy are the two
different data-sets at timepoint Ti and Tj, Ma and Mb are the
methods applied for a and b, Ux and Uy are two sets of users,
developers and business experts. The hypothesis provides a
mathematical framework for a robust implementation of
different phases of CRISP-DM to ensure the update of
different phases if the null hypotheses is invalidated.

Instead, in this paper considering the null hypothesis in Eq. 1,
we discuss the interrelation of the Knowledge Discovery and
Data Mining (KDD) framework for developing ML models
and the transparency issues because a KDD model (Cios et al.,
2012) which does not address various levels of details of business
and data understanding for the development of ML models
will be serving as an ad-hoc model, which can not be useful in
fulfilling higher business objectives and decision making in the
long term.

In this paper, we review the general CRISP-DM framework
and discuss extensions thereof. A special focus of attention is
placed on robustness-issues of ML and AI models for data from
manufacturing and production within this framework, which is
strongly related to model assessment. Furthermore, we
emphasize the interplay between three parties, i.e., data
experts, business experts and users, after deployment of a
model. This human-centered aspect requires additional
measures, e.g., for model transparency and model security
frequently overlooked.

The paper is organized as follows. In the next section, we
discuss the CRISP-DM framework in detail and suggested
extensions. In order to simplify this discussion we will
introduce a summarization of such a model we call
Generalized Cross-Industry Standard Process for Data Science
(GCRISP-DS). Next, we discuss the meaning of a human-
centered data science and its role as a safety system. Finally,
we discuss the problem of model assessment and data-related
robustness issues of machine learning models which are critical
for successful project implementations. This paper finishes with a
discussion and conclusions.

CROSS-INDUSTRY STANDARD PROCESS
FOR DATA MINING AND EXTENSIONS

The Cross-Industry Standard Process for Data Mining (CRISP-
DM) framework was introduced in 1996. Its goal is to provide a
systematic and general approach for applying data mining
concepts to analyze industrial operations and gain in-depth
insights into business processes (Shearer, 2000). It is a widely
accepted framework for industrial data mining and data analytics
for data-driven knowledge discovery. The CRISP-DM framework

is an endeavor to provide a general framework that is
independent of any given industry and of applications that
execute data mining methods that look at different stages of a
business (Shearer, 2000). Briefly, CRISP-DM divides the data
mining-related knowledge discovery process into six phases: 1)
business understanding, 2) data understanding, 3) data
preparation, 4) modeling, 5) evaluation and 6) deployment.

The different phases of CRISP-DM and the underlying
associated tasks are shown in Table 1. The added third
column provides a brief description of the literature, which
explicitly reviews the challenges of the corresponding
component related to industrial production and Big Data.

In Figure 1, we show a schematic overview of the standard
CRISP-DM framework. The edges are the interactions on
between different phases of CRISP-DM. For example, the
modeling phase depends on data preparation and vice versa.
When the data preparation phase is complete, the next step is the
modeling phase for which different candidate models with
different assumptions about the data are proposed. To meet
the data requirements for model building, data experts might
step back to the data preparation phase and apply various data
preprocessing methods. Similarly, in another example, the data
acquisition and data preprocessing steps are done by data experts
so that business goals can be achieved with the available data.
Business experts and data experts can agree to obtain the data
through a specific experimental design or by acquiring new
observational data.

Importantly, business goals may need to be readjusted based
on an understanding acquired during the data preparation and
data understanding phases. The readjustment of business goals
may imply the required time, cost, data quality and the usefulness
of the business plan. Once the data experts and business experts
agree on data issues, the data analysis process moves forward to
model development and evaluation. Similarly, also these phases
require the cooperation between different groups. Overall, the
standard CRISP-DM describes a cyclic process, which has
recently been highlighted as the emergent feature of data
science (Emmert-Streib et al., 2016). In contrast, ML or
statistics focus traditionally on a single method for the analysis
of data. Thus, the CRISP-DM framework follows a general data
science approach.

In Figure 2, we highlight two types of CRISP-DM models:
general extensions (aka concept-based extensions) and
industry- (or application) specific extensions. For the circular
economy, KDD and CRISP-DM are the concept-based
evolution of the CRISP-DM model. However, Data Mining
Methodology for Engineering (DMME) and CRISP-DM for
stream analytics are application-specific customizations of the
basic model. Given the new industrial trends, concept-based
evolution has become a generalized extension of CRISP-DM.
For example, the circular economy is a growing trend in the
industry for lifelong services, product upgrades, and product
recycling for sustainable and environmentally conscious
manufacturing (Walter, 2016). Hence, all business sectors
should gradually adopt the circular economy concept.
Therefore, a knowledge discovery model must adopt concept-
related extensions of the CRISP-DM framework.
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It is important to note that the standard CRISP-DM
framework developed in 1990s did not envisage the big data
evolution and futuristic applications of data-driven models for
automated decision making where the data dimensions, speed

and other big data characteristics play key roles for determining
the efficiency of data mining and ML models. Therefore the
standard model suffers from a number of limitations and various
required extensions of CRISP-DM and data mining algorithms,

TABLE 1 | Different components of CRISP-DM model and the associated tasks.

CRISP Components Tasks Literature and Description

Business understanidng –Define business objectives
– Risk Assessment analysis
–Cost and benefit analysis
–Technical requirement analysis
– Define data analysis objectives and project planning

In Sharma and Osei-Bryson (2009) a framework for implementing various
business understanding tasks is presented and highlights dependencies between
them. In Sharma and Osei-Bryson (2008); Rao et al. (2012) an organizational-
ontology for business understanding is presented. In Nino et al. (2015) various
aspects of business understanding and challenges related to big data are
discussed

Data understanding and
preparation

– Data extraction
– Data description
– Data quality estimation
– Data selection for modeling
Data cleaning and feature extraction
– Data exploration

In Duch et al. (2004) rule-based data extraction and understanding is discussed.
Uddin et al. (2014) discuss various characteristics of big data for its efficient
applications. Karkouch et al. (2016); Qin et al. (2016) discuss data properties, life-
cycle of data from internet of things (IoT) for maintaining data quality from IoT.
Cichy and Rass (2019) reviews various comparisons that provide data quality
frameworks from different areas, including industrial production. Hazen et al.
(2014); Ardagna et al. (2018) discuss methods for data quality management,
monitoring, and assessments. Steed et al. (2017); Zhou et al. (2019); Andrienko
et al. (2020)) discuss visualization methods and challenges of manufacturing and
big data. Stanula et al. (2018)) discuss guidelines for data selection for
understanding business and data in manufacturing

Modeling and evaluation – Model assumption and selection techniques for
modeling, parameter selection
– Feature engineering
– Model testing, result visualization and analysis
– Model evaluation and description
– Other data and modeling issues affecting model
performance

In Diez-Olivan et al. (2019), Vogl et al. (2019), Bertsimas and Kallus (2020) reviews
of various models, models building and evaluation for descriptive, diagnostic,
predictive, and prescriptive analysis in industrial production andmanufacturing are
presented

Deployment – Model utility assessment
– Model monitoring, maintenance and updates
– Users response evaluation
– Model evaluation for data understanding and business
understanding

Issues of model deployment related to human-lefted data science and model
safety are discussed in HUMAN-CENTERED Data Science and Model Safety

FIGURE 1 | The CRISP-DM framework describes a cyclic process of a data analysis project.
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models, and techniques were developed over the years to achieve
robustness in advanced automated decision-making processes
(Liu et al., 2018).

A recent example of such an expansion is the Data Mining
Methodology for Engineering applications (DMME) (Huber et al.,
2019) model, which is an extension of the CRISP-DM model for
engineering applications. This model adds three further phases,
namely, technical understanding, technical realization (which sits
between business understanding and data understanding), and
technical implementation (which sits between the evaluation and

deployment phases). The DMME model also draws new
interactions between different phases, e.g., between evaluation
and technical understanding, between data understanding and
technical understanding, and between technical understanding
and technical realization. Furthermore, this model also
emphasizes the cooperation between specialized goals for the
refinement of the framework.

Similarly, in light of big data, technical advancements, broader
business objectives, and advanced data science models, Grady
(Leslie, 1978) discussed the need for a new and improved

FIGURE 2 | Classification of the CRISP-DM framework into two categories: general extensions and industry-specific extensions.

TABLE 2 | List of extensions of the CRISP-DM process model framework based on industry-specific requirements (application-specific requirements) due to changing
business trends.

Model Description Application

DMME (Huber et al., 2019) Adds two new phases between business understanding and
data understanding and one phase between model
evaluation and deployment

Engineering applications

KDDS with big data (Grady, 2016) Adding various new activities, especially to handle big data A proposed framework as a need for the current scenario in
big data and data science applications

CRISP-DM extension for stream analytics
(Kalgotra and Sharda, 2016)

Data preparation and data modeling stage to be redefined
for multidimensional and time-variant data, where the IoT
system sends multiple signals over time

Healthcare application

CRISP-DM extension in context of circular
economy (Kristoffersen et al., 2019)

Adds a data validation phase and new interactions between
different phases

Aligning business analytics with the circular economy goals

Context-aware standard process for data
mining (CASP-DM) (Martínez-Plumed et al.,
2017)

The deployment context of the model can differ from the
training context. Therefore, for context-aware ML models
and model evaluation, new activities and tasks are added at
different phases of CRISP-DM.

Robust and systematic reuse of data transformation and ML
models if the context changes

APREP-DM (Nagashima and Kato, 2019) Extended framework for handling outliers, missing data, and
data preprocessing at the data-understanding phase

General extension for automated preprocessing of sensor
data

QM-CRISP-DM (Schäfer et al., 2018) CRISP-DM extension for the purpose of quality management
considering DMIAC cycle

Adding quality management tools in each phase of CRISP-DM
framework validated in the real-world electronic production
process

ASUM-DM (Haffar, 2015) IBM-SPSS initiative for the practical implementation of
the CRISP-DM framework, which combines traditional
and agile principals. It implements existing CRSIP-DM
phases and adds additional operational, deployment, and
project-management phases

General framework that allows comprehensive, scalable,
and product-specific implementation

A variability-aware design approach for
CRISP-DM (Vale Tavares et al., 2018)

Extends the structural framework to capture the variability of
data modeling and analysis phase as feature models for
more flexible implementation of data process models

General framework which considers model and data
variability for the improved automation of data analysis
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framework. The author coined the term Knowledge Discovery in
Data Science (KDDS) and discussed different aspects of KDDS,
such as KDDS phases, KDDS process models, and KDDS
activities. Grady emphasized that this approach establishes a
new and improved framework, which he calls the Cross-
Industry Standard Process model for Data Science (CRISP-
DS). Table 2 lists further extensions of the CRISP-DM model.
These models show that the basic CRISP-DM framework cannot
satisfy the variety of data mining requirements from different
sectors.

In general, the extensions of CRISP-DM shown in the Table 2
extend the standard framework to fulfill specific requirements.
Various expansions add new phases or new attributes or activities
on the existing phases. Subsequently, this added new interactions
between CRISP-DM phases as well as new proposed phases.
Summarizing all these extensions into one coherent framework
one obtains a fully connected CRISP network as a generalized
abstract framework of the various steps constituting a systematic
analysis and knowledge discovery. This extension is shown in
Figure 3 and we call this theGeneralized Cross-Industry Standard
Process for Data Science (GCRISP-DS).

In Figure 3, the orange edges are from the traditional CRISP-
DM whereas the green ones are newly added layers of complexity
and interactions. The fully connected GCRISP-DS raises new
questions about how these edges are useful and what new
information they contributes? In our understanding the six
basic phases of CRISP-DM must be interacting actively which
means that the business experts, data experts and data scientists
actively collaborate to evaluate business problems and the data-
driven solutions. Therefore, the active collaboration would ensure
if a new phase or interaction is required between existing phases
or a new attribute to be added in different phases. Also, it should
ensure how effectively the interactions should stay between
phases. Thus, with active collaborations one can draw a new
specific subclass of a GCRISP-DS. The new specific model
(subclass or extended subclass of fully connected GCRISP-DS)

would be an adaptation to the companies’ business environment
and solutions. We want to emphasize three main points for active
collaboration between all possible interactions between phases:

Evaluate requirements of extensions of existing phases,
activities and attributes depending on technical and other
business specific needs for adopting industrial application-
specific requirements or general changes in the economy or
manufacturing.
Ensure the models’ utility and robustness with respect to
external changes in the business processes, data quality and
business understanding.
Ensure the model transparency, explainability and reusability
for newer business understanding by considering users’
response to the deployed model.

HUMAN-CENTERED DATA SCIENCE AND
MODEL SAFETY

The new wave of AI and ML solutions aims to replace human-
related tasks and decision making processes by automated
methods. This raises concerns regarding responsible and
ethical ML and AI models that do not underestimate human
interests and do not incorporate social and cultural bias. ML
systems have, until now, primarily focused on applying cost-
effective automations that are useful for business organizations,
but such automations are so far not part of complex decision
making processes. However, in the future, autonomous systems
could take over for many crucial decision making processes. One
example of such an automation are self-driving cars. Many large
car manufacturing companies have announced the launch of self-
driving cars, but the acceptability and use of such vehicles is a
major challenge (Urmson andWhittaker, 2008; Howard and Dai,
2014). (Kaur and Rampersad, 2018) quantitatively analyzed the
acceptance of technology that addresses human concerns. Their

FIGURE 3 | Generalized Cross-Industry Standard Process for Data Science (GCRISP-DS). This framework is designed to allow dynamic interactions between
different phases to adequately address data- and model-related issues for achieving robustness.
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study analyzed the public response to this issues, which include
security, reliability, performance expectancy, trust or safety, and
adoption scenarios.

Similarly, such cases can be discussed for industrial
production and manufacturing problems when a self-
automated system or a self-functioning machine based on AI
or ML decides various production and manufacturing tasks. In
these cases, how a system would function in complex scenarios
would be a question, both ethical and technical. This type of
autonomy can affect the complex production process of PPCSs
estimation, which might, in adversarial cases, influence the
robustness and stability of PPCSs, predictive maintenance, and
other production processes (Oliveira et al., 2019). Another future
question one can ask is, what should be done with an automated
system after it is deployed? Should it be left with no human
intervention, should it always supersede human understanding,
and how can humans and AI systems cooperate effectively?

In industrial production cases, human-centered data science
issues can be seen from the following perspectives:

• What is the role of human-centered ML and data science
processes in decision making related to work goals, business
goals and societal goals?

• Can production processes be completely automated with no
involvement of humans by AI agents with human-like
intelligence?

• The emergence of complexity when a series of tasks is
automated and integrated: Can an AI or ML system
exhibit the higher level of intelligence required for
independent and integrated decision making?

When industrial production processes are completed by a
combination of humans and ML agents: How can humans and
ML agents interact effectively for integrated analysis and decision
making?

The first point mentioned here is still in its infancy and awaits
the future of integrating complex data mining and ML processes.
The future design of data science modeling of complex data and
business goals is beyond the scope of this paper. However, a
fundamental question that remains relevant is how can large-
scale automation led by AI andMLmodels impact humans? At its
core, this question probes how AI can efficiently serve, empower,
and facilitate human understanding and decision making tasks
and provide deeper insight into the solutions to these complex
problems. This question also leads to the second and third points;
namely, should we leave the decisionmaking entirely in the hands
of AI-ML models? In other words, can a machine decide by itself
what is right or wrong for humans? Complete automation would
lead to the emergence of many complex aspects of the production
process, and dealing with such complexity would be the future
challenge of research into production andmanufacturing. In such
complex cases, the role of humans should be to interact and
collaborate with the automated systems. They should use
intelligent models for decision making and have the wisdom
to override machine decisions if required for ensuring safety.

Importantly, there is a difference between a human
perspective and statistical learning perspective because both

have different characteristics and capabilities. A ML model
makes decisions based on a narrow data-related view with no
or limited contextual understanding. The AI-ML models cannot
be held responsible for their decisions. However, they can
produce results rationally and logically based on the data
used to train them. Interactions between humans and
machines are possible in two ways: The first way involves the
model developer and ML models, where the training of models
are the responsibility of data experts and business experts. They
should train models with a diverse range of data with no bias
and no breach of data ethics. The second way is between model
users and MLmodels. The results predicted by models empower
and assist humans to make decisions regarding simple to
complex tasks. Figure 4A shows a schematic view of human-
machine interactions. In this figure, we highlight various
characteristics of human and ML models and how effective
interactions between humans and ML models complement and
empower human decision making and further improves the
capacity of models to make fair analyses.

Further extending the human-machine interaction concept,
we now discuss the industrial-production framework shown in
Figure 4B. This highlights a CRISP-DM process in the
deployment phase of the model. The deployed model should
have proven its utility and allow transparency so that the user
can understand the models’ prediction and trust the results.
Importantly, the deployed model interacts with data experts,
business experts, and actual users. In an industrial production
process, the users are technical operators or machine handlers.
These interactions have different meanings for different users.
Data experts interact with the model to improve the prediction
accuracy and model performance. They provide contextual
meaning to the results predicted by the model and train it
further for contextual learning. The data experts also explore
the reusability of a model for other cases (Pan and Yang, 2010).
Business experts should test these results against their
understanding of larger business goals and should explain
the business context based on model results. Furthermore,
the results should allow the model to be reused and
adaptable to changes in production and manufacturing
scenarios.

In production and manufacturing, data-driven knowledge
processes must adopt human-centered concerns in data
analytics and ML models; the human-machine interaction
must not fizzle out after the deployment of the model
(Amershi et al., 2014). The model should remain interactive
with its users and be allowed to evolve and update itself.
Other characteristics of the deployed models are its
transparency and performance in adversarial cases. Model
transparency should enable users to access various model
features and evaluate the predicted results. Additionally, the
human-machine interaction must be aware of the surrounding
environment so that the model can adapt to environmental
changes, as required for intelligent learning of ML models.
Continuous interactions between humans and machines
improve the generality of the model by incremental learning
and updating of the model so that it gives robust and stable
responses and can be adaptive to changes.
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MODEL ASSESSMENT

For the remainder of this paper, we focus on two interrelated
aspects of GCRISP-DS or CRISP-DM, namely, model assessment
and model robustness. While all phases and interactions are
important the effect of improper models or lack of robustness
may lead to the most devastating problems of the analysis
pipeline. For this reason, we discuss model assessment and
model robustness issues in detail to emphasize their
importance. With respect to Figures 1 and 3 these correspond
to the internal structure of the corresponding phase nodes.

Model building and evaluation in CRISP-DM are two phases
in which data are 1) searched for patterns and 2) analyzed. These
models are divided into four classes: descriptive, diagnostic,
predictive, and prescriptive (Bertsimas and Kallus, 2020). The
primary goal of these models is pattern recognition, machine-
health management, condition-based maintenance, predictive
maintenance, production scheduling, life-cycle optimization,
and supply-chain management prediction. Alberto et al. (Diez-
Olivan et al., 2019) provide a comprehensive review of various
methods applied in manufacturing and production with
representative studies of descriptive, predictive, and prescriptive
models of various industrial sectors, including manufacturing.
Vogl et al. (2019) review current practices for diagnostic and

prognostic analysis in manufacturing and highlight the
challenges faced by the prognostic health management system
in the current scenario of automated maintenance.

Figure 5A shows a schematic view of the division of data
analysis problems. The divisions are useful to understand the
nature of the problem and the methods that are applicable to the
problem.

Leek and Peng (2015) emphasizes that, even if the statistical
results are correct, data analysis can be wrong because the wrong
questions are asked. One must be aware of such a situation in an
industrial framework and should select the right approach for the
analysis. He further divides data analysis into six categories (see
Figure 6). This chart is useful for the basic understanding of data
analysis for business experts and data experts, which helps prevent
knowledge discovery from diverging from the real objective.

The business understanding and the later data modeling
approaches for solving the type of problem shown in
Figure 5A requires a systematic interaction between data
experts and business experts. Such communication is possible
only when the data experts and business experts are aware of each
other and agree with each other. Therefore, they need to address
the data- and model-related communication in the context of
business understanding. Hicks and Peng, (2019) discuss the
vocabulary required to convey the accurate meaning of the

FIGURE 4 | (A) Schematic view of interactions between humans and AI andML agents. (B) Schematic view of post-deployment of MLmodel not left in isolation but
continuously updating and addressing human concerns by allowing human interactions to ensure a human-centered data science.
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data analysis. Additionally, They describe the six principles of
data analysis: Data matching, Exhaustive, Skeptical, Second
order, Transparent, and Reproducible. These six principles are
applicable to an industrial framework to communicate the results
of the data analysis. A clear understanding of these principles
helps business experts and data experts develop robust models for
data-driven knowledge discovery. Data- and model-related issues
are not restricted only to understanding business and data; the
most crucial part is model assessment, which requires accurate
nonambiguous model selection, interpretability, and
transparency. Model assessment depends on various issues,
namely, model accuracy, model multiplicity, model
interpretability, and model transparency (see schematic
diagram in Figure 5B), and various strategies can be applied
to obtain the best model assessment. Model assessment requires
an agreement between data and business experts, so all four
components of model assessment shown in Figure 5B should be
addressed properly. The first part is the model accuracy; Raschka,
(1811) reviews model evaluation, selection, and ML model
selection for various ML methods, and Palacio-Niño and
Berzal (Berzal, 2019) review the evaluation of unsupervised

learning methods. Akaike information criterion (AIC),
Bayesian information criterion (BIC), cross-validation error,
and probabilistic model selection are some of the approaches
used to select less complex models. In (Emmert-Streib and
Dehmer, 2019b) key statistical characteristics for systematically
evaluating regression models are discussed with respect to model-
complexity for selecting the best model. Model interpretation is
another crucial issue in data-driven knowledge discovery with
ML models. In general, monotonically increasing functions
(linear and nonlinear), such as additive models, sparse linear
models, and decision trees, are regarded as interpretable models,
whereas nonlinear and nonmonotonic functions have higher
complexity and thus a lower interpretability (Ribeiro et al.,
2016a; Hall and Gill, 2018). (Doshi-Velez and Kim, 2017)
provides a theoretical framework for the interpretability of
models by defining three classes for evaluating interpretability:
The first class is application-grounded evaluation, where the
domain experts evaluate the model with real tasks. Next,
human-grounded evaluation allows a model to be tested with
simplified tasks without a specific end-goal. The third class is
functionally grounded evaluation, which uses a predefined

A

B

FIGURE 5 | (A) Components of data analytics problems. (B) Model assessment.
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definition of interpretability of a model as proxy and optimizes
the candidate models. In an industrial setup, most of the model
evaluations involve functionally grounded evaluation.
Application- and human-grounded evaluation requires more
resources and could be expensive and time consuming.
Functionally grounded evaluation can be useful for learning if
the selection of proxy models is based on factors that are relevant
to real-world applications.

Model agnostic interpretability is another approach for
interpreting ML models. In this approach, a model is treated
as a black box, and the model is analyzed by entering perturbed
input data and analyzing the respective output (Ribeiro et al.,
2016a). The model agnostic approach allows the application of a
wide range of black-boxMLmodels as interpretable for predictive

analysis. Local interpretable model-agnostic explanations
(Ribeiro et al., 2016b) explain a model locally by constructing
a local binary classifier of a regularized linear model by using
simulated or perturbed input data to explain an instance
predicted by the black-box machine learning model.

Another issue with model assessment is the multiplicity of
models; such cases are known as the “Rashomon” effect
(Breiman, 2001), whereby multiple predictive models make
predictions with competing accuracy of the same target
variable. In such cases, one should not come to a conclusion
about the validity of a prediction in terms of its explanatory
variables from one or a few models until the hypothesis of model
multiplicity is invalidated. In industrial scenarios, the Rashomon
effect can occur when we have multiple models with competing

FIGURE 6 | Schematic diagram showing data analytics process. Connections are shown between the individual analysis steps that constitute the whole project
Lee et al., 2019.
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accuracy; one can then choose a narrative to interpret the results
based on the selected model. Such interpretations can differ for
different models and would impact the business objective or
business understanding. Fisher et al. (2018) proposes the model
class reliance, which is a measure of a set of variables of a model
that show high predictive accuracy. Marx et al. (Charles et al.,
2019) propose the ambiguity and discrepancy measures to
evaluate the multiplicity problem in classification models. In
this approach, models are selected from a set of “good”
models, which maximizes the discrepancy compared to a
proposed baseline model. To select a model with simplicity
and accuracy, Semenova and Rudin (2019) propose the
Rashomon ratio measure, which is a ratio of competing
models in hypothesis space.

In a business scenario, when manufacturing becomes
increasingly complex and integrated, data-driven models are
useful to make informed decisions and automate functioning,
which allows for efficient and cost-effective production. Even for
a model with high accuracy, user trust is always a crucial
consideration for the deployment of a model. In such cases,
transparency is always a matter of concern and should be
addressed with simple explanations. Trust issues arise because
of data-source uncertainty, the performance of deployed models,
and user belief in the model output. This uncertainty can seep
into the whole process of data mining, from data preprocessing to
model building, and thus impacts the entire business-intelligence
process. Sacha et al. (2015) provide a framework to address
human-machine trust issues that are caused by uncertainties
propagated in data processing, model building, and visual
analytics. The proposed framework to deal with the
uncertainty is divided into two parts: The first part is the
system-related uncertainty and emphasizes handling machine
uncertainty by quantifying uncertainty in data processing and
model building, aggregation of total uncertainty at different
phases of data analysis, and interactive exploration of
uncertainty through visual and other means. The second part
involves human factors that emphasize transparency, which
allows system functions to access experts and users for review
and to explore uncertainty, thus building an awareness of the
emerging uncertainty—and additionally tracking human
behavior, which is also useful to estimate human bias and how
it impacts human-machine interactions.

Data transparency and model transparency should ensure that
the entire process is explainable to business experts and users. It
should also be secure from external attacks, which allows models
to be deployed for making business decisions, for user control,
and for social acceptance of intelligent systems Weller, 2017;
Springer, 2019. Emmert-Streib et al. (2020b) featured that the AI
models help analyze data but not establish a scientific-theory of
the system that provides the data. Therefore, methods like deep
learning should not be applied as a first choice for the tasks where
requirements for explainable models are essential. However, these
models should be utilized for comparison with the other nearest
explainable models for evaluation. Weller (2017) discusses eight
types of transparency rules for developers, business experts, and
users to help them understand the existing system functioning.
Transparency allows a large and complex system to be robust and

resilient and self-correcting, and ultimately ensures steady and
flexible models.

ROBUSTNESS ISSUES OF ML AND AI
MODELS

In the following, we discuss data-related issues for robust data
analytics because the shortcomings of data reflect on model
evaluation and on the deployment phase in terms of
underperformance and biased predictions of real-world
problems.

Experimental Design and Sample Size
In data-driven process optimization, the data may be
observational data or experimental data. Experimental data are
used to test the underlying hypothesis to build an understanding
and to optimize the response variable by controlling or modifying
various combinations of input parameters. In manufacturing, the
experimental designs mostly focus on optimizing various
parameters for quality control. The experimental design is a
key criterion for determining whether a model employs all the
right answers to be understood in ML-based analysis and
manufacturing optimization. The production process is
controlled by setting various process variables, which, during
production, are monitored for changes. In an experimental
design, we monitor certain process variables by controlling
other variables to understand how they affect product quality.
The one-factor approach is common and involves repeating
experiments with the factors changed between each
experiment until the effect of all factors is recorded. However,
this one-factor approach is time consuming and expensive. For a
robust experimental design, Taguchi proposed a methodology
that uses orthogonal arrays, signal-to-noise ratios, and the
appropriate combination of factors to study the entire
parameter space through a limited number of experiments
(Taguchi and Konishi, 1987; Taguchi et al., 1989; Unal and
Dean, 1991; Chang and Faison, 2001). An optimal
experimental design is a useful strategy that stands between
business and data understanding. This approach also benefits
model robustness in the evaluation phase in the CRISP-DM
framework. The active interaction between business
understanding and data understanding serves to solve the
optimal sample-size issue and prevent an under-powered
analysis.

Model Complexity
The complexity of predictive models is sensitive to the prediction
of testing data. Any complex model can lead to overfitting,
whereas simpler models lead to prediction bias. This property
of predictive models is known as “bias-variance trade-off.”
Complexity in the model could lead to robustness issues, such
as large testing error or the wrong interpretation of model
parameters. In some cases, if future data contain a lower
signal-to-noise ratio, large prediction error may occur. This
problem can arise because of a large number of correlated
features or through feature engineering, where we create a
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large number of redundant features with high correlation or when
we try to fit a high-degree polynomial model in our data set.

Vapnik Chervonenk (VC) dimension (Vapnik and
Chervonenkis, 1971) is a quantitative measure for measuring
the complexity of models and is used to estimate the testing error
in terms of model complexity. A model is selected based on the
best performance with testing data and, as the complexity
increases, the optimized training error decreases and the
expected testing error first increases, then decreases, and then
increases again. The training error and VC are used to calculate
the upper bound of the testing error. This method is called
“structural risk minimization” and is a model that minimizes
the upper bounds for the risk. Regularization (Tibshirani, 1996;
Chang and Faison, 2001; Yuan and Lin, 2006; Emmert-Streib and
Dehmer, 2019c) and feature-selection methods (both wrapper-
and filter-based) (Maldonado and Weber, 2009; Ko et al., 2017)
are the useful strategies of variable selection to keep model
complexity in check by minimizing bias and variance.
Hoffmann et al. (2015) propose a sparse partial robust M
regression method, which is a useful approach for regression
models to remove variables that are important due to the outlier
behavior in the data. The model complexity affects the modeling
and model evaluation, such as model description, robustness, and
parameter settings in the CRISP-DM framework.

Class Imbalance
In production and manufacturing data, class imbalance is a
common phenomenon. One such example is vibration data
from cold testing of engines: all manufactured engines go
through cold testing, and the technical expert tries to identify
different errors in the engines by using strict threshold criteria.
They label any errors found with a particular error label based on
their technical knowledge. The proportion of engines with errors
and the number of good engines are very low. To implement a
multiclass classification model using previous data, which
automatically identifies the error class of an engine, developing
such models with high accuracy is difficult. Skewed sample
distributions are a common problem in industrial production-
related quality control, and imbalanced data lead to models where
predictions are inclined toward the major class. In such cases, the
major class is “good engines.” If a model classifies a faulty engine
as a good engine (high false positives), then it would severely
affect the reputation of quality control. In such cases, false
positives could severely affect product reputation.
Undersampling of major classes and oversampling of minor
classes form the basis of the solution commonly proposed for
the problem. References (Tajik et al., 2015; Zhang et al., 2015;
Duan et al., 2016) discuss fault detection models with an
imbalanced training dataset in the industrial and
manufacturing sector. Resampling methods (oversampling,
undersampling, and hybrid sampling) (Chawla et al., 2002;
Han et al., 2005; Cateni et al., 2014; Sun et al., 2015;
Nekooeimehr et al., 2016), feature selection and extraction,
cost-sensitive learning, and ensemble methods (Krawczyk,
2016; Guo et al., 2017) are other approaches to deal with the
class-imbalance problem. The use of evaluation measures
considering the presence of undersampled classes is also

recommended to evaluate models, such as the probabilistic
thresholding model (Su and Hsiao, 2007), adjusted F measure
(Maratea et al., 2014), Matthews correlation coefficient
(Matthews, 1975), and AUC/ROC. The imbalance is critical to
model building and evaluation problems in the CRISP-DM
framework.

Data Dimensionality
In ML and data mining, high-dimensional data contain a large
number of features (dimensions), so the requirement of optimal
samples increases exponentially. Therefore, a high-dimensional
dataset is sparse (p≫n). In modern manufacturing, the
complexity of the manufacturing processes is continuously
increasing, which also increases the dimensionality of process
variables that need to be monitored. Wuest et al. (2014) discuss
manufacturing efficiency and product quality by considering the
complexities and high dimensionality of manufacturing
programs. High-dimensional data are a challenge for model
robustness, outlier detection (Arthur et al., 2012), time, and
algorithmic complexity in ML. These higher-dimensional data
require changes in existing methods or the development of new
methods for such sparse data. One approach is to use a
dimensionality-reduction strategy such as a principal
component analysis (Subasi and Ismail Gursoy, 2010) and use
the principal components for ML methods. Such a strategy also
requires a careful examination because of information loss when
data are projected onto lower dimensions. Similarly, another
strategy is feature selection, where the most important feature
variables are found and we remove the redundant features from
the model. Regularization (Tibshirani, 1996), tree-based models
(Hsu, 2004; Bertsimas and Dunn, 2017; Guolin et al., 2017),
mutual information (Jorge and Pablo, 2014; Bennasar et al.,
2015), and clustering are other approaches for feature selection.

Data Heteroscedasticity
In regression problems, the underlying assumption y ̂ for the error
term in the response data is that it has constant variance
(homoscedasticity). Although such assumptions are useful to
simplify models, real-world data do not follow the assumption
of the constant variance error term and thus violate the
assumption of homoscedasticity. Therefore, real data are
heteroscedastic. Predictions based on a simple linear model of
such data would still be consistent but can lead to practical
implications that produce unreliable estimates of the standard
error of coefficient parameters, thus leading to bias in test
statistics and confidence intervals. Heteroscedasticity can be
caused directly or indirectly by effects such as changes in the
scale of observed data, structural shifts in the data and outliers, or
the omission of explanatory variables. Heteroscedasticity can be
parametric, which means that it can be described as a function of
explanatory variables (White, 1980), or unspecified, meaning that
it cannot be described by explanatory variables. Examples in
manufacturing are related to predictive maintenance
(i.e., predicting the remaining useful life of a machine based
on vibration data), quality control, and optimization (Tamminen
et al., 2013; Lee et al., 2019). Heteroscedasticity in regression
models is identified by analyzing residual errors. Residual plots
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and several statistical tests may be used to test for
heteroscedasticity in data (Leslie, 1978; Breusch and Pagan,
1979; White, 1980; Markowski and Markowski, 1990). Other
studies and methods to model the variance of response include
weighted least squares (White, 1980), the heteroscedastic kernel
(Cawley et al., 2004), heteroscedastic Gaussian process regression
(Kersting et al., 2007; Kotanchek et al., 2010), heteroscedastic
Bayesian additive regression trees (BART) (Pratola et al., 2017),
and heteroscedastic support vector machine regression (Hu et al.,
2016).

Incomplete and Missing Data
Data quality is an essential part of data-driven process
optimization, process quality improvement, and smart decision
making in production planning and control. In the
manufacturing process, data come from various sources and is
heterogeneous in terms of variety and dimensionality. Data
quality is one of the important issues for the implementation
of robust ML methods in process optimization. Data quality may
suffer for various reasons such as missing values, outliers,
incomplete data, inconsistent data, noisy data, and
unaccounted data (Köksal et al., 2011). The typical way to deal
with missing data is to delete them or replace them with the
average value or most frequent value and apply multiple
imputations (Fritz, 2005) and expectation maximization (Allen
and Tibshirani, 2010). Another method is to consider the
probability distribution of missing values in statistical
modeling (Rubin 1976; Little and Rubin, 2019). These
considerations are of three types: 1) missing completely at
random, 2) missing at random, and 3) missing not at random.
Joint modeling and fully conditional specifications are two
approaches to multivariate data imputation (Van Buuren
et al., 2006; van Buuren, 2007). Recent studies to impute
missing data in production and manufacturing and optimize
production quality considered classification and regression trees
to impute manufacturing data (White et al., 2018), modified fully
conditional specifications (Guan et al., 2017), and multiple
prediction models of a missing data set to estimate product
quality (Kang et al., 2018). Loukopoulos et al. (2018) studied
the application of different imputation methods to industrial
centrifugal compressor data and compared several methods.
Their results suggest multiple imputations with self-organizing
maps and k nearest neighbors as the best approach to follow.
Incomplete and missing data have repercussions in business and
data understanding, exploratory analysis, variable selection,
model building, and evaluation. A careful strategy involving
imputation or deletion should be adopted for missing data.

External Effects
External effects are important factors in data-driven process
optimization. In a big data framework, external effects might
be unnoticed, incorrectly recorded, or not studied in detail
(i.e., unknown). External effects can involve environmental
factors (e.g., temperature, humidity), human resources,
machine health, running time, material quality variation, and
other factors that are dealt with subjectively but significantly
affect production and data quality. For example, to create a ML

model to predict product quality, the data (process parameters)
are recorded by sensors from several machines. In the injection
molding process, the process parameters cannot estimate product
quality alone because product quality is significantly affected by
temperature, humidity, machine health, and material type, and
these external factors must be considered to optimize quality.
Similarly, in the sintering process (Strasser et al., 2019), where
product quality is predicted in terms of its shape accuracy, the
data from various experiments show a considerable variation in
different process parameters from unknown and unaccounted
sources. In such cases, the prediction can be biased or erroneous
with high variance. A careful examination involving exploratory
analysis is required to detect such effects. Gao et al. (2017) studied
a hierarchical analytic process to produce a comprehensive
quality evaluation system of large piston compressors that
considers external and intrinsic effects.

Concept Drift
Changes in data over time due to various factors such as external
effects, environmental changes, technological advances, and
various other reasons emerge from unknown real-world
phenomena. ML models, in general, are trained with static
data and thus do not consider the dynamic nature of the data,
such as changes over time in the underlying distribution. In such
cases, the performance of these models deteriorates over time.
Robust ML modeling requires identifying changes in data over
time, separating noise from concept drift, adapting changes,
and updating the model. Webb et al. (2016) provide a
hierarchical classification of concept drift that includes five
main categories: drift subject, drift frequency, drift transition,
drift recurrence, and drift magnitude. They make the case that,
rather than defining concept drift qualitatively, a quantitative
description of concept drift is required to understand problems
in order to detect and address time-dependent distributions.
These quantitative measures are cycle duration, drift rate,
magnitude, frequency, duration, and path length and are
required for a detailed understanding of concept drift. Such
an understanding allows modeling by new ML methods that
are robust against various types of drifts because they can update
themselves by active online learning and thereby detect drifts.
Lu et al. (2018) provide a detailed review of current research,
methods, and techniques to deal with problems related to
concept drift. One key point in that paper is that most of the
methods identify “when” a drift happens in the data but cannot
answer “where” or “how” it happened. They further emphasize
that research about concept drift should consider the following
themes:

1) Identifying drift severity and regions to better adapt to
concept drift;

2) Techniques for unsupervised and semisupervised drift
detection and adaptation;

3) A framework for selecting real-world data to evaluate ML
methods that handle concept drift;

4) Integrating ML methods with concept-drift
methodologies (Gama et al., 2013) discuss the various
evaluation and assessment practices for concept-drift

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 57689213

Tripathi et al. Data-Driven Knowledge Discovery Models

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


methods and strategies to rapidly and efficiently detect
concept drift).

Cheng et al. (Lin et al., 2019) present the ensemble learning
algorithm for condition-based monitoring with concept drift and
imbalance data for offline classifiers. Yang et al. (2019) discuss a
novel online sequential extreme learning model to detect various
types of drifts in data. Finally, Wang and Abraham (2015)
proposed a concept-drift detection framework known as
“linear four rates” that is applicable for batch and streaming
data and also deals effectively with imbalanced datasets.

In the manufacturing environment, concept drift is an
expected phenomenon. When discussing with technical
experts, data drift should be understood and explained clearly
by experts for data and business understanding to ensure that
future models are flexible and adaptable to changes due to
data drift.

Data Labeling
Data annotations (i.e., labels) as output allow ML methods to
learn functions from the data. Specifically, input data are modeled
through class labels by using supervised ML models for
classification problems. If the labeling is noisy or not
appropriately assigned, the predictive performance of the
classification model is severely degraded. Therefore, for
supervised ML models, data labeling or annotation is a
nontrivial issue for data quality, model building, and
evaluation. The labeling can either be done manually by crowd
sourcing or by using semisupervised learning, transfer learning,
active learning, or probabilistic program induction (Zhou et al.,
2017). Sheng et al. (2008) discuss repeated-labeling techniques to
label noisy data. In a typical manufacturing environment, labeling
is done by operators or technical experts; in some cases, the same
type of data is annotated by multiple operators who work in
different shifts or at different sites. Sometimes, the operators do
not follow a strict protocol and label intuitively based on their
experience. In such cases, data quality can suffer immensely.
Inadequate learning from data may occur if a large number of
samples is not available for a specific problem and the data
labeling is noisy.

Data labeling is a part of the data understanding phase and
should follow a clear and well-defined framework based on the
technical and statistical understanding of the manufacturing and
production processes and their outcome. Many manufacturing
and production tasks are managed by machine operators,
technical experts, engineers, and domain experts using
measures and experience to optimize the quality of the output.
Because these experts are well aware of the existing situation, they
should be allowed to label data to produce robust ML models and
maintain data quality.

Feature Engineering
The deep learning framework (Wang et al., 2018; Emmert-Streib
et al., 2020a) provides a promising approach for automated smart
manufacturing. These algorithms undertake automatic feature
extraction and selection at higher levels in the networks. They are
used for numerous important tasks in manufacturing, such as

fault detection (Lu et al., 2017) or predicting machine health
(Deutsch et al., 2017). Wang et al. (2018) comprehensively
reviewed deep learning methods for smart manufacturing.
Importantly, deep learning models may suffer from the same
issues as discussed in previous sections. Data complexity, model
and time complexity, model interpretation, and the requirement
of large amounts of data means that they may not be suited for
every industrial production problem. Therefore, the demand
remains strong in industrial production for traditional ML
algorithms using feature-selection methods.

In ML problems, a feature is an attribute used in supervised or
unsupervised ML models as an explanatory or input variable.
Features are constructed by applying mathematical functions to
raw attributes (i.e., input data) based on domain knowledge. As a
result, feature engineering and extraction lead to new
characteristics of an original data set (i.e., it constructs a new
feature space from the original data descriptors). Features can be
created by methods that are linear, nonlinear, or use independent
component analysis. The main objective of feature-extraction
techniques is to remove redundant data and create interpretable
models to improve prediction accuracy or to create generalized
features that are, e.g., classifier independent. In general, feature
learning enhances the efficiency of regression and classification
models used for predictive maintenance and product quality
classification. In the manufacturing industry, feature
engineering and extraction is a common practice for the
classification of engine quality, machine health, or similar
problems using vibration data. For instance, fast Fourier
transform or power spectral density statistical features are
standard feature extraction methods used for vibration data
(Caesarendra and Tjahjowidodo, 2017).

Sondhi (2009) discusses various feature-extraction methods
based on decision trees, genetic programming, inductive logic
programming, and annotation-based methods. Interestingly,
genetic programming in combination with symbolic regression
searches for a mathematical equation that best approximates a
target variable. Given its simple and understandable structure,
this approach has been useful for many industrial applications of
modeling and feature extraction (Kohavi and George, 1997; Yang
et al., 2015; Strasser et al., 2019). However, training for a large
number of variables, model overfitting, and the time complexity
of the model are problematic for this approach. Caesarendra and
Tjahjowidodo (2017) discuss five feature categories for vibration
data:

1. phase-space dissimilarity measurement;
2. complexity measurement;
3. time-frequency representation;
4. time-domain feature extraction;
5. frequency-domain feature extraction.

These feature engineering methods are useful to summarize
various characteristics of vibration data and reduce the size of
high-dimensional data. Mechanical vibration is a useful indicator
of machine functioning. The features of vibration data are often
used to train ML models to predict fault detection, do predictive
maintenance, and for various other diagnostic analyses. He et al.
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(2019) discuss the statistical pattern analysis framework for fault
detection and diagnosis for batch and process data. In this
approach, instead of process variables, sample-wise and
variable-wise statistical features that quantify process
characteristics are extracted and used for process monitoring.
This approach is useful for real-world dynamic, nonlinear, and
non-Gaussian process data, which are transformed into
multivariate Gaussian-distributed features related to process
characteristics that are then used for multivariate statistical
analysis. Ko et al. (Köksal et al., 2011) discuss various feature-
extraction and -engineering techniques for anomaly detection or
binary classification in different industries.

Recent results for deep learning networks and support vector
machines demonstrate that feature selection can negatively affect
the prediction performance for high-dimensional genomic data
(Smolander et al., 2019). However, whether these results translate
to data in other domains remains to be seen. Until then, feature
selection remains a standard approach of data preprocessing.

In general, for the CRISP-DM framework, feature engineering
is essential for real-world problems of model building. Real-world
data features are not independent—they are correlated with each
other, which hints of interactions between the underlying
processes in manufacturing. Many of the higher-level effects
related to the maintenance and product quality are
combinations of lower-level effects of several processes and are
reflected by the data. Therefore, approaches that use feature
engineering, feature extraction, and feature selection are useful
to build models to predict or test for higher-level effects.

DISCUSSION

In this paper, we reviewed some of the key issues affecting the
performance, implementation and use of AI and ML models.
Specifically, we discussed existing methods and future directions
of model building and model evaluation in the area of smart
manufacturing. In this context, GCRISP-DS is a general
framework that provides a structured approach for data
mining applications. Its goal is to provide a comprehensive
data analytics toolbox to address challenges in manufacturing
and ultimately help to establish standards for data-driven process
models that can be implemented, e.g., for improving production
quality, predictive maintenance, error detection, and other
problems in industrial production and manufacturing.

The standard CRISP-DM framework describes a cyclical flow
of the entire data mining process which contains several feedback
loops. However, in many realistic data mining and modeling
cases, it is an incomplete framework that requires additional
information and active interactions between different sections of
CRISP-DM. The demand for additional or new information can
arise due to real-world production complexity, e.g., data-related
or industry-specific applications, other organizational and
manufacturing issues, or new emerging business trends.

Our review discussed data and model-related issues for
building robust models that are successfully linked to a
business understanding. One of the challenges for robust
model building is the active interaction between different

phases of the CRISP-DM framework. For instance, business
understanding and data understanding go hand in hand
because we learn business objectives (business understanding)
and use relevant data (data understanding), so data should be
explored appropriately (data preparation) by various statistical
and analytical tools to enhance our business understanding from
a realistic viewpoint. These three phases require an active
cooperation by data experts and business experts so that any
gap or misinformation can be quickly corrected. Similarly, each
phase in the CRISP-DM framework can seek interactions through
a feedback loop to clarify the process, and such interactions can be
temporary or permanent extensions of the model. Thus, the
active interactions between the different phases of the CRISP-
DM framework should be systematically and efficiently used and
managed in order to improve the whole data analysis process.
Therefore, for an efficient adaption for implementing data mining
and ML models one should consider a completely connected
CRISP-DM, that enable an active interactions between experts to
optimize a reliable and robust subclass of completely connected
CRISP-DM.

We would like to note that the cyclic-nature of CRISP-DM is
similar to general data science approaches (Emmert-Streib et al.,
2016). Interestingly, this differs from ML or statistics that focus
traditionally on a single method only for the analysis of data,
establishing in this way one-step processes. Thus, CRISP-DM can
be seen as an industrial realization of data science by detailing all
relevant steps. However, a fully connected GCRISP-DS with
active interactions is a more realistic and flexible human-
centered data science model for industrial applications.

Another important issue discussed herein is related to the
model assessment from the viewpoint of data experts, business
experts and users. We discussed four essential components of
model assessment: model accuracy, model interpretability, model
multiplicity, and model transparency. All are crucial for the final
deployment of the model. A model should not deviate from its
goal as it encounters new data; it should predict results with
accuracy and provide a satisfactory interpretation. Multiple
models with competing accuracy also present a challenge
when it comes to selecting a robust and interpretable model.
We define cases where the interpretability of the model is crucial
for business understanding and decision making.

The fourth issue is model transparency. This should allow
users to obtain information on the internal structure of
algorithms and methods to enable them to use various
functional parameters so that the deployment phase can be
implemented and integrated with the least effort and users can
use the model and rely on its predictions. We suggest a
documentation that includes model-related descriptions and
appropriate details on business results. Specifically, we suggest
the following points for maintaining transparency:

– Model performance evaluation results with simulated and
surrogate data should be provided to the user. These
performance evaluation should be performed considering
various model and data related parameters such as:
performance with imbalanced data, sample-size, correlation
effect, incremental changes in data over time.

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 57689215

Tripathi et al. Data-Driven Knowledge Discovery Models

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


–MLModel power and false positive rate (FPR) effect on decision
making should be summarized by defining a performance
score with respect to business decisions. For example, How
much a prediction made by a ML model could affect the
business decisions in long and short run despite the models’
higher accuracy and low FPR.

– Users’ input data evaluation score comparing with training
data. This information would allow users to understand the
deviation of the input data from the training data characteristics.

– User should be provided with Feature importance and their
stability. Various feature importance strategies discussed in
Model Assessment section can be used to describe feature
importance score. We must also provide business experts
evaluation on importance of such features.

– Counter-intuitive predictions and features should be provided
to users, if any, where business experts and data models do not
agree with each other.

–Model security is one of the important concern, where the noise
in the collected data from smart sensors or IoT can be crafted
by a malware to give wrong decisions by a model. ML models
are vulnerable of such data despite the robustness. The data
and ML model should be tested and protected with such cases
and it should provide warnings to users when such data is used
for prediction.

CONCLUSION

In this paper, we provided a review of the CRISP-DM framework
and extensions thereof. A summarization of these extended
models we called GCRISP-DS because it provides the most
flexible and customizable framework to deal with industry-
specific problems. Furthermore, we provided an in-depth
discussion of model assessment and robustness-issues which
are important phases of any CRISP realization.

Specifically, we reviewed the following important points for
the application of data-driven knowledge discovery models:

1) Adoption of relevant and practically implementable,
scalable, cost-effective, and low-risk CRISP-DM models
(subclass of the GCRISP-DS framework) with industry-
specific and general industrial-trend related extensions.

2) Each phase of the CRISP-DM framework should interact
actively so that any data and model issue can be resolved
without delay.

3) When usingGCRISP-DS, define the problem category related
to industrial production and maintenance for the practical
implementation of data analysis. This results in a problem-
specific CRISP realization (subgraph of GCRISP-DS).

4) Define the type of analysis to be performed for the model-
building to avoid wrong answers to the right questions.

5) Various data-issues should be appropriately handled for
data understanding and business understanding, such as
exploration, preprocessing and model building (see
discussion in Model Assessment).

6) Model evaluation and model deployment should ensure
that the implemented model satisfies the requirements of

model accuracy, model interpretability, model multiplicity
and model transparency.

7) The GCRISP-DS framework adopts a human-centric
approach to allow for transparent use of the model so that
users and developers can evaluate, customize, and reuse
the results that enhance their understanding of better
production quality, maintenance, and other production,
business, and societal goals.

In general, for data-driven models, data are at the center stage
and all goals are realized by the potential of the available data
(Emmert-Streib and Dehmer, 2019a). The assessment of achieved
business goals at the end-phase of a CRISP realization is also
given through the success of the model. Thus, all novel
understanding depends on the data obtained and how we turn
such data into useful information through systematic and
collaborative means. These objectives cannot be obtained
solely through the efforts of business experts or data experts.
Instead, a collective effort of active cooperation is required to
establish a human-centered GCRISP-DS for achieving the
business goals. Such an interaction forms a complex system
that leads to the emergence of various higher-level
characteristics of KDD models in smart manufacturing. In
such a complex system, the various AI and ML tasks must be
transparent, interactive, and flexible in order to create a robust
and stable manufacturing and production environment. Future
research in this direction will explore industry-specific
requirements to develop data-driven knowledge discovery
models and their implementation in practice.

The future challenges of GCRISP-DS are to develop methods
and frameworks that could effectively estimate and measure the
interactions and their effect between different phases considering
various influential factors in and between the phases. For
example, by quantifying these with with a quality score
considering various data-related features such as sample-size,
variance, data dimensionality, missing-values, and external
effects. One could optimize the requirements to be fulfilled by
each phase considering data quality scores and model
performance scores for implementing a cost-effective and
robust model. Similarly, different phases contribute to the cost
and robustness depending on various other factors: domain-
related challenges, technical challenges, and model
implementation challenges. Overall, such factors provide
significant obstacles for a robust implementation of GCRISP-DS.
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