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ABSTRACT
Matching is a technique through which patients with and without an outcome of interest (in case-control studies) or
patients with and without an exposure of interest (in cohort studies) are sampled from an underlying cohort to have the
same or similar distributions of some characteristics. This technique is used to increase the statistical efficiency and cost
efficiency of studies. In case-control studies, besides time in risk set sampling, controls are often matched for each case
with respect to important confounding factors, such as age and sex, and covariates with a large number of values or
levels, such as area of residence (e.g., post code) and clinics/hospitals. In the statistical analysis of matched case-control
studies, fixed-effect models such as the Mantel-Haenszel odds ratio estimator and conditional logistic regression model
are needed to stratify matched case-control sets and remove selection bias artificially introduced by sampling controls.
In cohort studies, exact matching is used to increase study efficiency and remove or reduce confounding effects of
matching factors. Propensity score matching is another matching method whereby patients with and without exposure
are matched based on estimated propensity scores to receive exposure. If appropriately used, matching can improve
study efficiency without introducing bias and could also present results that are more intuitive for clinicians.
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1 .  INTRODUCTION

Matching is mainly used in observational studies, includ‐
ing case-control and cohort studies. Matching is a techni‐
que by which patients with and without an outcome of
interest (in case-control studies) or patients with and
without an exposure of interest (in cohort studies) are
sampled from an underlying cohort to have the same or
similar distributions of characteristics such as age and sex.

The main purpose of matching is to increase study
efficiency for data collection and subsequent statistical
analysis. Matching helps researchers reduce the volume
of data for collection without much loss of information
(i.e., improving cost efficiency) and obtain more precise
estimates than simple random sampling of the same
number of patients (i.e., improving statistical efficiency).

In addition, in cohort studies, matching can remove or
reduce confounding effects of matching factors.

This paper aims to introduce basic principles of
matching in case-control and cohort studies, with some
recent examples.

2 .  MATCHING  IN  CASE-CONTROL  STUDIES

2.1. Unmatched Case-Control Sampling
A case-control study is a design used to compare levels of
exposures between cases and controls defined by the sta‐
tus of outcome of interest. In typical case-control studies,
cases are all patients with an outcome in an underlying
cohort, with multiple control selection strategies, as
explained below. Despite outcome-dependent sampling
(which is also called “biased sampling”) that introduces
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selection bias, data collection only for cases and controls
enables researchers to estimate some associational
measures (such as risk ratio, odds ratio, and rate ratio)
that would be obtained in an underlying cohort study,
unless sampling depends on the exposure status in con‐
trols. Specifically, the exposure-outcome odds ratio in a
cumulative incidence sampling (also called exclusive
sampling) of controls is expectedly identical to the odds
ratio in the underlying cohort (Fig. 1A), the odds ratio in
a case-cohort sampling (also called inclusive sampling) is
equal to the risk ratio in the underlying cohort (Fig. 1B),
and the odds ratio in a risk set sampling (also called con‐
current sampling) is equal to the rate ratio (or hazard
ratio, according to analysis models) in the underlying
cohort (Fig. 1C). Note that none of the above interpreta‐
tions of odds ratios requires a rare disease assumption.
Researchers can even restore other associational
measures (such as risk differences) in the underlying
cohort from each sampling design if auxiliary data on
patients not selected as cases or controls are available
[1, 2].

In Fig. 1, patients are followed up from when they
enter the cohort, regardless of the calendar date. This is a
common timeframe used in cohort studies such as
randomized controlled trials, registry-based cohort
studies, and hospital-based cohort studies. Meanwhile, in
population-based cohort studies, calendar time is often
used as a time frame, where a risk set sampling is usually
used to sample controls for each case at the same calen‐
dar time (Fig. 2).

In a study requiring primary data collection, case-
control study designs are efficient because only informa‐

tion on cases and selected controls, instead of all people
in the underlying cohort, is collected and used for statis‐
tical analysis. Especially for rare outcomes, a cohort study
recruiting many people to observe a sufficient number of
outcomes is not feasible. However, a case-control design
would still be feasible, with reduced costs and efforts.

In a study with the secondary use of existing cohort
data, case-control sampling is usually unnecessary [3].
Such post-hoc sampling would miss the opportunity to
estimate absolute risks of the outcome in the cohort,
which is an important indicator in evidence-based
medicine or policymaking. However, case-control study
designs are still used sometimes if researchers want to
(i) collect additional data on confounding factors by

Fig. 1 Graphical representation of cumulative incidence sampling (A), case-control sampling (B), and risk set sampling (C) for 10 example
patients in a cohort. ● indicates an outcome onset and time at selection as a case. ○ indicates time at selection as a control.

Fig. 2 Graphical representation of a risk set sampling for 10
example patients in a population-based cohort. ● indicates an
outcome onset and time at selection as a case. ○ indicates time at
selection as a control.
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reviewing medical records or questionnaires, (ii) use
stored samples to measure new biomarkers, (iii) require
adjudication of individual study endpoints with special
expertise in their assessment and classification, and (iv)
make it convenient to assess triggers of an acute event by
flexibly modeling the exposure window at varying prox‐
imities to the event of interest [4].

2.2. Purpose of Matching in Case-Control Studies
Similar to cohort studies, case-control studies typically
require confounder adjustment using stratified analysis
or regression modeling. To further improve statistical
efficiency in adjusted analyses, case-control studies may
match controls on confounders to be adjusted for, i.e.,
sampling a control(s) with an identical (or nearly identi‐
cal) value of confounders for each case. When the total
number of cases and controls to be sampled is fixed, the
adjusted odds ratio estimates are likely to be less variable
(i.e., more statistically efficient) in case-control data
matched on strong confounders than in unmatched data.

Besides common confounding factors such as age and
sex, area of residence (e.g., post code) or clinics/hospitals
(which patients are registered to or visit) are sometimes
matched between cases and controls. If variables with a
large number of values or levels (e.g., over 1,000 post
codes or clinics/hospitals) are adjusted for as “surrogate”
confounders in the statistical analysis, at least one case
and one control in each area (or clinic/hospital) are
needed; otherwise, the data are discarded in the fixed-
effect models (stratification). Although a case and control
may rarely come from the same area (or clinic/hospital)
in unmatched case-control sampling, matching can
ensure that the pairs (or sets) of cases and controls are
derived from the same area (or clinics/hospitals). Conse‐
quently, the odds ratio adjusted for these variables can be
efficiently estimated.

Caution is needed for the effect of case-control match‐
ing on confounding: matching itself does not have a role
in adjusting for confounding factors but rather introdu‐
ces selection bias [5]. Therefore, as explained later, statis‐
tical analysis with fixed-effect adjustment, such as the
Mantel-Haenszel odds ratio estimator and conditional
logistic regression models, is necessary to estimate an
unbiased confounder-adjusted odds ratio. In addition, if
a case and controls become too similar by matching too
many variables, statistical efficiency in the fixed-effect
analysis will be reduced, which is called over-matching
[6]. Thus, it is generally not recommended to match
many variables in case-control studies.

2.3. Choice of Matching Ratio
Because the number of cases (which are often rare disea‐
ses) is usually much smaller than that of potential con‐
trols, the matching ratio (i.e., ratio of cases:controls in
each matched set) is often set to 1:n. If the ratio is set to
1:1, the design is called a pair-matched case-control
study. In practice, many studies set the matching ratio to
1:4 or 1:5, whereas other studies opt to set it to a large
ratio, such as 1:7 [7] and 1:10 [8]. In unmatched case-
control settings, the gain of statistical power sharply
increases until the ratio 1:4 or 1:5 and then slowly increa‐
ses thereafter [9]. However, this may not be always true
in matched case-control settings. The matched case-
control design generally requires stratification on match‐
ing factors, which completely discards the information of
matched sets of cases and controls with concordant expo‐
sure (i.e., a set containing people exposed only or people
unexposed only). Thus, a 1:4 or 1:5 matching ratio may
still have substantial power loss if (i) cases and controls in
the same strata of matching factors have similar exposure
patterns or (ii) exposure is rare (e.g., <15%) in an under‐
lying cohort [10].

Sometimes, a case cannot find a prespecified number
of controls. For example, in a case-control study planning
1:4 matching, some cases could find only less than four
controls. However, it is not necessary to exclude these
pairs when matching factors or matched sets of cases and
controls are stratified in the analysis. The mixture of pairs
with different matching ratios will not result in a biased
estimate as long as an adequate adjustment for matching
factors is adopted.

2.4. Choice of Matching With and Without Replacement
It is necessary to decide whether the same individual can
be sampled repeatedly as a control (called matching with
replacement) or only once (called matching without
replacement). Researchers need to choose one of the two
as the main analysis, considering the balance between the
demerit of not finding sufficient number of controls (i.e.,
many pairs not achieving the prespecified 1:n matching
ratio) by matching without replacement and the demerit
of decreased statistical efficiency if the same individual is
repeatedly included as a control by matching with
replacement. If the number of controls is much larger
than that of the case, the choice would not make a big
difference in the estimated odds ratios. Notably, in risk
set sampling, (i) people with the outcome (i.e., cases)
should be potentially selected as controls until they
become a case to represent the underlying cohort, and
(ii) the same person should be selected as a control
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several times at different time points, meaning that
matching without replacement is biased [11].

2.5. Statistical Analysis in Matched Case-Control Studies
To remove the selection bias artificially introduced by
case-control matching, it is necessary to “stratify” data on
matching factors in the statistical analysis. One tradi‐
tional method is the Mantel-Haenszel odds ratio estima‐
tor that stratifies on matching factors themselves (e.g.,
subgroups by age group and sex, if controls are matched
on these factors) or matched sets (e.g., each pair of a case
and control). The Mantel-Haenszel estimator adjusts for
matching factors as fixed effects and estimates a common
odds ratio assumed to be constant across strata. The
Mantel-Haenszel odds ratio estimator consistently esti‐
mates the common odds ratio when each stratum con‐
tains sparse data (e.g., only two patients, one case and
one control, in each stratum) but the number of strata
increases. Adjusting for confounding factors besides the
matching factors by additional stratification within the
matching factor strata is infeasible.

As another method, it is much more common to use a
conditional logistic regression model, which estimates the
common stratum- and covariate-specific odds ratio by
stratifying on matching factors while adjusting for other
confounders as covariates [12]. For example, when a con‐
trol is matched on age and hospital of a case, stratifica‐
tion of matched pairs using the conditional logistic
regression model will eliminate the confounding effect of
these matching variables. Additionally, medical condi‐
tions that may confound the exposure-outcome relation‐
ship within the age-hospital strata can be adjusted for by
including them as covariates in the model without intro‐
ducing unnecessary bias.

Notably, simple adjustments of matching factors by
including them as covariates in (unconditional) logistic
regression models are not recommended in matched
case-control studies. For example, an unconditional
logistic regression model for an outcome, including
exposure and age as covariates in age-matched case-
control data, provides a biased estimate of age-adjusted
odds ratio, even if the model correctly specifies the asso‐
ciation between the outcome and covariates in an under‐
lying cohort [13]. This is because the selection bias
induced by matching distorts the association between the
outcome and matching factors, resulting in residual bias
owing to model misspecification.

Finally, time at matching (time from cohort entry,
calendar time, or possibly age as time from birth) can be
considered one of the “matching factors” in risk set sam‐

pling. If the hazard of disease incidence varies with time
and the exposure prevalence changes during follow-up,
time should be accounted for as a “confounder.” To do so,
one can use the Mantel-Haenszel odds ratio estimator or
a conditional logistic regression model, which estimates
the hazard ratio constant over time (and across other
matching factors, if any) that would be modeled by the
Cox proportional hazards model in an underlying cohort.

3 .  EXAMPLES  OF  CASE -CONTROL  STUDY
WITH  MATCHING

3.1. Example 1: A Case-Control Study with Primary Data
Collection
Hayashi et al. conducted a case-control study to identify
factors associated with calciphylaxis (calcific uremic arte‐
riolopathy), a rare and fatal complication characterized
by painful skin ulceration and necrosis, in patients
undergoing hemodialysis for end-stage renal disease [14].
The researchers representing the Japanese Calciphylaxis
Study Group sent questionnaires to hemodialysis centers
in Japan and included 28 cases with a definitive diagnosis
of calciphylaxis. For each case, two controls matched for
age and hemodialysis duration were randomly selected
from the same dialysis center. Clinical information,
including known and unknown (but suspected) risk fac‐
tors for calciphylaxis, was collected for cases and con‐
trols. Univariable logistic regression analyses showed that
warfarin therapy, lower serum albumin levels, higher
plasma glucose levels, and higher serum calcium levels
were significantly associated with calciphylaxis. A multi‐
variable logistic regression analysis showed that warfarin
therapy and lower serum albumin levels (per 1 g/dL
decrease) were still significantly associated with calciphy‐
laxis, with an adjusted odds ratio of 10.1 (95% confidence
interval [CI] 1.63–62.7) and 12.7 (95% CI 2.35–68.6),
respectively.

3.2. Example 2: A Case-Control Study with Secondary Use
of Existing Cohort Data
Iwagami et al. conducted a case-control study to identify
medical diagnoses strongly associated with the incidence
of long-term care needs certification, using linked medi‐
cal and long-term care insurance data from two cities in
Japan [15]. The participants were aged ≥75 years, had no
previous long-term care needs certification, and had at
least one medical insurance claim record during the
study period. Cases were newly certified people for long-
term care needs during the study period, whereas con‐
trols were randomly selected in a 1:4 ratio and matched
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for age category, sex, city, and calendar date (index date).
Multivariable conditional logistic regression analysis was
conducted to estimate the association between 22 catego‐
ries of medical diagnoses recorded during the period of
exposure definition (past 6 months of index date) and
new long-term care needs certification, under the
assumption that exposures are independent of each other.
Among 38,338 eligible people, 5,434 people newly
received long-term care needs certification and were
matched with 21,736 controls. In the multivariable condi‐
tional logistic regression analysis, the adjusted odds ratio
(95% CI) was the largest for femur fractures (8.80 [6.35–
12.20]), followed by dementia (6.70 [5.96–7.53]), pneu‐
monia (3.72 [3.19–4.32]), hemorrhagic stroke (3.31
[2.53–4.34]), Parkinson’s disease (2.74 [2.07–3.63]), and
other fractures (2.68 [2.38–3.02]).

4 .  MATCHING  IN  COHORT  STUDIES

4.1. Rationale for Matching in Cohort Studies
Matching can also be used in cohort studies. Patients
with and without the exposure of interest are matched on
some patient characteristics and compared for the inci‐
dence of outcomes. Matching is rarely used in observa‐
tional cohort studies with primary data collection (with
some exceptions such as sibling design and spouse sur‐
vey) probably because most observational cohort studies
are conducted without pre-specifying a certain exposure,
for a wide range of research questions. In contrast,
matching is sometimes used in cohort studies with the
secondary use of existing databases to reduce computa‐
tional burden by selecting a subset of data without sacri‐
ficing statistical precision. In addition, unlike case-
control matching, cohort matching removes or reduces
the confounding effects of matching factors [5].

A matched cohort study may also be conducted from a
practical viewpoint: it would provide an intuitive presen‐
tation of patient characteristics in “comparable” exposure
groups matched on important confounding factors such
as age, sex, and calendar time. As crude absolute mea‐
sures (such as risks and rates) during the follow-up
period are easily summarized in exposed and unexposed
patients, clinicians unfamiliar with statistical analysis can
grasp the difference between the two groups in a non-
statistical manner.

In cohort studies, patients with and without the expo‐
sure of interest at the start of the follow-up, such as
smoking and use of a certain drug, are matched in a 1:1
or 1:n ratio (Fig. 3). In practice, exposure is dichotom‐
ized (i.e., presence or absence of exposure, rather than

the level of exposure), and the exposure status of selected
patients is assumed to remain unchanged during the
follow-up period.

In population-based cohort studies, the exposure sta‐
tus may change according to the calendar time. For
example, people without diabetes may be diagnosed as
having the disease one day. As another example,
patients who have never used a certain drug with poten‐
tial carcinogenic effects before may start taking it one
day. In such situations, researchers can create matched
sets of patients with and without the exposure of interest
at the same calendar time (Fig. 4). However, the exposure

Fig. 3 Graphical representation of a matched-pair cohort study
for 10 example patients in a cohort. Solid lines indicate that people
are exposed, dotted lines denote that people are not exposed, and
● indicates the incidence of outcome.

Fig. 4 Graphical representation of a matched-pair cohort study
for 10 example patients in a population-based cohort. Solid lines
denote that people are exposed, dotted lines denote that people
are not exposed, ▼ indicates the timing of the matched-pair
cohort inclusion in the exposed group, ▽ indicates the timing of
the matched-pair cohort inclusion in the non-exposed group, and
● indicates the incidence of outcome.
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status of the matched sets is assumed to remain
unchanged during the follow-up period. In the presence
of time-varying exposures, survival analysis with time-
dependent covariates or by censoring the follow-up of a
patient when his/her exposure status changes may pro‐
vide estimates of associational measures (e.g., hazard
ratios) free from time-related biases [16]. However, in
general, a matched cohort study is unsuitable if the expo‐
sure status frequently changes between “on” and “off” in
the same patient. Furthermore, although the method
exists [17], causal interpretation of associational mea‐
sures for time-varying exposures estimated in matched
cohort studies requires additional consideration.

4.2. Choice of Matching Factors, Matching Ratio, and
Matching With or Without Replacement
Matching factors in the secondary use of existing
databases often include age (age category or age within a
range, such as ±2 years), sex, area of residence (e.g., post
code) or clinics/hospitals (which patients are registered
to or visit), and calendar time. Although cohort matching
on known confounders typically leads to an efficiency
gain in adjusted estimates, there are exceptions depend‐
ing on associational measures (e.g., risk difference or
ratio) and underlying models (e.g., additive or multipli‐
cative risk models) [18]. If the statistical efficiency is
rather worsened by matching, the resulting estimates suf‐
fer from “over-matching.”

Regarding the matching ratio, 1:4 or 1:5 is sometimes
chosen in matched-pair cohort studies, whereas 1:1 may
be chosen more frequently to prioritize simplicity and
intuitiveness. Mixed matching ratios (meaning that, for
example, some pairs are matched in a ratio of 1:4,
whereas other pairs are matched by a ratio of 1:3, 1:2, or
1:1 between exposed and unexposed people) will not
cause bias if matching variables or matched sets are
adjusted for in the analysis. In contrast, as such varying
matching ratios do not balance the distributions of
matching factors in exposed and unexposed people, the
unadjusted comparison in the matched cohort still
suffers from confounding bias.

Matching with or without replacement remains the
choice of researchers, although matching without
replacement may be more intuitive for clinicians.

4.3. Statistical Analysis in Matched-Pair Cohort Study
Unlike case-control matching, non-mixed cohort match‐
ing completely or partially removes the confounding
effect of matching factors without introducing additional
selection bias. Hence, fixed-effect models for matched

sets (e.g., conditional logistic regression, stratified
Poisson, or stratified Cox regression models) may or may
not be an option. Other possible statistical methods
include i) covariate adjustment for matching factors, ii)
random-effect adjustment for matched sets, and iii) mar‐
ginal regression modeling without stratification on
matching factors but with cluster-robust variance
accounting for matched sets as clusters. The differences
between fixed-effect models and other possible statistical
methods are the estimand and modeling assumptions of
the analysis [19].

Caution is needed in the sense that matching can only
“balance” distributions in sampled (i.e., matched) data,
and such balance is easily affected by additional adjust‐
ment for or stratification on other variables. Therefore,
ignoring matching factors (i.e., adjusting for additional
unmatched variables without adjusting for matching fac‐
tors) would cause bias in estimates [20].

In some matched-pair cohort studies, observation time
is prematurely terminated immediately after the follow-
up of his/her matched counterpart is completed by an
event or censoring [21]. The impact of such termination
is minimal when adopting stratified Cox models. How‐
ever, in statistical methods other than stratified Cox
models, termination is not generally encouraged because
information is then discarded in an irremediable manner
[22].

4.4. Propensity Score Matching
Although the aforementioned matching method is spe‐
cifically called exact matching, matching based on the
propensity score, which is the probability of receiving
exposure within the confounder stratum to which a
patient belongs, is another type of matching method
known as marginal matching [13]. Propensity score
matching was featured in a previous paper of this semi‐
nar series [23]. Briefly, patients with and without expo‐
sure are matched based on estimated propensity scores to
receive exposure at a certain time point, mostly at the
time of cohort inclusion. Consequently, the distribution
of the measured confounding factors defining the pro‐
pensity scores are balanced between the two groups in
the propensity score-matched samples. Researchers using
this method should be aware of the theoretical subtleties
in propensity score matching, such as the lack of justifica‐
tion for interval estimation for propensity score-matched
estimates using off-the-shelf software [24] and bias owing
to additional adjustment for risk factors not balanced by
propensity score matching [25].

ANNALS  OF  CLINICAL  EPIDEMIOLOGY

38



5 .  EXAMPLES  OF  COHORT  STUDY  WITH
MATCHING

5.1. Example 1: A Cohort Study with Exact Matching
Ohbe et al. conducted a population-based matched
cohort study to examine the risk of cardiovascular events
after a spouse’s intensive care unit (ICU) admission, using
the JMDC claims database, which includes employees of
relatively large Japanese companies and their family
members in Japan [26]. Among 1,082,208 eligible mar‐
ried couples (2,164,416 spouses), the researchers identi‐
fied 7,815 spouses of patients who were admitted to the
ICU for more than 2 days. From the rest of the study
population, they randomly selected a non-exposure
group with a ratio of one spouse in the exposure group to
four individuals in the non-exposure group, matched for
age, sex, and medical insurance status on the same date
(index date). When examining the primary outcome, the
percentage of any visits for cardiovascular diseases 1–4
weeks after the spouse’s ICU admission was 2.7%
(210/7815) in the exposure group and 2.1% (666/31 250)
in the non-exposure group, with an adjusted odds ratio
of 1.27 (95% CI, 1.08–1.50). Secondary outcomes, which
included any hospitalization for cardiovascular disease or
hospitalization for severe cardiovascular events, were also
significantly more frequent in the exposure group. The
odds ratios became closer to 1 (i.e., the null association) 4
weeks after the index date. Thus, the authors concluded
that ICU admission of a spouse can be a risk factor for
cardiovascular events 1–4 weeks after the date of the
spouse’s ICU admission.

5.2. Example 2: A Cohort Study with Propensity Score
Matching
Nagasu et al. conducted a registry-based propensity
score-matched cohort study using the Japan Chronic
Kidney Disease Database (J-CKD-DB) [27] to examine
the protective effects of sodium-glucose cotransporter 2
(SGLT2) inhibitors on kidneys compared with other
glucose-lowering drugs. The researchers identified
patients with CKD who started SGLT2 inhibitors or other
glucose-lowering drugs. On the day of initiation, they
calculated a propensity score for SGLT2 inhibitor initia‐
tion for each patient and created a 1:1 propensity score-
matched cohort (n = 1,033 pairs). Regarding the primary

outcome, during follow-up, the mean annual rates of esti‐
mated glomerular filtration rate (eGFR) change were
−0.47 (95% CI −0.63 to −0.31) and −1.22 (−1.41 to −1.03)
mL/min/1.73 m2 per year in the SGLT2 inhibitor and
other glucose-lowering drug groups, respectively (P <
0.001). Regarding the secondary outcome, there were 30
patients with a composite kidney outcome (50% eGFR
decline or end-stage kidney disease) in the SGLT2 inhibi‐
tor group (14 events/1,000 patient-years) and 73 in the
other glucose-lowering drug group (36 events/1,000
patient-years), with a hazard ratio of 0.40 (95% CI 0.26–
0.61). Thus, compared with other glucose-lowering
drugs, the initiation of SGLT2 inhibitors was associated
with a significantly lower rate of eGFR decline and a
lower risk of composite kidney outcome.

6 .  CONCLUSION

We have provided an overview and some recent examples
of matching in case-control and cohort studies. Matching
in case-control studies can increase study efficiency,
including both cost and statistical efficiencies. Neverthe‐
less, caution is still warranted since inappropriate sam‐
pling of controls and application of statistical analysis
without stratification would result in a biased estimate. In
cohort studies, exact matching can increase efficiency
and remove or reduce the confounding effect of matching
factors, whereas a propensity score matching can be used
to balance the distributions of measured confounding
factors between exposed and unexposed individuals. If
appropriately used, matching can improve study effi‐
ciency without introducing bias and can present results
that are more intuitive for clinicians.
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