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ABSTRACT

Translation Complex Profile Sequencing (TCP-seq),
a protocol that was developed and implemented on
Saccharomyces cerevisiae, provides the footprints
of the small subunit (SSU) of the ribosome (with ad-
ditional factors) across the entire transcriptome of
the analyzed organism. In this study, based on the
TCP-seq data, we developed for the first-time a pre-
dictive model of the SSU density and analyzed the
effect of transcript features on the dynamics of the
SSU scan in the 5’UTR. Among others, our model is
based on novel tools for detecting complex statistical
relations tailored to TCP-seq. We quantitatively esti-
mated the effect of several important features, includ-
ing the context of the upstream AUG, the upstream
ORF length and the mRNA folding strength. Specifi-
cally, we suggest that around 50% of the variance re-
lated to the read counts (RC) distribution near a start
codon can be attributed to the AUG context score.
We provide the first large scale direct quantitative
evidence that shows that indeed AUG context affects
the small sub-unit movement. In addition, we suggest
that strong folding may cause the detachment of the
SSU from the mRNA. We also identified a humber of
novel sequence motifs that can affect the SSU scan;
some of these motifs affect transcription factors and
RNA binding proteins. The results presented in this
study provide a better understanding of the biophys-
ical aspects related to the SSU scan along the 5’UTR
and of translation initiation in S. cerevisiae, a fun-
damental step toward a comprehensive modeling of
initiation.

INTRODUCTION

mRNA translation is a complex process consuming most of
the energy in the cell (1-4) and affecting various fundamen-
tal biological processes and aspects (2,5-7). Thus, accurate
modeling of this process has numerous applications (8—11).

For many years, researchers aimed at modeling translation
using small scale experiments and/or genomic data (3,7,12—
20) that might result in biased conclusions as they do not
measure translation directly.

Many translation models (see, for example (21-25)) have
been enabled by the establishment of the Ribo-seq approach
(2). However, since Ribo-seq is based on the generation
of footprints related to the complete ribosomes during the
elongation step, these models focus on elongation. Recently
another approach, TCP-seq (26), was suggested, aimed at
monitoring the movement of the small subunit (SSU) of the
ribosome accompanied by initiation factors during the initi-
ation step. Thus, this novel type of data can now be used for
the first time for understating and modeling initiation, a rate
limiting phase of the translation process (27). Nevertheless,
the TCP-seq data are very challenging due to varying read
lengths caused by various conformations of the SSU and
the relevant factors in different positions along the mRNA
(Figure 1).

Translation initiation in eukaryotes involves the binding
of the pre-initiation complex (consisting of the small (40S)
ribosomal subunit loaded with initiation tRNA) to the
mRNA near the 5’ end. The pre-initiation complex, accom-
panied by additional initiation factors, scans the 5 UTR to-
ward its 3’ end until recognition of the START codon (usu-
ally an AUG codon) (28-30). It was suggested that a par-
ticular context around the main AUG is required for the
pre-initiation complex to recognize it and initiate transla-
tion (28). However, the aforementioned scanning mecha-
nism and the dynamics of the SSU scan are not completely
understood. For example, although the scanning mecha-
nism predicts that initiation will occur at the nearest 5'end
AUG codon, there are reported cases of leaky scanning (29),
where the pre-initiation complex skips AUG codons with
sub-optimal context and initiate translation farther down-
stream. In addition, a previous study showed that in many
cases an AUG in the 5UTR with relatively optimal context
score doesn’t initiate translation (31).

Additional features are considered to affect the SSU scan,
such as the mRNA secondary structure, as it was previously
shown that the presence of strong secondary structures in
the 5UTR can significantly reduce protein levels (32-37).

*To whom correspondence should be addressed. Tel: +972 36405836; Email: tamirtul@post.tau.ac.il

© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.


https://orcid.org/0000-0003-4194-7068

1298 Nucleic Acids Research, 2022, Vol. 50, No. 3

A Initiation Ribosome START B Total number of RC as function of footprint length
factors SSU Codon
1 |
AUG
o 20,000
o
mRNA 'S 15,000
o AUG @
£
E 10,000
Z
mRNA
Y3 5,000
Digestion with 0 L
RNase | 15 25 3 45 55 65 75 85 100
Footprint length [nt]
* oo — .
c RC distribution around the main AUG start codon
10*
e 4
10°
E
- L
- 102
Retrieval of 2
SSU footprints 2
[
AvACAchchuT s 10’
3
[
T e 0
S GACCAARGRAAAA 1

-50 -25 AUG 25 50
oy G + +

Position relative to the main AUG start codon [nt]

mRNA

- - @

) —
19 nt 29 nt 37 nt

Figure 1. TCP-seq protocol provides the footprints of the SSU of the ribosome with additional initiation factors, resulting in RC distribution that has
dependency both on SSU location in the 5UTR and on footprint length. (A) TCP-seq protocol illustration. The scanning of the SSU is accompanied
with additional initiation factors that promotes the movement toward the AUG start codon. The initiation complex size changes during the scan. The
S. cerevisiae cells were crosslinked using formaldehyde that stall and attach the translation complex to the mRNA. Next, in order to generate protected
mRNA fragments, the translation complexes were isolated and digested using RNase I. The SSU fractions were separated from the ribosome fractions using
sedimentation velocity before the retrieval of footprints. Finally, the diverse sizes footprints were mapped to the S. cerevisiae genome. (B) RC histogram
as function of footprint length, ranges between 15 and 100 nucleotides. It can be seen that most of the RC are up to ~75 nucleotides. (C) The footprint
5’ends relative to the main AUG start codon are plotted versus footprint length, presenting the RC distribution around the main AUG start codon. The
color scale corresponds to the number of RC, displayed in logarithmic scale. The dependency on both the location in the 5UTR and both on footprint
length creates a gray scale image that later was discretized in order to perform computational analyses. (D) Different SSU configurations near start codon,
an illustration. SSU footprints coalesced into three major sizes at start codons—19, 29 and 37 nucleotides, mainly due to dynamic rearrangements at the
entry to the mRNA channel—from an open to a closed state following start codon recognition.



This inhibitory effect presumably stems from the ability of
the pre-initiation complex to disrupt base pairing only to
a certain limit, and to a lower extent than that of the 80s
ribosome (38,39). Upstream open reading frames (WORF)
also have a negative impact on translation efficiency as they
engage the SSU before it reaches the main AUG start codon
(40,41). It was reported that four major uORF properties
are associated with greater inhibition: (i) strong upstream
AUG (uAUGQG) context, (i) evolutionary conservation, (iii)
increased distance from the cap and (iv) multiple uORFs in
the SUTR (41).

Note, however, that all previous studies on this topic
haven’t directly analyzed measurements related to the SSU
and haven’t quantified the effect of various features on the
SSU at a genomic level. Thus, this is the topic of the current
study.

Specifically, the aim of this study is to identify transcript
features that affect the SSU scan based on direct measure-
ment of the pre-initiation complex movement, to provide
evidence for features that are considered to affect the scan
and to find new undiscovered features, and to develop for
the first time a computational predictive model for under-
standing translation initiation based on TCP-seq data. We
identified different transcript features that affect the dynam-
ics of the SSU scan, such as uAUG context score, uUORF
length, mRNA folding energy, various 5UTR motifs etc.,
using quantitative tools such as linear regression, motif de-
tection, and the Maximal Information Coefficient (MIC)
(42). The results presented in this paper allow better model-
ing and engineering of initiation and the entire translation
process.

MATERIALS AND METHODS
TCP-seq data

Translation Complex Profile Sequencing (TCP-seq) is a pro-
tocol that was developed from the Ribo-seq approach, de-
signed to monitor the movement of the small subunit of the
ribosome accompanied by initiation factors during the ini-
tiation step (26). The protocol was developed and imple-
mented in S. cerevisiae, and can be found in (43).

In general, TCP-seq starts with snap-chilling of a yeast
suspension culture by adding crushed ice and immediately
cross-linking with formaldehyde, to stall and attach any
translation complex type to the mRNA at their native po-
sitions. Next, RNase I was used to digest the unprotected
mRNA fragments, generating protected (by any translation
complex type) fragments, that will be referred as footprints.
The ribosomal subunits, complete ribosomes and polyribo-
somes (polysomes) can be physically separated into differ-
ent fractions by their sedimentation velocity, using two steps
of density gradient ultracentrifugation: first, polysomes and
mRNA associated with one complete ribosome, is concen-
trated into the pellet, whereas other messenger ribonucleo-
proteins, as well as free SSUs and LSUs, remain in the su-
pernatant. Second ultracentrifugation is being used to sep-
arate the fractions of SSU and full ribosome complexes
before retrieval of footprints, each associated with their
respective protected mRNA footprints. Finally, the high-
throughput sequencing reads were mapped to the yeast
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genome (43). The study was perform in YPAD in OD600
of 0.6-0.8 and not in stress conditions.

TCP-seq data provide the nucleotide footprints of the
small subunit of the ribosome across the entire transcrip-
tome of the analyzed organism at a single nucleotide reso-
lution, as the footprint position is mapped by its 5’ end (see
specific examples in Supplementary Figure S1). UTR SSU
footprints sizes ranged mainly from ~15 to ~75 nt (beyond
the width of the SSU alone), due to the additional initiation
factors that accompanies the SSU scan. It follows that each
RC has a dependency both on SSU location in the SUTR
and on footprint length.

Sequencing data

TCP-seq footprint sequences were obtained from (26)
(WT:Input, WT:RS and WT:SSU fractions, accession
SRR3458591-3). Transcript sequences were obtained from
Ensembl release 87 for S. cerevisiae (R64-1-1), with UTR
annotations (longest isoform) from (44). Sequenced reads
were mapped as described in (45) with the following mi-
nor modifications. We trimmed 3’ poly-A adaptors from
the reads using Cutadapt (46) (version 1.17) and utilized
Bowtie (47) (version 1.2.1) to map them to the S. cerevisiae
transcriptome. In the first phase, we discarded reads that
mapped to rRNA and tRNA sequences with Bowtie pa-
rameters ‘—n 2 —seedlen 21 —k 1 —norc’. In the second phase,
we mapped the remaining reads to the transcriptome with
Bowtie parameters ‘—v 2 —a —strata —best —norc —m 200’.
We filtered out aligned reads >100 bp and <15 bp. First,
unique alignments were assigned to the occupancy profiles.
For multiple alignments, the best alignments in terms of
number of mismatches were kept. Then, multiple aligned
reads were distributed between locations according to the
distribution of unique reads in the respective surrounding
regions. To this end, a 100 nt window was used to compute
the read count density RCD; (total read counts in the win-
dow divided by length, based on unique reads) in vicinity
of the M multiple aligned positions in the transcriptome,
and the fraction of a read assigned to each position was

RCDi/ Z,Ai1 RCD;. The results are very similar when not
including non-unique sequence.

mRNA levels

For mRNA levels we considered measurements of RNA-
seq from (48).

Linear regression

Our aim was to predict the density of the SSU in sliding
windows of 30 nucleotides (steps of 1 nucleotide), which is
the size of the SSU alone. In order to predict the density of
the SSU, we built a linear regressor based on the following
scheme:

First, we generated a set of features that are related to
various properties of the transcript (see sub-section ‘Fea-
tures’). In total, we created a set of 399 transcript features.
Next, the RC of the SSU in all footprint lengths were nor-
malized by the mRNA levels of each gene. Out of a total
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number of 6664 genes of S. cerevisiae, 17 genes were ex-
cluded since their mRNA levels equal to zero and could
not be normalized. All of the sliding windows were divided
into three sets: train (60%), test (20%) and validation (20%),
where the sampling was performed randomly 20 times, thus
resulting in 20 predictors for each footprint length. This was
done in order to avoid overfitting and to perform statistical
analyses of the features that were selected by multiple pre-
dictors. We implemented a greedy feature selection process,
meaning that in each iteration we added every feature to
the growing regressor, and the feature that contributed the
most to the correlation between the predictions and the real
RC was selected. The process continues while the added fea-
ture raises the correlation by more 0.001, aiming to avoid
overfitting to the train set. At the end of each stage, the
current predicted regressor coefficients of the selected fea-
tures are assessed on the test set. The selected regressor is
then evaluated on the validation set. We chose to use Spear-
man correlation since it detects monotonic trends, while
the Pearson correlation is strongly biased towards linear
trends.

Features
Number of
Feature Feature description features
Features The 5UTR 1
derived from length
the genes
The ratio of 1
the length of
the 5UTR to
the ORF
Features mRNA Approximation of the 1
derived from folding energy mRNA secondary
the sliding structure, calculated by
windows MATLAB’s rnafold
function
AUG context A score for each AUG 1
score context (i.e. the
nucleotides before and
after the AUG).
GC content The percentage of 1
nitrogenous bases on a
DNA or RNA molecule
that are either Guanine
(G) or Cytosine (C).
Nucleotide The frequency of each 4
distribution nucleotide in the sliding
window
Groups of two  The frequency of each 16
nucleotides nucleotide pair in the
distribution sliding window
Groups of The frequency of each 64
three group of three
nucleotides nucleotides in the sliding
distribution window
Sequence Short sub-sequences that 293
motifs are enriched in the
5'UTR.
mRNA folding energy

The predicted mRNA folding energy is an approximation of
the mRNA secondary structure, calculated by MATLAB’s
rnafold function (MATLAB Bioinformatics Toolbox). The

function predicts the folding energy of the secondary struc-
ture associated with the minimum free energy for an RNA
sequence or subsequence in kcal/mol units.

We used a 30 nt sliding window in order to estimate the
local mR NA folding energy, the same size as the sliding win-
dow in which we predicted the SSU density. We used this
size for a number of reasons: first, this value is close to the
size of the ribosome and the SSU, and in the order of mag-
nitude of various intracellular complexes (2,49) and func-
tional mRNA structures (34). Second, we aim at studying
local mRNA folding, which is related to the local structures
that are obtained on the mRNA when it starts to fold and
before the folding is disrupted by various factors such as ri-
bosomes. Third, we and others have shown that the results
are robust to small changes in the size of the window (e.g.
(50)). Last, the error of the RNA folding prediction tools is
extremely high when working with windows larger than a
few dozen nucleotides. Many others have used similar win-
dow size to predict the local mRNA folding energy (see, for
example, (12,51-55)). See Supplementary Figure S2 for a
dot plot which includes the actual folding energy for win-
dows with different RC.

Several folding energy features were created for each slid-
ing window: the folding energy in the current sliding win-
dow (position 1 in the sliding window); the folding energy in
a sliding window within a distance of 30 nucleotides, which
is the estimated size of the SSU (position 31); the mean and
minimal folding energy in all sliding windows from the cur-
rent sliding window to a sliding window within a distance
of 30 nucleotides (positions 1:30); the mean and minimal
folding energy in all sliding windows within a distance of
15/20 nucleotides from the current sliding window to a slid-
ing window within a distance of 30 nucleotides (positions
15/20:30). See Figure 6A for an illustration of the above
features.

AUG context score

The score for each AUG context (i.e. the nucleotides be-
fore and after the AUG) was computed as follows for all
AUGs in the SUTR: first, we selected the top 5% of highly
expressed genes based on their mRNA levels. Second, we
calculated a position specific scoring matrix (PSSM) for
6 nucleotides upstream and 3 nucleotides downstream to
the initiating (START) AUG codon according to the nu-
cleotide (A, C, G, U) appearance probability, based on the
nucleotide context around the start codon of the selected
highly expressed genes. Third, the AUG context score was
computed for every AUG that appears in the SUTR ac-
cording to:

AUGcs =) log(pyj)

Where j is the AUG index, i is the nucleotide position,
pij is the probability that the ith nucleotide of the jth AUG
appears in the ith position on the PSSM, and AUGcs; is the
context score of the jth AUG in the SUTR.

For an AUG that appears in the sliding window without
6 nucleotides upstream or 3 nucleotides downstream (due
to end-of-sequence positioning) we assumed a uniform dis-
tribution (i.e. a probability of 0.25 for each nucleotide). Sev-



eral AUG-based features were created: the number of AUGs
in the sliding window; a binary feature based on whether or
not there is an AUG in the sliding window (‘1’- there are
one or more AUGs in the sliding window, ‘0’- there isn’t
an AUG in the sliding window); the mean distance of the
AUGs in the sliding window from the real START AUG;
the mean and maximal AUG context score in the sliding
window; the mean and maximal AUG relative context score
in the sliding window (the context score of the current AUG
divided by the context score of the real START AUG of the
ORF).

Sequence motifs

Sequence motifs are short sub-sequences that are enriched
in a certain set of sequences and are represented by Position-
Specific Scoring Matrixes (PSSMs). To infer such PSSMss
we used the HOMER (Hypergeometric Optimization of
Motif EnRichment) tool (56). HOMER is based on a differ-
ential discovery algorithm which identifies sub-sequences
that are specifically enriched in the target set relative to a
reference set. We defined all of the 5’UTRs as the target set,
and created the reference set in the following manner: for
each 5UTR we considered a sequence in the same length
as the real UTR that is in a gap distance of 100 nucleotides
upstream to the beginning of the real Y UTR. The motiva-
tion was that since we are trying to find motifs specific to
the SUTR that may have regulatory function, we’ll use a
reference set that is not part of the UTR but close to it in
the genome (thus, it may have similar mutation pattern and
bias); this approach may allow us to detect motifs that are
under selection in the SUTR due to their functionality. The
length of the motif wasn’t pre-determined, the motifs were
found using the algorithm from (56).

The algorithm detected 271 known motifs (all significant)
and 32 de-novo motifs. Yet 6 of the de-novo motifs were
marked as possible false discoveries and therefore were ex-
cluded from the features list. For each motif the HOMER
algorithm outputs a PSSM; using that PSSM we calculated
in each sliding window a set of scores for the motif accord-
ing to the motif length. For example, if the length of the mo-
tif is 12 nucleotides, we moved it along the sliding window in
positions 1:19 (out of 30), and for every position calculated
the motif score. The score is calculated in the same way that
was described above for the AUG context score. Finally, the
feature that was set to the sliding window was the maximum
score of all the values calculated in the window.

We have tried an additional approach for finding motifs
as follows: we defined as target and reference sets windows
with high and low SSU density (top and bottom 10% values,
respectively); in order to avoid overfitting, this was done us-
ing only windows from the training group of each run. The
motivation was that since we are trying to find motifs in the
S'UTR that may affect the SSU density, we’ll use the tar-
get and reference sets mentioned above, aiming to find mo-
tifs that are enriched in the high-density windows relative to
low-density windows. The algorithm detected between 237
and 260 motifs (all significant), depending on the run num-
ber and the sliding windows that were used on the training
set. These analyses gave very similar results to the results
described in the article.
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Features analyses

In order to estimate how the features affect the dynamics of
the SSU, we calculated the partial Spearman correlation be-
tween each feature and the RC of the SSU, while controlling
for the rest of the features and mRNA levels.

Additional analyses were performed only on the folding
energy features, allowing better estimation of the effect of
folding energy strength on the SSU scan. First, we created
an additional predictor that is based only on folding energy
features, using 80% of the data to train the model. Next, we
predicted the SSU density based only on these features, us-
ing 20% of the data as a test group, the same 20% that were
used to evaluate the general predictor in order to ensure a
fair comparison between them. Finally, we calculated the
partial Spearman correlation between the predicted densi-
ties and the real RC, while controlling for the other features
and mRNA levels.

Detecting complex statistical relations between variables us-
ing MIC

In order to find how specific features affect the scanning of
the SSU and compare between them, we used the Maximal
Information Coefficient (MIC) (42), a measurement that is
based on the mutual information of two variables. MIC en-
ables detecting various relations (of any type) between pairs
of variables in large data sets. Intuitively, the basic idea of
MIC is that if we scatterplot two variables that have a rela-
tionship, then a grid can be drawn in a manner that will par-
tition the data based on that relation. To calculate the MIC
score related to the measurements of two-variable, we ap-
plied all grids in size of x-by-y to the data, up to a maximal
resolution that is dependent on the sample size (42). The al-
gorithm detects the grid with the maximal possible mutual
information that can be achieved by any x-by-y grid. Then,
the algorithm normalizes all of the mutual information val-
ues which allows for a fair comparison between different
grid sizes and modified values between 0 and 1. The MIC is
the maximal value of the characteristic matrix M=(m,, ),
which contains the highest normalized mutual information
achieved by any x-by-y grid.

Data processing

With the aim of finding which AUG features and sequence
motifs affects the scanning of the SSU, we constructed a
matrix for all AUGs or sequence motifs (according to the
relevant analysis) in the SUTR that corresponds to a spe-
cific feature in the following manner: first, all of the rele-
vant AUGs or sequence motifs in a given footprint length
were aligned according to their first nucleotide position.
Second, we looked on the RC of the SSU 50 nucleotides
upstream and downstream to the relevant AUG or motif.
Third, we normalized each position in the number of genes
that have this location (since not all of the positions have
50 nucleotides upstream). The above was done for all foot-
print lengths (15-100 nucleotides), resulting in a matrix of
all the relevant AUGS or sequence motifs corresponding to
the specific feature, depending on both location in SUTR
and footprint length.
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Discretization process

In order to use the MIC, a discretization process needs to
be performed due to the dependency on both location and
footprint length, meaning that we transferred a grey scale
matrix into a binary one. Several discretization processes
were tested. First, a discretization process that sets a thresh-
old for each row (i.e. footprint length) as the threshold that
maximizes the MIC score of the entire matrix. Second, in
order to show that the results stay robust and that they
are not a result of the optimization process, manually se-
lected parameters were set as the threshold for each row.
The thresholds that we tested are mean (m), 2*m, mean
plus standard deviation, and median.

Null model and P value

For each signal we created 1000 null model randomizations
by permutating the matrix of the constructed signal along
the x axis (location relative to AUG or sequence motif in
the UTR). For every permutated matrix, the discretization
process described above was performed and the MIC score
was computed. The P value was calculated as the number of
times that the randomized matrix had a higher MIC score
than the real one, divided by the total number of permuta-
tions.

An additional permutation process was tested; in order
to show that the results stay robust and that they don’t stem
from the number points that passes the threshold, we cre-
ated 1000 additional permutations for each signal after the
discretization process was done. For each signal, we con-
trolled the number of points that passes the threshold by
using the next iterative process: we started by adding ep-
silon = 1 x 107 to the threshold of each row. If the number
of points that passes the threshold was still too large—the
process continues, and epsilon is added again. When we
reached the desired number of points—the process stopped.
For each comparison between signals, the number of points
that passes the threshold was aligned to the signal with the
lowest number of points.

AUGs in 5UTR with high/low context score

First, we computed the AUG context score for all AUGs
in YUTR in the same way as described above (see sub-
section ‘AUG context score’ under ‘Features’). Next, we di-
vided them into two groups of high and low context score,
according to top and bottom 10% scores, respectively. The
‘high context score’ group contained 2587 AUGs, and the
‘low context score’ group contained 2333 AUGs. In order to
compare between them and the real AUG START codon,
we randomly chose 2465 genes out of 6664 genes of S. cere-
visiae for analyzing the signal surrounding the main AUG
START codon. The results stay robust to different group of
genes that were selected. For each group we constructed the
signal as was described above, then the MIC score and the
P value were calculated.

We performed the same analysis for AUG-like codons,
using the same PSSM which was used for AUG codon, to
calculate the MIC score around AUG-like codons (CUG,
AUU, AGG). For comparison we also analyzed all the rest
of the codons. In each case, we considered both the MIC

score surrounding the codon and the actual pattern of RC
accumulation upstream of the codon.

AUGs in SUTR with short/long distance to the nearest
STOP codon

The uORF that we analyzed were simply define by us as a
sequence of nucleotides starting with AUG ‘codon’/triplet,
ending with a ‘stop’/triplet and divided by three. We did
not consider in addition an experimental evidence as we
wanted to get a general result which are not affect by ex-
perimental bias and/or are partial. In order to examine the
effect of the distance from the nearest STOP codon (‘UAA’,
‘UAG’, ‘UGA), we divided the AUGS to two groups of long
and short distance from the nearest STOP codon, accord-
ing to the top and bottom 20% distances, respectively. For
these analyses we considered three optional reading frames:
frame 0 is the reading frame that correspond to the relevant
AUG, frames 1 and 2 represent a frame shift of 1 or 2 nu-
cleotides relative to frame 0. For each group in each frame
we constructed the signal as was described above. Then the
MIC score and the empirical P value were calculated.

The last two sub-sections were performed twice; first to
consider all AUGS that correspond to a specific feature, and
again to take in consideration only AUGs that don’t have
an additional AUG codon in the sequence 50 nucleotides
downstream or upstream to the relevant AUG.

AUGsS in 5UTR with presence of stable/unstable structure
downstream

In order to examine the effect of the presence of sta-
ble structures downstream to the uAUG, we first defined
stable/unstable structure as 10% lowest/highest folding
energy values, respectively. We considered uAUGs with
high/low folding energy on average in the 20 sliding win-
dows downstream to the AUG, as only one position is not
necessarily indicative for definition of stable/unstable struc-
ture. For each group we constructed the signal as was de-
scribed above, then the MIC score and the P value were cal-
culated.

We also tested the signal for short and long uORFs. In
this case, we changed the cut-offs of stable/unstable struc-
ture to 50% lowest/highest folding energy values, respec-
tively. This is because using a 10% threshold resulted very
small number of relevant uAUGs, which might lead to bi-
ased and unreliable results. For a higher cut-off, we obtained
similar number (as in previous signals) of uAUGS.

Motifs in the 5’UTR with high/low score

The objective of this section was to apply the MIC calcula-
tions on sequence motifs that were selected many times by
the predictors in order to examine how they affect the SSU
scan. First, for each motif, we calculated the motif score in
sliding window in size of the motif along the SUTR (see
sub-section ‘HOMER motifs’ under ‘Features’). Next, we
divided the windows into two groups of high and low score,
according to top and bottom 5% scores, respectively. The
groups contained a similar number of motif windows that
constructed the signal, about 88,000 in size. Finally, for each



group we constructed the signal as was described above.
Then the MIC score and the P value were calculated.

RESULTS

In order to understand the dynamic of the SSU scan from
the 5 to the 3’ of the mRNA, we analyzed TCP-seq data, a
protocol that provides the footprints of the SSU of the ribo-
some across the entire transcriptome at a resolution of sin-
gle nucleotide (26) (see Materials and methods section). The
scan, which begins in the 5'cap and moves forward in the 3’
direction until the detection of the AUG start codon, is ac-
companied by different initiation factors (5,57), resulting in
footprints that have dependency both on the location of the
SSU in the SUTR and on footprint length (Figure 1A). A
total number of 482,390 RC were mapped onto 6664 genes
of S. cerevisiae. SSU footprints sizes ranged mainly from
~15 to ~75 nt (Figure 1B).

As can be seen in Figure 1B,C and previously published
in (26), the SSU RC coalesced into three major sizes (19,
29 and 37 nt) at the main AUG start codons. During ini-
tiation phase, the SSU scans the SUTR until the detec-
tion of the start codon and is joined by the large subunit of
the ribosome to form the 80S complete ribosome. For that
reason, the highest amount of RC observed is prior to the
main AUG start codon (as can be seen if Figure 1C). The
start-codon-associated SSU footprints exhibited three main
lengths, 19, 29 and 37 nucleotides, mainly due to dynamic
rearrangements at the entry to the mRNA channel- from
an open to a closed state following start codon recognition
(26). FP length of 19 nucleotides probably derive from SSU
paused at the start codon, yet it is still in an open, scanning-
component configuration. Next, the SSU moves to a close
state, protecting 29 nucleotides, following the recognition
of the start codon. Finally, the third state corresponds to
a state where eIF5B:GTP attaches the entry of the mRNA
channel just before the large subunit of the ribosome joins.
As a result, the protection is further extended to 37 nu-
cleotides. An illustration of the process can be seen in Figure
1D.

In the following research we tested two different, yet po-
tentially complementary, approaches, in order to study the
dynamics of the SSU scan.

The first approach was based on linear regression, in or-
der to meet two main objectives. The first one was to pre-
dict the density of the SSU based on transcript features and
compare the results to the SSU RC from the TCP-seq data.
The second objective was to perform comprehensive feature
analyses, aiming to reveal how different transcript features
affect the scanning of the SSU.

The second approach was based on the Maximal In-
formation Coefficient (MIC) (42), tailored to the TCP-seq
data. We named it Translation Complex Profile Informa-
tion Coefficient (TCP-IC), and it was used in order to de-
tect complex statistical relations between variables, which
allowed us to perform computational analyses to examine
the effect of different features on the SSU scan. The moti-
vation to use MIC is that it enables detecting various rela-
tions (of any type) between pairs of variables in large data
sets and can be used for analyzing the distribution of all the
read lengths together. Intuitively, MIC estimates the mutual
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information between two variables based on a scatterplot of
the two variables (Figure 2A,B). MIC score X is analogous
to a correlation of R*> = X (e.g. MIC score of 0.8795 it is
equivalent to R = 0.9378) (42,58).

In our case, for each AUG or sequence motif in the
S'UTR that was examined, we considered related features
that surround it. Thus, we analyzed AUGs and motifs with
specific features near it via the alignment of all of the RC
profiles surrounding these relevant AUGs and motifs, cre-
ating a matrix of the SSU RC surrounding the relevant po-
sition (Figure 2C,D). Due to the dependency of the RC on
both location in the SUTR and on footprint length, the
data were discretized (i.e. it was transferred from a grey scale
image to a binary one) in order to use the MIC (Figures 2D
and 8). Then, for each matrix we calculated the MIC score
and P value in order to compare between the different fea-
tures.

Using these two approaches on the TCP-seq data allowed
us to perform wide analyses and to get a broader under-
standing of the SSU scan during the initiation phase.

Prediction of the small subunit density based on transcript
features

In the following section, we used linear regression in or-
der to predict the SSU density based on transcript features
alone, as we trained and tested the model using the RC from
the TCP-seq data. In general, we divided all of the genes into
sliding windows in size of 30 nucleotides, which is the size of
the SSU alone. For each sliding window we calculated a set
of features, including the SUTR length, different features
related to the mRNA folding strength, GC content, uUAUG
related features, the frequency of nucleotides, pairs of nu-
cleotides and triplets of nucleotides, motifs (sub-sequences)
in the SUTR, etc. (see ‘Features’ in the Materials and meth-
ods section). In total, we created a set of 399 transcript fea-
tures. All of the sliding windows and densities vectors were
divided into three sets: train (60%), test (20%) and valida-
tion (20%), where the sampling was performed randomly 20
times, thus resulting 20 predictors in each footprint length.
This was done in order to avoid overfitting and to perform
statistical analyses of the features that were selected by mul-
tiple predictors. We trained the model on the training set
and assessed it on the test set, where in each iteration we
added the feature that contributed the most to the correla-
tion between the predictions and the real RC (greedy fea-
ture selection process). An independent model was trained
with a different set of optimized features for each footprint
length. Finally, for each predictor we calculated the Spear-
man correlation between the predicted RC and the real RC.

The obtained Spearman correlations between the pre-
dicted RC and the real RC are relatively low, probably due
to various sources of bias and noise in the data and the very
large number of points, yet very significant, as the P values
are extremely low for most of the footprint lengths (Figure
3B). The P values remain significant for Pearson correla-
tion as well (Supplementary Figure S3). The correlations
decrease for longer footprint lengths, a trend that can be
explained by the number of sliding windows with densities
greater than zero (Figure 3C). For longer footprint lengths
there are fewer sliding windows with densities greater than
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Figure 2. Illustration of MIC computation and its application on TCP-seq data. (A). An example of simple association between two variables with 15 data
points. Two different grids are drawn, a 2-by-2 and a 2-by-3 grids. Using the probability to see data points in each bin, we calculated the resulted mutual
information I(X,Y) for each grid. The 2-by-3 grid resulted in a higher mutual information compared to the 2-by-2 grid. (B) The MIC algorithm searches
for the X-by-Y grid that maximizes the mutual information of the two variables for each pair (X,Y). It then compiles it to a matrix that stores the best score
at that resolution, where the scores are normalized in order to compare between the different resolutions. The MIC corresponds to the maximal value of
the matrix (circled in pink) (42). More details in the Materials and methods section. (C) For each AUG and sequence motif in the SUTR, we considered
related features that surround it. For example, AUGs corresponding to a specific feature are marked in purple. We analyzed all of the AUGs with a specific
feature by aligning their RC profiles according to the AUG position. (D) An example for resulted matrix of the SSU RC distribution surrounding AUGs
with a specific feature (RC distribution surrounding the main AUG start codon), before and after discretization. The MIC algorithm was applied on the
discretized image on the right and resulted in a high MIC score of 0.8795.



Nucleic Acids Research, 2022, Vol. 50, No. 3 1305

Divide the data into sliding windows in size of 30 nucleotides

Calculate the set of features related to each sliding window

Normalize the SSU RC by mRNA levels of each gene

Train the model

Assess the model on the test set

Implementation of greedy feature selection process

Evaluation of the selected model on the validation set

l ]
[ J
l J
[ Divide all sliding windows randomly to sets of train, test and validation |
l J
l l
[ ]
l |

Spearman correlation between predicted RC and real RC

0.2r ® pvalue <102%

p value < 10760

p value < 10°
p value > 0.05

o
.
(9]

Spearman correlation
o
°

o
=)
a

ol L L L L L L L [ ]
15 25 35 45 55 65 75 85 100
Footprint length [nt]

Cc

Number of sliding windows with RC greater

h L f int | h
120,0001 than zero vs. footprint lengt

100,000F ®

80,000f ,

60,000

40,0001

20,0001 )

ol . . . . .
15 25 35 45 55 65 75
Footprint length [nt]

Number of sliding windows greater than zero

85 100

Figure 3. Prediction of the SSU density based on transcript features. (A) The steps in producing the predictors. The division to groups of train, test and
validation was performed randomly 20 times, resulting in 20 predictors for each footprint length. (B) Spearman correlation between the predicted RC and
the real RC, as function of footprint length. The presented values are the median correlations obtained from all 20 predictors in each footprint length, and
the colors corresponds to the P values. (C) Number of sliding windows (out of total number of 1,626,494 sliding windows) that have real RC greater than

zero as function of footprint length.

zero, meaning the model doesn’t have enough data to learn
from.

The first statistical analysis we performed was to examine
the distribution of the features selected in footprint lengths
that yielded relatively high correlations between the real
RC and the predicted RC. We obtained four local maxi-
mum points in Figure 3B (of four different footprint length
regions: 15-24 nucleotides, 25-34 nucleotides, 35-44 nu-
cleotides and >45 nucleotides) and ranked the features ac-
cording to their number of appearances in the regressors
generated via the sampling mentioned above. The maximal
value is 20, as the number of predictors built for each foot-
print length (Figure 4).

Different footprint lengths produce different feature se-
lection distributions; however, some features were promi-
nent in all the distributions examined: the 5UTR length;
features related to uAUGs, including a binary feature that
describes whether there is or isn’t an AUG in the cur-
rent sliding window and the average distance from the
main AUG START codon, and features related to the fold-
ing strength. The predictors also included several different
novel motifs in the different footprint lengths; a comprehen-
sive analysis of these motifs appears later in the paper.

The second statistical analysis we performed was to ex-
amine the prevalence of the top features used in many of
the predictors for all footprint lengths (Supplementary Fig-
ure S4). The features were ranked according to their to-
tal number of appearances in regressors (see full table in
Supplementary Table S1). Next, to understand the effect of
the features on the SSU density, we calculated the partial
Spearman correlation between each feature and the real RC,
while controlling for the other features and the mRNA lev-
els. Note that we have performed additional analyses based
only on the folding strength features (appears next), there-
fore the results relevant to these features will not be pre-
sented in this section (we have included them in the analy-
ses, the aforementioned is only regarding the presentation
of the results). Overall, from all of these analyses we stud-
ied the relation between each feature and the SSU density:
what is the importance of the feature, in which directionality
it affects the density, in which footprint lengths the partial
correlation is significant etc.

The feature that was selected most frequently is the
S’UTR length and its partial correlation analysis shows an
inverse relation to RC, as shorter UTRs tend to have more
RC (Figure 5A). Also at the top of the ranking are fea-
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tures related to uAUG. One is a binary feature that de-
scribes whether there is or isn’t an AUG in the current slid-
ing window, where the partial correlations of the feature
with the RC are mostly positive (Figure 5B), meaning that
if there is an AUG in the sliding window there are more
RC. The average distance to the main AUG START codon
was also selected multiple times, and from the partial cor-
relation analysis we see that for longer distance from the
main AUG there are more RC (Figure 5C). In addition, the
5'UTR length relative to the ORF length was also selected
frequently, presenting mostly negative partial correlations
with respect to RC (Figure 5D). Other top selected features
are: features related to the folding strength of the mRNA
(see next section); nucleotide ‘A’ frequency (Figure 5E); the

number of ‘AUG’s in the sliding window, GC content and
the maximal AUG context score in the current sliding win-
dow (Supplementary Figure S5).

Strong mRNA folding in the 5’UTR contributes to the abor-
tion of the small subunit

Since the effect of the local folding strength of the mRNA is
not trivial for detection by only one feature, we created set
of features related to the folding energy of the mRNA, in-
cluding the folding energy in the current sliding window; the
folding energy in the next sliding window (since we expect to
see an influence of the next position on the current position,
regarding the density of the SSU), and the mean and min-
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Table 1. AUGs in the 5UTR with higher context score induce RC distribution similar to the RC surrounding the main AUG

Total Number of AUGS that Number of points that passes

MIC score P value constructed the signal the threshold
Main AUG start codon 0.8795 <0.001 496 439
AUGs with high AUG context score 0.5230 <0.001 504 431
AUGs with low AUG context score 0.1389 0.08 446 434

AUGs in the 5UTR with higher context score has a higher MIC score, similar to the MIC score of the main AUG start codon. The number of AUGs
that constructed the signal (see Materials and methods section) and number of points that passes the threshold were controlled and aligned to all signals.
Number of points passes the threshold refers to a control process we performed, aiming to show that the obtained MIC score is not a result of different
number of points remaining after the discretization process was completed. Further details can be found in the Materials and methods section. MIC score
and P value were calculated as described in the Materials and methods section. The results presented in the table are for AUGs that don’t have additional
AUG 50 nucleotides upstream and downstream, while using discretization process that sets the threshold of each row (i.e. footprint length) as the threshold
that optimizes the MIC score of the entire matrix. The results stay robust to all thresholds that were tested.

imal folding energy values in different positions along the
sliding window (Figure 6A). When we examined the preva-
lence of the aforementioned features, we saw that they were
selected multiple times by all of the predictors in all foot-
print lengths (Figure 6A). Therefore, we performed addi-
tional analyses using all of the folding energy features; we
created additional predictors, this time based only on the
folding energy features, while using the same indices that
were used in the main predictors to train and validate the
model in order to allow a fair comparison between the anal-
yses.

The folding energy and the folding strength are in-
versely related; higher folding energy means a weaker fold-
ing strength and vice versa (Figure 6B).

When calculating the partial Spearman correlations be-
tween the predicted RC and the real RC, controlling for
the other features and the mRNA levels, the observed cor-
relations were mainly positive and significant (Figure 6C).
Moreover, the examination of all partial correlations be-
tween each feature and the RC yielded mostly positive par-
tial correlation (e.g. Figure 6D,E, see all figures in Sup-
plementary Figures S6, S7), meaning that for less nega-
tive folding energy (i.e. weaker folding) there are more RC.
This result is different from what we have seen in the cases
of the complete ribosomes, where stronger folding tend to
slow down the ribosome and thus increase its density (see,
for example (21,59)). A possible biophysical explanation is
that when the SSU reaches a strongly folded area, since it
has only a limited ability to disrupt complicated secondary
structures relative to the entire ribosome during the elon-
gation phase (38,39), it is possible that it detaches from the
mRNA. The analysis of the GC content feature reinforces
the claim, as the partial correlations between the feature and
the RC are negative, meaning that for higher GC content
(i.e. a more stable structure) there are less RC (Supplemen-
tary Figure S5).

Higher context score and uORF length induce RC distribu-
tion more similar to the RC surrounding the main AUG

In the current and following sub-sections we performed a
higher resolution analysis of some of the transcript features
that affect the SSU movement using MIC, introducing a
new method tailored for the TCP-seq data: the Translation
Complex Profile Information Coefficient (TCP-IC).

With the aim of finding which start codon-associated fea-
tures affect the scanning of the SSU and the strength of their

effect, we constructed a matrix for all AUGs in the 5UTR
that are related to each specific feature. The first feature that
was tested is the context (i.e. the nucleotides composition
before and after the AUG) score of all AUGs in the YUTR,
a score that is based on the comparison to the nucleotide
distribution around the main AUG at the beginning of the
ORF of the most highly translated genes (60). For highly
translated genes we calculated a position specific scoring
matrix for 6 nucleotides upstream and 3 nucleotides down-
stream to the main AUG start codon according to the rela-
tive frequency of nucleotides, and based on it we computed
a score to each AUG in the SUTR (see Materials and meth-
ods section). As was reported in a previous study (60), the
correlation between the optimality of the context score and
the protein levels was relatively low but significant. Based on
these scores, we examined how high and low context scores
(top and bottom 10% values, respectively) affect the behav-
ior of the SSU, using the MIC analyses.

The results show that AUGs in the SYUTR with high
context score have a higher MIC score (0.5230) relative to
AUGs with low context score (0.1389), yet lower than the
MIC score of the main AUG start codon (0.8795) (Table
1). The pattern of the RC accumulation can be seen in Fig-
ure 7 and Supplementary Figure S8. The results stay robust
to different discretization thresholds that were tested, and
to the examination of the signal with the constrain that the
relevant AUG does not have another AUG in the region 50
nucleotides upstream or downstream (Supplementary Ta-
ble S3). The reported results indicate that AUGs with high
context score induce relatively similar RC distribution to the
RC surrounding the main AUG start codon, meaning it af-
fects the scan of the SSU by making it linger around these
AUGs. Our analysis suggest that AUG context affects the
small sub-unit movement and contribute to ~50% of the
variance related to the RC distribution near the main start
codon and over 17% near UTR AUGs with high context
score. The conclusions remain similar for highly expressed
genes (Supplementary Figure S9).

This is the first large scale direct quantitative evidence
showing that AUG context does in fact affects the small sub-
unit movement.

We performed the same analysis for AUGs in the SUTR
as function of their distance from the nearest downstream
STOP codon in order to examine how the uORF length
affects the scanning of the SSU and related to signals
that modulate this scanning. We divided all of the relevant
AUGs into two groups: those that are either a long or short
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Figure 7. RC distribution surrounding AUGs in the 5UTR with high/ low AUG context score. (A) RC distribution around AUGs in the 5UTR with high
AUG context score. It can be seen that AUGs with high context score present a trend that is more similar to the RC distribution surrounding the main
AUG start codon. (B) RC distribution around AUGs in the 5UTR with low AUG context score. No trend was identified, neither by the scatterplot or by
the MIC score analyses. The results stay robust to different selections of genes.

distance from the nearest STOP codon. We used the top and
bottom 20% of distances, respectively. The analyses were
performed in all three optional reading frames (Frame 0,
Frame 1, and Frame 2 relative to the AUG in the 5 UTR).
The results show that in frame 0, AUGs that are farther
away from the nearest STOP codon, tend to have a higher
MIC score relative to AUGs that are closer (0.2838 com-
pared to 0.1990, respectively). These results indicate that
longer uORFs (longer than 87 nucleotides) tend to be asso-
ciated with RC distribution that is more similar to the RC
surrounding the main AUG and thus probably tend to trig-
ger initiation. Similar results were obtained when we ana-
lyzed only highly expressed genes. In frames 1 and 2 we did
not observe the same trend as in frame 0, possibly because
in frame 0 there are additional/stronger signals surrounding
the AUG that are playing a role in triggering translation.

Further research has been done only for frame 0, as we
performed the same analysis as above, this time in order
to test the influence of additional AUG nearby. All of the
AUGSs in the SUTR that corresponds to a short or long
uORF were further divided into 4 sub-groups (total num-
ber of 8 groups): (i) AUGs without any additional AUG
within 50 nucleotides upstream and downstream, (ii)) AUGs
with additional AUG within 50 nucleotides downstream,
(ii1)) AUGs with additional AUG within 50 nucleotides up-
stream and (iv) AUGs with additional AUG within 50 nu-
cleotides both upstream and downstream (group numbers
correspond to Figure 8B (I)—~(IV)). In most of the cases that
were tested for AUGs with short distance to the nearest
STOP codon, additional AUG upstream decreases the MIC
score of the signal, in comparison to the case that there isn’t
any additional AUG in the surrounding sequence (Table 2).
This result supports the scanning model of translation ini-
tiation (28). However, for AUGS far from the nearest STOP
codon we see a reverse relationship; an upstream AUG is
related to a higher MIC score, probably due to additional
encoded signals in this case.

5'UTR START
Codon
Short
A mRNA distance
AUG
AUG  STOP
- Long distance
m
W
B 50 nt 50 nt
l. mRNA
AUG
AUG
. mRNA
MM
AUG AUG
. mRNA
AUG
AUG  AUG
IV. mRNA
AUG
AUG AUG AUG

Figure 8. Illustration of uORF length analyses. (A) AUGs in the 5UTR
with short/long distance from the nearest STOP codon (‘UAA’, ‘UAG’,
‘UGA’). Short distance is defined as about 20% of the lower distance val-
ues, e.g., in frame 0, all AUGs that their distance from the nearest STOP
codon is <9 nucleotides. Long distance is defined as 20% of the upper dis-
tance values. In frame 0 long distance corresponds to all AUGs that their
distance from the nearest STOP codon is >87 nucleotides. (B) Further
analyses have been done in frame 0 to test the influence of additional AUG
in the surrounding of 50 nucleotides downstream and upstream to the ex-
amined AUG. We divided the groups mentioned above (short/long dis-
tance) into 4 sub-groups: (I) AUGs that don’t have additional AUG down-
stream or upstream, (II) AUGs that have additional AUG downstream,
(III) AUGS that have additional AUG upstream and (IV) AUGs that have
additional AUG both downstream and upstream.

For short uORFs, additional AUGs downstream actu-
ally increases the score of the signal, possibly since these
AUG codons tend to be non-functional and the additional
AUG may be more functional. Furthermore, for both short
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Table 2. The effect of additional AUG in the surrounding of short and long uORFs

Total Number of AUGS that Number of points that passes

MIC score P value constructed the signal the threshold

Short uORF

(I) Without another AUG 0.1990 <0.001 762 525
(IT) Additional AUG downstream 0.2373 <0.001 762 587
(IIT) Additional AUG upstream 0.1763 <0.001 762 578
(IV) Additional AUG upstream & 0.2410 <0.001 762 594
downstream

Long uORF

(I) Without another AUG 0.2838 <0.001 881 404
(IT) Additional AUG downstream 0.1690 0.02 881 361
(IIT) Additional AUG upstream 0.3051 <0.001 881 456
(IV) Additional AUG upstream & 0.4008 <0.001 881 379

downstream

Group numbers correspond to Figure 8B (I)~(IV). For short uORFs in the 5UTR, additional AUG upstream decreases the MIC score of the signal in
comparison to the case where there isn’t any additional AUG in the surrounding. For long uORFs the relation is reversed; an upstream AUG corresponds
to higher MIC score, possibly due to additional signals encoded in this case. For both parts of the table the number of AUGS that constructed the signal
and number of points that passes the threshold were controlled and aligned to all signals. Number of points passes the threshold refers to a control process
we performed, aiming to show that the obtained MIC score is not a result of different number of points remaining after the discretization process was
completed. Further details can be found in the Materials and methods section. MIC score and P value were calculated as described in the Materials and
methods section. The results presented in the table are for using discretization process that sets the threshold of each row (i.e. footprint length) as the

threshold that optimizes the MIC score of the entire matrix.

and long uORFs in the SUTR, the case of additional AUG
both upstream and downstream resulted in the highest MIC
score (for each part of the table, respectively); a possible ex-
planation is that in this case, due to the presence of several
AUG:s, there is a higher RC in the surrounding area and as
a result a higher MIC score is obtained.

Estimating the effect of non-AUG codon on SSU RC

In order to test the influence of AUG-like codons on the
SSU RC, we performed the same analyses for ‘CUG’, AUU’
and ‘AGG’ codons. We used the same PSSM which was used
for the AUG codon analyses. For comparison we also ana-
lyzed all the rest of the codons. In each case we considered
both the MIC score surrounding the codon and the actual
pattern of RC accumulation upstream of the codon.

We found that AUG has the top MIC score in compari-
son to all other codons. Some of the AUG-like codons have
relatively high MIC score and RC accumulation upstream
of the codon. However, we found additional codons with
high MIC and RC accumulation upstream of the codon,
such as CAG. Nevertheless, the difference between CAG
with high AUG context score and CAG with low AUG con-
text score is smaller compared to the AUG codon. Addi-
tional information can be found in Supplementary results
and Supplementary Figures S10, S11 and Supplementary
Tables S4 and S5.

Presence of stable/unstable structure downstream to uAUGs
affect RC and MIC score

Aiming to test whether uAUGs located 16-20 nt upstream
of stable structure would favor their recognition, we per-
formed the analyses above for uAUGs with high/low fold-
ing energy on average in the 20 sliding windows downstream
to the AUG. The results show that we tend to see more read
counts and higher MIC score (0.3095 compared to 0.1958)
in uUAUG which are upstream of a stronger mRNA struc-
ture (Figure 9). This result suggests that strong folding after

a uAUG tends to promote initiation. We also show that the
signal is true for long uORF and is weaker for short uUORF
(Supplementary Figures S12, S13 and Supplementary Ta-
bles S6 and S7).

Mootifs in the 5UTR have an influence on the SSU scan

Many motif-based features were selected for inclusion in
predictors that yielded relatively high correlations between
predicted RC and real RC (Figure 4). We decided to perform
an MIC analysis on those motifs that were most frequently
included. The motifs are sequences that were identified us-
ing the HOMER (Hypergeometric Optimization of Motif
EnRichment) tool (56). HOMER is based on a differential
discovery algorithm, as it identifies elements that are specif-
ically enriched in the target set relative to a reference set. We
defined all of the 5’UTRs as target set, and created reference
set in the following manner: for each 5UTR we considered
a sequence in the same length as the real UTR that is in a
gap distance of 100 nucleotides upstream to the beginning
of the real Y UTR. The idea was that since we are trying to
find motifs in the 5 UTR, we’ll use reference set that is not
UTR, aiming to find motifs that are unique to that region.

For each of the top selected motifs, we calculated its score
in sliding windows throughout the SUTR (see Materials
and methods section). Next, we divided the windows into
groups of high and low motif scores, according to the top
and bottom 5% values, respectively. Finally, in the same way
we constructed the matrix for AUG features in the first sec-
tion, we constructed matrices for high and low scores of the
motif and applied the MIC algorithm to them.

The results show that several motifs have an association
with the RC profile distribution around them. The first is re-
lated to the poly(A)-binding protein, an RNA-binding pro-
tein that triggers the binding of eukaryotic initiation factor
4 complex (elF4G) directly to the poly(A) tail of mRNA,
and is presumed to promote the formation of a closed-loop
structure between the mRNA cap and the poly(A) tail (61).
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Figure 9. RC distribution surrounding AUGs in the 5UTR with stable/unstable structure on average in the 20 sliding windows downstream to the AUG.
(A) RC distribution surrounding uAUGs with stable structure. (B) RC distribution surrounding uAUGs with unstable structure.

Compared to low motif scores, we identified that a high mo-
tif score usually produces a higher MIC score (Table 3), and
we can see that the RC profile distribution around the motif
shows accumulation of RC next to the motif (Supplemen-
tary Figure S14). An additional motif that was selected fre-
quently is CG-bias. In this case we see a reverse relation,
where high motif score produces lower MIC score and low
motif score produces higher MIC score (Table 3).

Interestingly, additional motifs that were selected are
those related to transcription factors (TF). First motif was
identified as related to C/EBP:AP-1 complex; in S. cere-
visiae, both C/EBP and AP-1 are sequence specific DNA-
binding transcription factors (62). It was previously shown
in mammalian cells that this complex activates gene expres-
sion through the binding sites TGACGCAA, TGATGCAA
and TGTTGCA (as appears in our results) (63). The MIC
analysis shows that a higher motif score produces a higher
MIC score (Table 3), and from the partial correlation analy-
sis we see mostly positive partial correlation, yet less signif-
icant compared to the last motifs (Supplementary Figure
S15). The second was the motif of TATA-box, which is a
binding site to several transcription factor (64). The MIC
analysis shows that a higher motif score resulted in a higher
MIC score (Table 3). However, the partial correlation be-
tween the motif and the RC is not unequivocal (Supplemen-
tary Figure S15).

DISCUSSION

In this study, based on direct measurements of the SSU foot-
prints from TCP-seq data, we identified several transcript
features that affect the SSU movement along the SUTR,
and created for the first time a computational predictive
model of the SSU density. We are the first to model this type
of data in order to better understand translation initiation
in S. cerevisiae and provide a novel approach for its analysis
based on MIC.

The prediction of the SSU density based on transcript
features yielded relatively low yet significant correlations.
These results meet our expectations since the correlation be-

tween two vectors, each hundreds of thousands of values
long, is not expected to be high, especially when the data
at such resolution is sensitive to noises and biases (45). In
addition, since it is a complex model and there are probably
dozens of variables that affect the SSU scan, we believe that
it is not trivial to get such significant correlations as we did,
even if those obtained are relatively low.

We analyzed here all footprint length ranges from 17 to
100 nt, as was done in previous studies based on TCP-
seq (26). Shorter footprint lengths (~15-17 nt) are prob-
ably a result of strong digestion of longer footprint lengths.
Nonetheless, as we mentioned earlier, it was suggested that
19 nucleotides are probably already a specific configura-
tion of the SSU conceivably derive from paused SSU still
in open, scanning-competent configuration.

In addition, note that the predictions for the different
footprint lengths are independent (the prediction was per-
formed for each FP length separately). Thus, the results in
Figure 3B,C are presented on the same graph such that it
will be able to see the entire image and try to conclude for
different footprint lengths.

Examining the distribution of the features that were se-
lected in various footprint lengths showed that different
footprint lengths produce different feature selection distri-
butions. Thus, this may suggest that different conforma-
tions of the SSU and the initiation factors tend to have dif-
ferent interaction efficiencies with features of the UTR.

Furthermore, several features that affect the SSU RC
were identified to be robust to the footprint lengths; for ex-
ample, in case of the SUTR length, the partial correlation
between the feature and the SSU density resulted in inverse
relation in many footprint lengths, meaning shorter UTRs
tend to have higher RC. A possible explanation for this re-
sult may be that the length of the S’UTR is shorter in highly
expressed genes (65,60); in addition, highly expressed genes
undergo selection for high initiation rates (5,14,27,67-69),
which may be expressed as high SSU density in the SUTR.
An additional explanation is the fact that the probability of
abortion of the SSU increases as the distance from the 5 of
the UTR increases, promoting higher densities for shorter



Table 3. MIC analyses of the top selected motifs
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Total Number of
windows that

Number of
times the motif
was selected (%

Number of points
that passes the

Motif score MIC score P value constructed the signal threshold Motif logo of total models)
Motif: ‘HAAUAAAGNN’

C
High 0.2566 < 0.001 88,328 3442 SAAUAAASES 49 (2.85%)
Low 0.1549 <0.001 88,322 3429
Motif: ‘SSSSSSSSSS’
High 0.1033 <0.001 86,888 3604 et e e o o 45 (2.62%)
Low 0.2414 <0.001 88,123 3608
Motif: ‘DRUGUUGCAA’
High 0.2889 <0.001 88,322 3553 SEUGRUGCAA 41 (2.38%)
Low 0.1754 <0.001 88,341 3543
Motif: ‘\CAUAUAAAAG’
High 0.2791 <0.001 88,324 3702 CAUAYAAAAS 31 (1.80%)
Low 0.1411 <0.001 88,346 3694

Comparison of high and low score of motifs selected multiple times. The number of windows that constructed the signal and number of points that passes
the threshold were controlled and aligned to all signals. MIC score and P value were calculated as described in the Materials and methods section. The
results presented in the table are for discretization process that sets the threshold of each row (i.e. footprint length) as the mean (1) value of the row.

UTRs (similarly to complete ribosomes (23)). The aforesaid
explanation is also relevant to the SUTR length relative to
the ORF length, which was also selected as a feature in sev-
eral predictors; this result may be partially related to the
fact that highly expressed genes tend to undergo selection
to be more compact, in order to minimize cellular resources
(70,71). Previous study (43) also found the S UTR length as
relevant feature. Note however that the definitions and anal-
ysis used here and in (43) are different: for example, in our
analysis we control for dozens of additional features and
analyse the RC in each window in the UTR while in (43)
there is no such control and the RC is compared to the RC
surrounding the main AUG.

Additional features that were selected numerous times are
features related to uAUG, including a binary feature that
describes whether there is or isn’t an AUG in the current
sliding window, and the average distance of uAUGS in the
current sliding window to the main AUG START codon.
The analysis of the binary feature showed that if there is
an AUG in the sliding window, there are more RC in the
window. The analysis of the average distance to the main
AUG START codon feature yielded positive partial corre-
lations between the feature and the real RC, meaning that
for longer distance to the main AUG (i.e. more upstream)
there are more RC. This may be because there is a selection
for AUGs with low AUG context score in the vicinity of the
main AUG START codon (60) that has an impact on the
number of RC. In addition, as was mentioned above, this
may be due to the assumption that the probability of abor-
tion of the SSU increase as the distance from the 5" end of
the UTR increases.

An interesting hypothesis that arises from the features
analyses is that when the SSU reaches a strongly folded re-
gion, it detaches from the mRNA, probably due to its lim-
ited ability to disrupt the strongly folded secondary struc-
ture (38,39). In conclusion, we believe that these features
have an effect on the SSU scan and translation initiation
and are an indication that the efficiency of translation initi-
ation is encoded in the transcript.

As was mentioned above, the SSU RC coalesced into
three major sizes (19, 29 and 37 nt) at the main AUG start
codons. Examining these specific FP lengths, we identified
that the correlations between the predicted RC (based on
our model) and the real RC is relatively high for all these
three lengths: 0.1868 for 19 nt, 0.1715 for 29 nt and 0.1672
for 37 nt. We found similarities but also some differences
between the features and signals related to these three clus-
ters of FP lengths. In all three cases, for example, features
that are related to the appearances of the AUG triplet, the
5"UTR length, and local mRNA folding had high ranking.

However, we also found some aspects that are unique to
each of these footprint lengths such as: the score of the mo-
tif AAAAAGGC for length 19 nt, the score of the motif
‘GGCGGCUQG’ for length 29 nt and the score of the mo-
tif KGMCAGCUND’ for 37 nt (Supplementary Table S2).
Thus, we conclude that similar but not identical models are
needed for predicting the RC density of each of the major
SSU conformations.

We showed that AUGs in the SUTR with high context
scores induce an RC distribution similar to the RC sur-
rounding the main AUG, therefore postponing the SSU
scan. A previous study found that strong uAUG context is
associated with stronger translational inhibition (41). Nev-
ertheless, we are the first to provide direct large-scale evi-
dence that uAUG context score in endogenous genes and in
natural conditions has an influence on the SSU scan. Our
analysis may suggest that AUG context affects the small
sub-unit movement and contribute to ~50% of the variance
related to the RC distribution near the main start codon and
over 17% near UTR AUGs with high context score. Other
codes surrounding the main AUG start codon include addi-
tional sequence and structural features, many are reported
in this paper, for example: the local mRNA folding energy,
the SUTR length, additional uAUG codon, etc. In addi-
tion, we show that longer uUORFs in the 5 UTR also induce
an RC distribution that is more similar to the RC surround-
ing the main AUG compared to short uORFs, probably due
to additional/stronger signals surrounding the AUG that
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are related to triggering translation. Our analysis suggest
that the TCP-IC measurement can be generalized in order
to predict if uORFs are functional.

We also show that there are more RC and higher MIC in
uAUG which are upstream of a stronger mRNA structure.
This result suggests that strong folding downstream to an
AUG codon in the SUTR may improve codon recognition.
Nevertheless, it is also possible that once the SSU reaches
an uAUG with strong folding downstream, it may detach
from the mRNA, as we suggested earlier.

Several motifs were selected by the predictors that yielded
relatively high correlations between the predicted RC and
the real RC. Therefore, we have applied the MIC analysis on
top selected motifs, comparing between high and low motif
scores. The results show that some motifs have an influence
on the SSU RC profile distribution; first is related to the
poly(A)-binding protein (PABP), which is an RNA-binding
protein. While PABP is known to bind to the 3’UTR and af-
fect polyadenylation process, studies in the field have shown
that PABP can also bind to the 5UTRs (72,73). Since the
motif AAUAAA is similar to a polyA tail it is natural and
probable that the PABP will bind to it (even if it is in at the
5S'UTR).

However, this does not mean that a PABP motif that ap-
pears in the S UTR will not attract the PABP that will affect
the SSU movement. From the MIC analyses and the visual
differences between the high and low motif scores signals,
we can see that for higher motif scores there is an accumu-
lation of RC next to the motif. Although the protein is typi-
cally bound to the 3'UTR, previous studies in the field have
shown that it can bind to sequences in the SUTR (72,73),
thus resulting in an increase in the number of the SSU RC.
The partial correlations of the motif with the RC are posi-
tive, supporting the hypothesis that higher motif score re-
sults in more RC. Note that it is possible that this motif
directly affects the SSU, but it is also possible that the af-
fect is indirect: the motif causes the binding of the poly(A)-
binding protein which increases the density of the SSU e.g.
via interacting with it and/or due to delaying it. In addition,
it is possible that the motifs that affect the SSU are similar
to the PABP motif but that there are no direct interactions
between the PABP and the SSU.

An additional motif that was selected many times is CG-
bias. In this case, we observed a reverse relationship, where a
high motif score produces a lower MIC score. These results
meet our expectations, as strong CG bias may be indicative
for strong mRNA folding that, as we suggested, causes the
SSU to detach from the mRNA.

Interestingly, additional motifs that were selected are mo-
tifs related to TF binding sites. The MIC analyses of these
motifs show that higher motifs scores result in higher MIC
scores, meaning the SSU lingers at these binding sites. There
are a number of possible explanations for the effect of bind-
ing sites of transcription factors on the SSU scan: first,
RNA is similar to DNA in several aspects. It is possible
that transcription factors attach to the mRNA, probably
with weaker affinity, yet one that is enough to ‘disturb’ the
SSU scan and increase its density. Second, it is possible that
the TF and the SSU proteins are biochemically similar. This
would be significant even if only parts of their domains have
resemblance. It is possible that they are similar due to co-

evolution, which would present coupling between transcrip-
tion and translation processes. In that case, a binding site for
transcription factor also will have an influence on transla-
tion. Note that it is also possible that they are simply similar
in terms of structure and not function.

The results from the last section are interesting in them-
selves, but also demonstrate the power of the tools we have
proposed in this study to understand the effect of different
features on the scanning of the small subunit.

In conclusion, using TCP-seq data and computational
analyses, we have presented in this study new insights on
translation initiation in S. cerevisiae and possibly other
eukaryotes while providing quantitative measures to our
claims. Our results have an implication on different research
fields. We discovered features that affect the SSU scan and
as a result affect translation initiation in S. cerevisiae, allow-
ing better understanding of this process. Our computational
approach was tailored to deal with the fact that the TCP-seq
data are noisy and various variables can be related to the
SSU movement. However, further extensive experimental
validation should be performed to fully understand the re-
ported discoveries. The most relevant validations should in-
clude TCP-seq experiments on various engineered reporter
proteins which include various versions of the discovered
signals in their UTRs.

We believe that our findings can be implemented to engi-
neered transcripts for efficient translation initiation. In ad-
dition, this study encourages the performance of the same
novel quantitative analyses on additional different organ-
isms in order to gain insight into the complex process of
translation.

The results presented in this study suggest further inter-
esting research directions. First, the TCP-seq experiment
was performed on the model organism S. cerevisiae. It will
be interesting to generalize the results to other eukaryotes
organisms when such data are available, and furthermore,
to study the differences between the different organisms, be-
tween different cell cycle phases (e.g. as was done in (74,75)),
and how it affects cancer mutations. Second, it will be inter-
esting to generate a library of heterologous genes, insert the
features we identified as important and perform additional
TCP-seq, in order to check the causality (e.g. as was done
in (32,33) for studying protein levels). Third, our study is a
proof of concept that TCP-seq data can be used in order to
predict the SSU density. Our model is based on a basic lin-
ear regression, while using a naive feature selection process,
in order to keep it simple while trying for the first time to
use that kind of complex data set. Further future research
should use more complex machine learning algorithms to
achieve better results.

For example, our analyses can be implemented as a
follow-up study to (76), where the authors carried out a
detailed study on how synthetic 5-UTRs can alter gene
expression in S. cerevisiae. They focused on a single gene
(CYC1) and built 58 synthetic variants via single and mul-
tiple point mutations between positions —15 and —1, then
quantified the strength of the synthetic leader sequences us-
ing fluorescence measurements.

They showed that the leader configuration upstream of
the Kozak sequence has a marked influence on translation
initiation and one central mechanism that they suggest is via



the effect of the mutations on local mRNA folding near the
AUG codon which fits our conclusions regarding the effect
of local folding on SSU RC. We believe that such an experi-
ment combined with TCP-seq for some of the variants and
with the analysis suggested here is a useful tool for studying
causal relations related to translation initiation.
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