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Abstract: Advances in the manufacturing industry have led to modern approaches such as Industry
4.0, Cyber-Physical Systems, Smart Manufacturing (SM) and Digital Twins. The traditional manufac-
turing architecture that consisted of hierarchical layers has evolved into a hierarchy-free network in
which all the areas of a manufacturing enterprise are interconnected. The field devices on the shop
floor generate large amounts of data that can be useful for maintenance planning. Prognostics and
Health Management (PHM) approaches use this data and help us in fault detection and Remaining
Useful Life (RUL) estimation. Although there is a significant amount of research primarily focused
on tool wear prediction and Condition-Based Monitoring (CBM), there is not much importance given
to the multiple facets of PHM. This paper conducts a review of PHM approaches, the current research
trends and proposes a three-phased interoperable framework to implement Smart Prognostics and
Health Management (SPHM). The uniqueness of SPHM lies in its framework, which makes it appli-
cable to any manufacturing operation across the industry. The framework consists of three phases:
Phase 1 consists of the shopfloor setup and data acquisition steps, Phase 2 describes steps to prepare
and analyze the data and Phase 3 consists of modeling, predictions and deployment. The first two
phases of SPHM are addressed in detail and an overview is provided for the third phase, which is a
part of ongoing research. As a use-case, the first two phases of the SPHM framework are applied to
data from a milling machine operation.

Keywords: Smart Manufacturing; Smart Prognostics and Health Management; data preparation;
interoperability; Data Mining; Machine Learning; Deep Learning

1. Introduction

The modern manufacturing era has enabled the collection of large amounts of data
from factories and production plants. Data from all levels of an enterprise can be analyzed
using Machine Learning (ML) and Deep Learning (DL) techniques. Interdisciplinary ap-
proaches such as Industry 4.0 (I4.0), Cyber-Physical Systems (CPS), Cloud-Based Manufac-
turing (CBM) and Smart Manufacturing (SM) allow the real-time monitoring of operations
in manufacturing facilities. These approaches greatly benefit maintenance operations by
reducing downtime and thereby cutting costs. Monte-Carlo estimations suggest that an-
nual costs concerning maintenance amount to approximately USD 222 Billion in the United
States [1], and recalls due to faulty goods result in costs of more than USD 7 Billion each
year [2]. One of the reasons for these relatively high costs is manufacturing organizations
preferring corrective or preventive maintenance as opposed to predictive maintenance.
Prognostics and Health Management (PHM) is an interdisciplinary area of engineering
that deals with the monitoring of system health, detecting failures, diagnosing the cause of
failures and making a prognosis of component and system level failures by using metrics
such as Remaining Useful Life (RUL). PHM technologies are being widely incorporated
into the modern manufacturing approaches as an in situ evaluation of the system is made
possible.

A Smart Manufacturing (SM) paradigm consists of interoperable layers that are ca-
pable of vertical as well as horizontal integration [3]. Figure 1 shows the different layers
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according to the ISA-95 Automation Pyramid. The physical layer of SM consists of the field
devices that comprise of sensors and actuation equipment. To monitor and analyze the
devices on the physical layer, data from all the individual components need to be incorpo-
rated into a single stream, which then provides us with a context of the entire operation.
Not only do the data give us context about the operation, but properly formatted data
allow faster deployment of AI and ML algorithms. Quicker implementation of ML- and
DL-based condition monitoring techniques allows early detection of potential failures. The
data generated come from various sources involving multiple parameters, resulting in
complex formats and sometimes redundancies. Challenges in effective implementation of
PHM techniques for predictive maintenance include the availability of data, the prepara-
tion of data and ensuring that appropriate ML and DL methods are selected for modeling.
Appropriate steps need to be taken to ensure that manufacturing data can be acquired and
preprocessed for PHM.
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To address these requirements, this paper proposes a Smart Prognostics and Health
Management (SPHM) framework in SM. To that end, the rest of the paper is structured as
follows: Section 2 provides a review of existing approaches to maintenance and state-of-the-
art PHM methods. Section 3 identifies the research gap based on existing work. Section 4
proposes an interoperable framework to implement SPHM in SM. Section 5 applies the
first two phases of the proposed framework to data obtained from a milling operation.
Section 6 discusses the results. Finally, Section 7 provides the conclusion and future work.

2. Review of Key Concepts and Trends
2.1. Overview of Maintenance Strategies

In recent years, maintenance engineering has emerged as one of the most important
areas in manufacturing organizational planning as opposed to it being purely associated



Sensors 2021, 21, 5994 3 of 27

with production operations [4]. Proactive approaches to maintenance are being adopted by
manufacturers, not only as a cost-cutting measure, but also as a competitive strategy [5].
Manufacturing enterprises implement maintenance strategies based on production re-
quirements, the complexity of machinery and equipment, and the costs involved. Broadly
speaking, maintenance strategies follow one of the three main approaches:

• Unplanned or reactive maintenance—typically allows for machinery to breakdown,
after which it is analyzed and repaired.

• Planned or preventive maintenance—an assessment of the system is conducted at
regular time intervals to determine whether any repair/replacement is necessary. It
is important to note that the health of the system is not taken into consideration in
establishing the time intervals.

• Predictive maintenance—a data-driven approach in which parameters concerning
the health of the system are used to monitor the condition of the equipment and in
determining the RUL.

Approaches to maintenance strategies have evolved over the years with the advent
of data analytics and advanced ML/DL techniques. Continuous monitoring of shop floor
operations with the use of Internet of Things (IoT), smart sensors and smart devices are
allowing organizations to quickly make cost saving-decisions, as opposed to a long and
drawn-out analysis that has proven to be very costly. Enterprises are evolving their
maintenance strategies based on data-driven approaches and the value of predictive
maintenance is being realized from its results.

2.2. Multi-Faceted Approach to PHM

Condition-Based Monitoring (CBM) techniques and Remaining Useful Life prediction
are important features of predictive maintenance strategies leading to PHM methods. It
would be remiss to state that CBM and RUL define PHM methodologies, since PHM
methods are multi-faceted approaches. PHM methods consist of: data acquisition and
preprocessing, degradation detection, diagnostics, prognostics and timely development of
maintenance policies for decision making [6,7]. A brief overview of PHM’s many facets is
provided as follows:

1. Data acquisition and preprocessing: For any predictive problem in maintenance to be
solved, the availability of data is of utmost importance. IoT devices and smart sensors
are typically used to acquire data in manufacturing settings. The data are recorded
and evaluated in real-time as certain anomalies may be detected at an early stage by
maintenance engineers or control systems. The collection of such data is extremely
important as it provides vital information that helps to understand the relationships
between the heterogenous components of the system. Once the data are collected,
they are analyzed and preprocessed to ensure that crucial information which helps in
failure detection is obtained.

2. Degradation detection: Identifying that a component is degrading or that it is bound
to fail is the next step once the data have been collected and prepared. Anomalies and
failures can be detected using sensor readings and by other specified criteria, such as
surface roughness, temperature, size of tools/equipment, etc.

3. Diagnostics: Once a determination is made that a failure is occurring, understanding
the cause of the failure is the next step. Failure types can be categorized to evaluate
the extent of the failure, helping in finding its root causes. Operating conditions of
individual components can be analyzed along with their interactions to help diagnose
the cause of failures.

4. Prognostics: With the ability to detect failures using diagnosing mechanisms, pre-
dictive methods are used to predict the system health to avoid potential failures.
Model-based prognostics involve Physics-of-Failure (PoF) methods to assess wear
and predict failure. However, such approaches are limited as even minor changes
to the operations can result in poor predictive power. Data-driven approaches are
becoming more common for prognostics with the use of DL and ML techniques.
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By using data-driven methods along with crucial information from physics-based
methods, highly accurate predictions can be made about systems.

5. Maintenance decisions: Based on results from the predictive methods developed,
manufacturing enterprises can determine policies to be followed for maintenance
planning that will help with less downtime, higher yield and a reduction in losses.

The importance of enumerating the many phases of PHM is to help us understand
that predictive maintenance is an aggregation of methods from data engineering, reliability
and quality engineering, material sciences, DL, ML and organizational decision making.
While PHM methods in manufacturing face several challenges, a fundamental one is a
requirement for an interoperable approach that allows its implementation across different
industries.

2.3. Challenges in Implementing PHM in the Industry

While there is significant research being conducted on the different areas of PHM,
there are some challenges as well. Researchers from the National Institute of Standards
and Technology (NIST) outline some of the most significant challenges in PHM that can be
categorized as follows [8].

2.3.1. In Prognostics

• Insufficient failure data or excessive failure data may skew prediction of RUL
• Inadequate standards to assess prognostic models
• Lack of precise real-time assessment of RUL
• Uncertainty in determining accuracy and performance of prognostic models.

2.3.2. In Diagnostics

• Expertise required in diagnosis of failures
• Limitations due to lack of training and formal guidelines in authentication of diagnos-

tic methods
• Difficulty in diagnosis due to outliers, noise in signal data and operating environment.

2.3.3. In Manufacturing

• Ability to effectively assess electronic components
• Integration of sensors and field devices with PHM standards
• Inconsistencies in data, data formats, and interoperability of data in manufacturing

facilities
• Inadequate correspondence between production planning and control units and main-

tenance departments
• High level of complexity and heterogeneity in manufacturing systems.

2.3.4. In Enterprises

• Proactive involvement required towards maintenance to view PHM as a cost-saving
approach and not a cost-inducing one

• Enterprises with legacy machines and equipment tend to go with one of the traditional
approaches to maintenance, even though PHM methods are more effective

• Securing funding for PHM projects.

2.3.5. In Human Factors

• User friendly interfaces and applications
• Collection of expert knowledge
• Improvement in outlook towards implementing changes to existing mechanisms.

Most of the research being conducted is aimed at monitoring system health and RUL
in PHM, while the other areas of PHM are not given as much importance. Our aim is to
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address some of the difficulties faced throughout all the phases of PHM. Since prognostics
is one of the most significant areas in PHM, we look at some of the modeling approaches.

2.4. Overview of Prognostics Modeling Approaches

There are three main prognostics approaches to PHM modeling: physics-based models,
data-driven models and hybrid models that are a combination of physics-based and data-
driven models [9]. While all three approaches are used in industry, the application of
prognostics modeling also faces several challenges [10]:

• Lack of readily available data in a standardized format
• Insufficient failure data due to imbalance in data classes
• Lack of physics-based parameters in the data.

Industrial data from manufacturing systems are also often complex and require a
great deal of preparation to be acceptable for modeling. Due to these reasons, efforts
are required to prepare and preprocess the data to make them suitable for prognostics
modeling. Data-driven and hybrid models are often preferred over physics-based models
given the flexibility of analytical techniques that can be used. A synopsis of physics-based,
data-driven and hybrid models based on [9–12] is outlined in Table 1.

Table 1. Advantages and disadvantages of prognostics modeling approaches.

Modeling Approach Advantages Disadvantages

Physics-based models

1. No-randomness involved, resulting
in accurate analysis

2. Can be used with small datasets

1. Complexity in implementing and
require intricate laboratory settings

2. Expertise in system modeling is
required

Data-driven models

1. Little expertise in system modeling
is required

2. Easy implementation
3. Cost-effective since there is no need

to simulate operating conditions

1. Lack of suitable data
2. Low quality of available data
3. Difficulty in attributing causes of

failure

Hybrid models

1. Can be used with small datasets
2. Not that difficult to implement
3. Flexibility in modeling

1. Selection of parameters involves
high level of complexity

2. Balanced data with failure events
required

In the last two decades, there have been great strides made in improving physics-
based prognostic approaches. Several of these approaches are reviewed and applied to
rotating machinery by Cubillo et al. [13]. PoF methods have been tested on electronic
components in monitoring the health of electronic components by Pecht et al. [14]. The
RUL of lithium-ion batteries has been predicted by physics-based models in [15]. There are
also several publications that address prognostics modeling based on evolutionary methods
derived from bio-inspired [16,17] and neuro-inspired algorithms [18,19]. However, based
on current research and industry trends, we will limit our focus to data-driven approaches.

2.5. Current Trends in PHM Research

Advanced algorithms and optimization techniques are at the forefront of problem solv-
ing in PHM areas, and a review of the current state of research is necessary to understand
these topics. ML and DL have become the choice of modeling techniques in studies that
undertake data-driven approaches. While there is an abundance of analytical techniques
available, there are few publicly available datasets for PHM research. Most datasets are
limited to those released by academic institutions and government organizations. This
has resulted in certain datasets being benchmarked to test prognostics models, as seen
in [10,20]. Datasets that have been used in PHM research are often from PHM data chal-
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lenges, and the modeling objective can be grouped into four main tasks: prognosis, fault
diagnosis, fault detection and health assessment. An in-depth discussion of these datasets
can be found in the review conducted by Jia et al. [21]. Another area from which PHM can
be approached is from the perspective of manufacturing models. These manufacturing
approaches are designed keeping in mind the objectives of maintenance and PHM policies.
We will now shift our focus to ML, DL, Health Index and manufacturing approaches that
are the frontiers of PHM research.

2.5.1. Applications of Machine Learning in PHM

ML models have applications in a wide range of PHM areas. Although most of the
research is focused on CBM and RUL prediction, some papers focus on fault detection
as well. An extensive study on the use of Support Vector Machines (SVM) in RUL pre-
diction was conducted by Huang et al. [22]. The authors investigate how SVM works in
condition monitoring in a real-time setting, as well as in future RUL predictions. Mathew
et al. [23] propose several supervised ML algorithms, such as Decision Trees, Random
Forest, k-Nearest Neighbors (kNN) and regression, in estimating the remaining lifecycles
of aircraft turbofan engines by a comparison of the Root Mean Square Error (RMSE) metric.
It was identified that the random forest model performed best in this setting. Researchers
in [24] compare the performance of neural networks, Support Vector Regression (SVR) and
Gaussian regression on data from slow-speed bearings that consist of acoustic emission
readings. Implementations of techniques such as Least Absolute Shrinkage and Selection
Operator (LASSO) Regression, Multi-Layer Perceptron (MLP), SVR and Gradient-Boosted
Trees (GBT) are tested on data collected from Unmanned Aerial Vehicles (UAV) in [25].
In this case, non-linear techniques were preferred over linear models, with the best per-
formance achieved by GBT. In fault detection, an SVR outperforms multiple regression
on a milling machine dataset, especially when more data are used from sensors [26]. A
review of Machine Learning techniques used in intelligent fault detection was conducted
by Lei et al. [27], and their challenges were outlined. It is important to note that there are
several studies that use semi-supervised ML methods in fault detection of manufacturing
equipment, as seen in [28–30], but a discussion of these topics is beyond the scope of this
paper.

2.5.2. Applications of Deep Learning in PHM

Deep Learning (DL) methods have evolved as frontrunners in RUL assessment largely
due to the deep architectures deployed and the ability to tweak the optimization param-
eters. Recurrent Neural Networks (RNNs) are popular DL methods used in PHM due
to their wide range of applicability. Malhi et al. [31] focus on preprocessing of signals
using wavelet transformation and apply RNN to investigate its effects on performance.
Heimes [32] uses RNN with an Extended Kalman Filter (EKD), backpropagation and Dif-
ferential Evolution (DE). Research conducted by Palau et al. [33] implemented a Weibull
Time-To-Event (WTTE) method with an RNN to predict time-to-failure and demonstrate
how it affects real-time distributed collaborative prognostics. A novel method using embed-
ded time series measurements that does not take into consideration any prior knowledge
about machine degradation was developed by Gugulothu et al. [34]. Recently, probabilis-
tic generative modeling using Deep Belief Networks (DBN) are being used for feature
extraction and in RUL estimation. Authors in [35] argue that feature extraction from
data belonging to SM and I4.0 manufacturing can be troublesome due to requirements
of extensive prior knowledge, and deploy a Restricted Boltzmann Machine (RBN)-based
DBN to estimate RUL. Another interesting study by Zhao et al. [36] uses DBN to extract
features, supplemented by a Relevance Vector Machine (RVM) in the prediction of RUL
of battery systems. A multi-objective DBN ensemble using evolutionary algorithms was
employed in RUL prediction of turbofan engines by [37]. Methods such as RBM have also
been implemented with regularization to generate features that are correlated with fault
detection criteria [38]. Convolutional Neural Networks (CNNs) have also been used for
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machine health monitoring with one-dimensional data in [39–42] and for feature extraction
and automated feature learning with two-dimensional data in [43–48]. Comprehensive
reviews of Deep Learning methods in PHM, such as Autoencoders, RNNs, RBM and DBN,
were conducted by Khan et al. [49].

2.5.3. Health Index Construction

Another important area in health monitoring and management is the construction
of a Health Index (HI) from input data parameters and using the HI in fault detection
and prognostics. HI’s are developed using Principal Component Analysis (PCA), and
similarity matching by using distance measures for RUL estimation of a factory slotter is
analyzed by Liu et al. [50]. In lifecycle prediction of battery systems, Liu et al. [51] develop
a novel technique to extract HI while preserving important degradation information. RUL
predictions using HI compared to ones without explicit HI on data from induction motors
show that HI-based RUL prediction is preferred [52].

2.5.4. PHM Using Manufacturing Paradigms

Over the last few decades, manufacturing environments have been revolutionized
from a multi-objective viewpoint. Not only are costs and yield the sole objectives, but prod-
uct customization, sustainability, modularity in the shopfloor and servitization are equally
important. This multi-objective approach to manufacturing has allowed the area of PHM to
be built-in while designing new systems. Approaches such as mass customization, recon-
figurable manufacturing, service-oriented manufacturing and sustainable manufacturing
allow the incorporation of PHM goals within the manufacturing system’s setup [53].

Mass customization is a multi-dimensional approach to manufacturing that deals with
product design, manufacturing processes and the manufacturing supply chain [54]. This
approach presents a shift in the traditional manufacturing objective, changing it from a
high production volume with a low variation in products to a high variety of products
with a lower production volume. This of course presents its own challenges to PHM due
to the sheer number of customizations required in production processes. To tackle this,
maintenance policies are integrated based on condition monitoring of systems and order
volumes by Jin and Ni [55]. Decisions can also be made from a cost-based perspective by
including all the maintenance and production costs in the objective [56].

Reconfigurable manufacturing systems (RMS) are modular in their design, allowing
changes in their structure to adjust to any inherent changes or shifts in market demands [57].
RMS systems have maintenance policies dependent on their structure: parallel, series,
series-parallel, etc. [58]. Preventive maintenance-based RMS was developed by Zhou
et al. [59]. The objectives of reduce, reuse, recycle, recover, redesign and remanufacturing
were incorporated into RMS to improve the response time to manage system health by
Koren et al. [60].

Service-oriented manufacturing offers a Product Service System (PSS), allowing prod-
ucts and services to be picked based on customer needs [61]. PHM services can be offered
depending on the manufacturer’s needs, enabling a highly customized approach to PHM
services. To maximize the prognostic and diagnostic capabilities of Original Equipment
Manufacturer (OEM), a cloud-based approach has been developed by Ning et al. [62].

3. Research Gap and Proposal

The focus of many studies has been the implementation of ML and DL algorithms
in identifying RUL of machinery and equipment. While most publications aim to test the
predictive power of data-driven models, very few enumerate all the steps taken required
to implement PHM methods in manufacturing. Traini et al. [63] developed a framework to
address predictive maintenance in milling based on a generalized methodology. Yaguo
et al. reviewed the stages in CBM, from data acquisition to RUL estimation, for different
PHM datasets. Mohanraj et al. [64] reviewed the steps in condition monitoring from the
perspective of a milling operation. A framework for PHM in manufacturing with cost–
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benefit analysis was developed by Shin et al. [65], and a use-case for data on batteries was
evaluated. While these publications provide noteworthy steps to implement prognostics
models in the industry, there are no frameworks to address modern PHM approaches to
SM, with an in-depth understanding of all the steps involved. To address this research re-
quirement, we introduce Smart Prognostics and Health Management (SPHM) and propose
an interoperable framework for SPHM in SM.

4. An Interoperable Framework for SPHM in SM

Current approaches to PHM are tailor-made to individual systems and components
on the shopfloor. Predictive maintenance methodologies, although applicable to heteroge-
neous machinery, are generic in their approach, without specifying the particulars of data
acquisition, modeling and applications. SPHM is a concept that addresses the many facets
of PHM in Smart Manufacturing in an interoperable manner. SPHM’s uniqueness lies in its
interoperable framework, that addresses all the specifics of PHM by using Industry 4.0 and
SM standards in a phased approach. The structure of the framework is loosely based on The
Cross-Industry Standard Process for Data Mining (CRISP-DM) [66], an industry standard
to apply DM and ML keeping business objectives in mind. The framework consists of
three interconnected phases, each with the objective of addressing some of the challenges
discussed previously. The proposed SPHM framework for SM with all its phases is shown
in Figure 2. The setup and acquisition of data from the shopfloor are covered in the first
phase, the preparation of the data and an analysis of the various parameters collected in
the data, including an understanding of signal processing, are enumerated in the second
phase, and the modeling approaches to SPHM along with their evaluation are discussed in
the third phase.

This paper provides an in-depth description of the first two phases of the SPHM
framework, and an overview of the methods in the third phase. A detailed discussion and
implementation of modeling techniques are part of ongoing research.

4.1. Phase 1: Setup and Data Acquisition Phase
4.1.1. Shopfloor Setup

The first phase in the framework involves identifying the machinery or equipment
that are going to be assessed, using knowledge from the maintenance and production
departments. Prior domain knowledge from engineers and technicians will help us iden-
tify which components are crucial to the operation. In manufacturing operations, these
components are often tool tips or bearings. Once the identification of components has been
established, the next step would be to collect information about the operating parameters
and environmental conditions. It is important to note that interacting factors also need to
be considered in this step. A detailed report with all data about the operating parameters
is prepared and a discussion is held with engineers about the relevance of the parameters.
Setting up the equipment and sensors is the next part of this step. Most machinery already
come with preinstalled sensors, for example Computer Numeric Control (CNC) machines
often consist of sensors to capture electric current, vibration, acoustic emission, spindle,
torque, etc. The information from these sensors is vital in analyzing the health of the
machine. If additional sensors are required, or if the identified equipment consist of legacy
machinery, sensors will have to be retrofitted. Often, there may be sensors that are installed
for human-factor purposes, essentially aimed at operator safety. These sensors may have
no effect on any prognostics or fault detection methodology, so they may be ignored for
selection based on existing knowledge. Using information from operating parameters
and domain knowledge, a detailed step-by-step guide to setup and run the machine is
produced. Once a strategy is in place to conduct the experiment under standard operating
conditions, the next step is to identify an appropriate data collection methodology.
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4.1.2. Data Collection and Understanding

One of the first and arguably most important considerations in this step is to identify
how and where to store the data from operations and devices. A requirement in most
organizations is the ability to access data in a secure manner. A key aspect of interoperability
is the ability to access data by tasks that share it [3]. Cloud-based systems and Big Data
platforms provide secure access to data by using cybersecurity mechanisms, ensuring no
misuse of the data. Systems can be setup to directly upload and download data that have
been collected from the shopfloor. The collected data need to be analyzed and thoroughly
reviewed to ensure there were no inconsistencies encountered during the acquisition of
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data. The data files should also be recorded in a format such that is readable and its suitable
for information extraction. Preliminary investigation of the data by using exploratory
analyses such as signal plots, range of attribute values and a basic statistical review will
help to gain a better understanding of the experiment. Information such as sampling rate
and frequencies pertaining to signal measurements should be recorded. Any other a priori
information that would aid in describing the data should also be included in this step.

4.2. Phase 2: Data Preparation and Analysis

In the data preparation phase, there are a few key steps that need to be followed: data
cleaning and preprocessing, signal preprocessing, feature extraction and feature evaluation
and selection. These steps are paramount to successful implementation of CBM and
predictive maintenance methods as they preserve and extract information from the data
that best represents the physical experiment.

4.2.1. Data Cleaning and Preprocessing

The procedure to clean and preprocess the data can be understood best by posing
the following four questions: (1) Are there any missing values? (2) Is there any noise in
the data? (3) Are there any outliers or skewed measurements? (4) Are the data on the
same scale? Data cleaning and preprocessing involve many more techniques depending on
the type of data recorded, but the treatment of missing values, noise, outliers or skewed
instances and scaling and normalization are some of the most crucial ones to be considered.

Missing values can be problematic in any data. Large numbers of missing values can
affect the analysis by introducing a bias, causing skewness. Missing value treatment gener-
ally involves either the deletion of the record if permissible or replacement of the missing
value by using imputation methods [67,68]. Commonly used imputation techniques are
mean, median or mode imputation. In this case, the missing values are replaced by the
respective mean, median or mode of all the values of that attribute. Predictive modeling
methods such as regression and kNN are also used for imputation. However, it is critical
to understand which attributes contain missing values. If it is the dependent variable, the
strategy most likely to be used would be the removal of the instances that contain the
missing values, since we have no control over the values in that attribute. In the case of
independent variables, we may have the freedom to use one of the imputation methods
discussed previously.

Noise in the data is generally caused due to errors in measurement, causing corrupted
data. This may cause inconsistencies in modeling and analysis, and possibly provide
incorrect results. Examples of noise are duplicate records and mismatch in data types. The
ideal method to address noise is to remove those instances affected. If there is significant
noise in the attributes, those values may be removed individually, and replaced using one
of the imputation methods. Noise in the data may also be caused due to probabilistic
randomness. It is important to note that this type of noise, also known as random errors,
can be very difficult to predict. These values will have to be examined and are generally
retained as they can be accounted for as randomness in measurements. It is essential to
note that the noise we discuss here is different from the noise in signals. We will discuss
noise in signal readings in the signal preprocessing step.

To answer the third question, outliers can be due to a variety of reasons. Outliers
may be genuine observations that exist for a reason. For example, the readings from the
data the moment a tool breaks can be considered as outliers. The values of the readings
from that instance may be outliers compared to other readings, but they are still genuine
readings since they convey essential information. Outliers in the data may also be due to
systematic errors or measurement errors. These outliers are problematic since they can be
attributed to flaws in readings and convey no genuine information. The preferred solution
to address these outliers is by simply removing them from the data. There may also be
differences in measurement criteria that may cause inherent skewness and will have to
be treated. Sometimes, attributes in the existing format may not convey the information
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that is necessary due to some form of skewness. The skewness does not necessarily mean
there is something wrong with the data. Instead, it could be due to a small sample size
or due to intrinsic factors. In such cases, a transformation may be necessary. Commonly
used transformations are log, power, square root, etc. It may also be deemed necessary to
use a transformation when the attributes are non-linear and need to be linear to form a
meaningful relationship with the other attributes or the target.

Another consideration to be made in this step is the process of scaling or normalizing
the data. Normalization or standardization may be required if the data recorded are on
varying scales. Having feature values on different scales can cause some features to have
more strength in predictions, which is often erroneous. Following are some commonly
used methods to scale and normalize data:

1. Min–max normalization

Normalizing data using min–max is a method that shifts all the data values to a scale
between 0 and 1. The minimum and maximum values are recorded, and Equation (1) is
applied to scale it.

x′ =
x−min(x)

max(x)−min(x)
(1)

2. Mean normalization

Mean normalization is another method that centers the data around the mean, as
shown in Equation (2):

x′ =
x−mean(x)

max(x)−min(x)
(2)

3. Unit Scaling

For vectors that consist of continuous values, scaling them to a unit length maintains
the same direction, but changes its magnitude to 1. See Equation (3):

x′ =
x
||x|| (3)

4. Standardization

Standardization involves making a loose distributional assumption about the data
and scaling it around the mean. Z-Score standardization involves making a normal distri-
butional assumption and using the mean value (µ) and standard deviation (σ), as seen in
Equation (4):

x′ =
x− µ

σ
(4)

The steps involved in preprocessing are applied to new features that are extracted/generated
as well. Hence, it is required to note that in the data preparation and analysis phase, the
steps go back and forth.

4.2.2. Signal Preprocessing

The data collected from sensor measurements in most cases are in the form of signals.
Signal processing is a complex field of study and involves identifying the type of signal
and modifying it in some form to improve its quality. There are a few actions that need to
be taken to enhance the quality of signals. First, we need to consider the type of signals that
exist in the data. In manufacturing data, we usually observe signals from sound, vibration
and power. Since these signals are observed across different machines in the industry, we
will focus our discussion on preprocessing these signals. Signal preprocessing involves
some key tasks, such as denoising, amplification and filtering. We will discuss these topics
in brief in this section.

Noise reduction methods or de-noising is a process that diminishes noise in the signals.
The entire removal of noise is not possible, so curtailing it to an acceptable limit is the goal
of this step. The Signal-to-Noise Ratio (SNR) is a metric used to determine how much of the
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signal is composed of true signal versus noise. Signals are decomposed using techniques
such as wavelet transforms and median filters [69], which preserve the original signal
while reducing the amount of noise that it is composed of. Signal amplification is also a
method used in signal processing that improves the quality of the signal by using one of
two approaches: boosting its resolution or reducing SNR. Signals are generally amplified
to meet threshold requirements of equipment being used.

Filtering is one of the steps in signal conditioning, in which low-pass and high-pass
filters are used in attenuating signals based on a specified cut-off. Low-pass filters block
high frequencies while allowing low frequencies to pass, and high-pass filters block low
frequencies while allowing high frequencies to pass through. Low-pass filters help in
removing noise, and high-pass filters filter out the unwanted portions and fluctuations of
signals. The cut-off frequencies are generally chosen depending on the noise observed.

There are also methods to pre-process signals using statistical techniques. Estimation
methods such as Minimum Variance Unbiased Estimator (MVUE), Cramer-Rao lower
bound method, Maximum Likelihood estimation (MLE), Least Squares Estimation (LSE),
Monte-Carlo method, method of Moments and Bayesian estimation, along with several
others, are discussed in the context of signal processing in [70]. We will not further discuss
these estimation methods in signal processing as it is beyond the scope of this article.

4.2.3. Feature Extraction

Signal measurements recorded are high in dimensionality and consist of readings that
cannot be directly used in any form of modeling. This is due to the non-linearity of the
machine operation that is also dependent on time [71]. To understand the signal readings
in the context of the manufacturing process in question, the relevant information from the
signals should be extracted or generated. This information from the signals is extracted as
features for the dataset. These features are extracted in the time domain, frequency domain
and time-frequency domain. Zhang et al. [72] have compiled a list of features that can
be extracted in all three of these domains for machining processes. An overview of these
features is as follows.

Time-Domain Feature Extraction

There are several statistical features that can be extracted from signals in the time
domain. Features such as maximum value, mean value, root mean square, variance and
standard deviation are extracted. Additionally, higher-order statistical features such as
kurtosis and skewness are calculated. These values are dependent on the probability distri-
bution function, with kurtosis providing information about the peak of the distribution
and skewness explaining if the distribution is symmetrical or not. The Peak-to-Peak feature
computes the difference between extreme values of the amplitude, i.e., difference between
maximum and minimum values. Crest factor is the ratio of the maximum value and mean
values of the signal. A list of time-domain features and their description is provided in
Table 2. We refer readers to [72,73] for in-depth explanations of the features.
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Table 2. Time-domain features for commonly observed sensor signals for machining according
to [72].

Index Feature Description

1 Maximum XMAX = Max(xi)

2 Mean µ = 1
n

n
∑

i=1
xi

3 Root Mean Square XRMS =

√
1
n

n
∑

i=1
x2

i

4 Variance XV = ∑n
i=1(xi−µ)2

n−1

5 Standard Deviation σ =

√
∑n

i=1(xi−µ)2

n−1

6 Skewness XV = 1
n

∑n
i=1(xi−µ)3

σ3

7 Kurtosis XV = 1
n

∑n
i=1(xi−µ)4

σ4

8 Peak-to-Peak XP2P = max(xi)−min(xi)

9 Crest Factor XCF =
max(xi)√
1
n ∑n

i=1 xi
2

Frequency-Domain Feature Extraction

Features in the frequency domain are obtained by using a transform on the signal
signatures. The Discrete Fourier Transform (DFT) is a method used in spectral analysis of
signals. The DFT is based on the Fourier Transform method, see Equation (5) [74]:

X(ωx) =
N−1

∑
n=0

x(tn)e−jwktn for k = 0, 1, 2, . . . , N − 1 (5)

where,

x(tn) = input signal at time tn,
tn = nT = n-th sampling instant, for n ≥ 0,
X(ωx) = spectrum of x at frequency ωk,
ωk = sample from k-th frequency in radians per second,
T = sampling interval in seconds,
fs = 1/T = sampling rate or samples per second,
N = total number of samples in signal.

The Discrete Time Fourier Transform (DTFT) is a limiting form of the DFT allowing
infinite samples, see Equation (6):

X(ω∗) =
∞

∑
n=−∞

x(n)e−jωn (6)

where,

x(n) = signal amplitude at nth sample,
X(ω∗) = DTFT of x at nth sample.

The Fast Fourier Transform (FFT) is an algorithm that uses the Discrete Fourier
Transform (DTF) method to convert the signal measurements from the original order
to the frequency domain by sampling them over time, which is most used for practical
purposes. The number of samples is an important parameter to be noted in this stage and
is used in the calculation of power spectral density of the signals using a periodogram [75],
which is nothing but a ratio of the squared magnitude of DTTF and the number of samples,
see Equation (7):

Px, M(ω) =
|DTTF|2

N
(7)

For a more comprehensive understanding of Fourier Transforms, DFT, DTFT and
periodograms, refer to Smith [74,75]. Features such as maximum, sum, mean, variance,
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skewness, kurtosis and relative spectral peaks extracted from power spectra are commonly
extracted from signals that are produced by machining operations. The list of frequency-
domain features is shown in Table 3. Zhang et al. [72] and Caesarendra et al. [73] provide
more details for these frequency-domain features.

Table 3. Frequency-domain features for commonly observed sensor signals for machining according to [72].

Index Feature Description

1 Maximum Band Power Spectrum SMAX = Max(S( f )i)

2 Sum of Band Power Spectrum SSBP =
n
∑

i=1
S( f )i

3 Mean of Band Power Spectrum Sµ = 1
n

n
∑

i=1
S( f )i

4 Variance of Band Power Spectrum SV =
∑n

i=1(S( f )i−Sµ)
2

n−1

5 Skewness of Band Power Spectrum SS = 1
n

∑n
i=1(S( f )i−Sµ)

3

SV
3
2

6 Kurtosis of Band Power Spectrum SS = 1
n

∑n
i=1(S( f )i−Sµ)

4

SV
4
2

7 Relative Spectral Peak per Band XCF =
max(S( f )i)√
1
n ∑n

i=1 S( f )i

Time-Frequency Domain Features

Like frequency-domain feature extraction, time-frequency features are extracted by
using wavelet transforms. Time-frequency analysis provides relationships represented
both over time and frequency. This two-dimensional view of the signal, in some cases,
can generate features that are not captured by time-domain features or frequency-domain
features. Methods such as Short-Term Fourier Transform (STFT), Continuous Wavelet
Transform (CWT), Wavelet Packet Transform (WPT) and Hilbert-Huang Transform (HHT)
are used to extract features in the time-frequency domain [72,76]. These methods analyze
the signals on a two-dimensional view by using a combined function for the two domains.
Although there is much research conducted in this field, an elaboration on these methods
is beyond the scope of this paper.

4.2.4. Feature Evaluation and Selection

The feature extraction or feature generation from signals results in a high-dimensional
space with many features. There are often more features than the number of recorded
instances after the feature extraction step. This could be troublesome, causing any modeling
technique to potentially overfit the data, causing misleading results. Overfitting is caused
by some form of redundancy in the high-dimensional space, with not all features being
related to the predictor or dependent variable. A solution to this problem is reducing the
number of features that are used in modeling. Feature evaluation and selection methods
select features that are better in predicting the response variable than all the other features
in the feature space. They primarily fall into three main categories: filter methods, wrapper
methods and embedded methods.

Filter methods calculate the performance of features across the entire dataset and select
the top-performing features. The most used filter method for feature selection is correlation
analysis. There are different computational approaches to calculating the correlation
coefficient, and Pearson’s, Kendall’s and Spearman’s correlation are the ones that are
commonly used. In correlation analysis, pairwise correlation coefficients are calculated
between the variables and compared. The analysis is aimed at eliminating features from
highly correlated pairs. In a highly correlated pair, either one of the features can be used in
prediction while the other is eliminated. There is a concern with this approach, however,
as not all features in the dataset may have a relationship with the dependent variable. This
may result in a useful feature being dropped during the correlation analysis. To circumvent
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this issue, one may sometimes calculate the correlation of all the features in the data against
the response and use this to eliminate the weaker feature in the pair. Correlation analyses
are effective in feature selection. Cross-validation, a method in which data are divided to
validate any analysis or modeling, is sometimes used with correlation for feature selection.
Methods such as Random Forest to calculate feature importance, Mutual Information to
obtain the entropy, analysis of variance (ANOVA) and several others are compared in [77].

Wrapper methods use subsets of the features to identify which ones are more im-
portant to the dataset. These methods generally deploy search-based algorithms to find
the best features from the feature space. Wrapper methods can be broadly classified into
two categories: heuristic search methods and sequential search algorithms [78]. Heuristic
methods include Genetic algorithm (GA), Variable Neighborhood Search (VNS), Simulated
Annealing (SA), Particle Swarm Optimization (PSO), etc. Sequential search algorithms
include Forward Selection, a method in which an empty feature set is used, and features
are added individually and evaluated using modeling techniques. Backward Selection
is another sequential search method in which the entire feature set is used, and features
are evaluated and eliminated depending on model performance. In an exhaustive search
method, subsets of features are evaluated against model performance and the best subset
is chosen.

Embedded feature selection methods are deployed on subsets of the data along with
the modeling techniques. Regularization is an important method in which a penalty is
added to the model as a constraint. The regularizer penalizes the coefficients of features in
a model, thereby reducing the feature’s strength in the model. Popular methods include
LASSO, Ridge and elastic nets in regression, and Tree-based methods in Decision Trees,
Random Forest, XGBoost, etc.

4.3. Phase 3: SPHM Modeling and Evaluation

As mentioned previously, this paper proposes the framework for SPHM and describes
its first two phases in detail. In this phase, we provide a brief overview of the methods that
can be used in modeling, evaluation and the deployment of the framework.

The selection of modeling methods is based on the manufacturing operation that is
being considered. The most popular modeling approaches in the last decade have been
data-driven, with some novel hybrid models being developed as well. Supervised learning
methods, unsupervised methods as well as DL have come to the forefront in CBM and in
the prediction of RUL. As we have presented in Section 2.5, there are a multitude of options
to choose from for PHM modeling. Modeling methods not only include regression-based
prediction, but also classification models for failure detection that determine whether a
component will fail or not.

Evaluation metrics for models can be chosen based on the type of data-driven or
hybrid models. There are metrics such as RMSE, Mean Absolute Error (MAE), coefficient
of determination (R-Squared), adjusted R-squared and Mallow’s CP used in evaluation
and assessment of regression models. Classification models are generally evaluated using
a confusion matrix, in which the True Positive, True Negative, False Positive and False
Negative classifications are recorded. Based on the confusion matrix, metrics such as accu-
racy, precision, sensitivity, specificity, F1 score, etc., are calculated and used in evaluating a
classifier. Deep Learning methods can also be evaluated based on their predictive power
by using accuracy as an evaluation metric.

Deploying SPHM models in the field requires development of apps, either web-based
or mobile, so that engineers and technicians can analyze and assess the current state of
operations based on real-time data. Digital-Twin-driven modeling consists of a digital
replica of the shopfloor setup that is synced in real-time. A review of the development of
such applications and their deployment is being considered a separate research area and is
proposed as future work.
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5. Case Study: Milling Machine Operation

Milling is one of the fundamental operations in manufacturing engineering and is
essential in most, if not all shopfloors. It is an ideal starting point to analyze the SPHM
framework in manufacturing and is useful in providing a basis to understanding how
even a simple operation can generate such complex data. A typical milling machine
setup comprises of the following components: spindle, cutting tool, base, workpiece,
X-axis and Y-axis traversing mechanism, and a table upon which the workpieces are
mounted. The cutting tool is used to remove material from the workpiece by moving it
along the different axes via the machine table motion. Old milling machines are operated
manually by using the mechanisms to move the cutting tool, whereas newer machines
with Computer Numerical Control (CNC) controllers are equipped with a wide range of
sensors and automated tool changing mechanisms depending upon the specifics of the
operation. The experimental data considered for this paper were developed by Berkeley
University, California [79,80].

In this use-case, we apply the first two phases of the proposed SPHM framework, and
aim at understanding the setup, cleaning and preprocessing of the data, preprocessing the
signals, extracting relevant features and selecting the final set of features.

5.1. Phase 1: Milling Machine Setup and Data Acquisition
5.1.1. Milling Machine and Sensor Setup

The setup used consists of an MC-510V Matsuura machine along with a table that
it is mounted on. There are three sets of sensors: acoustic emission sensors, vibration
sensors and current sensors. The acoustic emission sensor is the WD 925 model by the
Physical Acoustic Group that has a frequency range of up to 2 MHz. This sensor is
secured to a clamping support. The acoustic emission signals are passed through a model
1801 preamplifier built by Dunegan/Endevco. The preamplifier has an in-built 50 kHz
high-pass filter. Further amplification of the signals is performed by using a DE model
203 A (Dunegan/Endevco). These signals then pass through a custom-made RMS meter
with the time constant set to 8.0 ms. Then, these signals are fed through a UMK-SE
11,25 cable made by Phoenix Contact that is linked to an MIO-16 board made by National
Instruments for high-speed data acquisition. Another acoustic emission sensor is mounted
on the spindle and the signals follow the same path via the preamplifier, filter, amplifier
and RMS meter to the data acquisition board. The vibration sensor used is an accelerometer
built by Endevco, Model 7201-50, that has a frequency range of up to 13 kHz. Vibration
signals pass through a model 104 charge amplifier made by Endevco and then through an
Itthaco 4302 Dual 24 dB octave filter (low-pass and high-pass). These signals then pass
through a custom-made RMS meter and to the MIO-16 board using a UMK-SE 11,25 cable.
The vibration sensors are mounted on both the table and the milling machine’s spindle.
An OMRON K3TB-A1015 current converter feeds signals from one spindle motor current
phase to the high-speed data acquisition board. Another current sensor, model CTA 213,
built by Flexcore Division of Marlan and Associates, Inc., also feeds signals into the data
acquisition board. See Figure 3 for the experimental setup showing the connections of
acoustic and vibration sensors.

The selection of parameters for the experiment was chosen based on manufacturers’
standards and industry specifications. Two types of inserts were selected for the cutting
tool, KC710 and K420. They are resistant to wear and can function in environments that
involve high friction. The materials for the workpieces were stainless-steel J45 and cast
iron. Other important parameters included the setting of the speed of the cutting tool
to 200 m/min, Depth of Cut (DOC) of the two settings of 1.5 and 0.5 mm and feeds to
two settings of 413 and 206.5 mm/min. The combinations of the numbers of parameters
resulted in 8 different settings under which the milling machine could operate.
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The experimental data from [79,80] consisted of 16 cases with varying DOC, feed and
materials. These 16 cases were used as experimental conditions and run multiple times.
The numbers of runs were determined by evaluating flank wear on the cutting face of the
tool, by taking measurements at intermittent but non-uniform intervals.

5.1.2. Data Collection and Understanding

The data were recorded as a ‘struct array’ using MATLAB [81] software. The dataset
consists of 13 features, out of which 6 are derived from sensor readings. The description of
the dataset can be found in Table 4. There are 16 cases, with the DOC, feed and material kept
constant for each case. Each case consists of a varying number of runs that are dependent
on VB, the degree of flank wear. VB measurements were recorded at irregular intervals
up to the limit when significant wear was observed. If we look closely at the MATLAB
file, we notice that each of the values under the sensor features (smcAC, smcDC, vib_table,
vib_spindle, AE_table and AE_spindle) comprise of a 9000 × 1 dimensional vector. This
is because the sensor’s signals are amplified and filtered before being captured, resulting
in measurements that are of high dimensions. A view of the first few rows of the dataset
can be seen in Table A1 of Appendix A, showing the highly dimensional values in sensor
readings. These features need to be preprocessed and transformed so that they can be
analyzed more thoroughly. We also note some missing values, and possibly some outliers
that can be troublesome while conducting a data-driven approach. This dataset requires
preparation and preprocessing for it to be suitable for use in modeling.
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Table 4. Features of the milling dataset and their description.

Feature Name Feature Description

case Cases from number 1 to 16
run Counting the runs in each case

VB Flank wear observed in the cutting tool, not
observed after each run

time Time taken for each experiment, resets after
completion of each case

DOC Depth of Cut, kept constant in each case
feed Feed, kept constant in each case

material Material, kept constant in each case
smcAC AC current at spindle motor
smcDC DC current at spindle motor

vib_table Vibration measured at table
vib_spindle Vibration measured at spindle

AE_table Acoustic emission measured at table
AE_spindle Acoustic emission measured at spindle

5.2. Phase 2: Data Preparation and Analysis
5.2.1. Data Cleaning and Preprocessing

VB is the most important feature in this dataset since RUL assessment and condition
monitoring are performed based on VB values. If we observe the dataset closely, we notice
that there are missing values in the VB column. This is because VB measurements were
taken are irregular intervals until the degradation limit. There were 21 instances identified
that contained missing VB values. Since VB is crucial to any analysis that we wish to
conduct, the appropriate strategy in this case is to delete the instances in which missing
values are observed. After removing the instances with the missing VB values, the dataset
is reduced to 146 instances. The next step in this process is to identify any outliers in
the data. Figure 4 shows the signal signatures from the six sensors for run 1 of case 2.
Compared to signals from other instances (see Figure A1 in Appendix A), the ones from
Run 1 of Case 2 are of a much higher magnitude. The sensor measurements for this case
have peaks at the following magnitudes: smcAC at 1029, smcDC at 1019, vib_table at 1029,
vib_spindle at 1034, AE_table at 1034 and AE_spindle at 1026. The rectangular-shaped
peaks observed for this case cannot be attributed to any filtering or operation from the
experiment. After comparing this anomalous instance against other instances, we can
confirm that it is an outlier that is most likely due to measurement error. Similarly, all the
instances in the dataset are scanned for abnormalities. We observe that there is only one
instance of an outlier, and we choose to discard it under the circumstances, with the final
dataset consisting of 145 instances. Before we move on to the next step, it is crucial to note
that the data have not been scaled or normalized. This is because scaling/normalization is
performed after all the features have been generated.

5.2.2. Signal Preprocessing

The preprocessing of signals from sensors was conducted during the experimental
setup, by Goebel et al. [79,80]. The signals from acoustic and vibration sensors were
amplified in the range of ±5 V, according to the equipment threshold. The vib_table and
vib_spindle signals were routed through a low-pass and high-pass filter, attenuating any
frequency that did not meet the cut-off. The acoustic signals were fed through a high-pass
filter to filter out any unwanted frequencies. Cut-off frequencies were identified based
on graphical displays on an oscilloscope, with cut-offs of 400 Hz and 1 kHz set for the
low-pass and high-pass filters, respectively. An equipment threshold of 8 kHz was set for
the acoustic emission sensor, meaning that any frequency observed above that would not
be due to machining operations and is filtered out. An RMS meter allowed the signals to
undergo some additional preprocessing by smoothing them.
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5.2.3. Feature Extraction

In this step, feature extraction methods were applied to generate features in the time
domain and frequency domain. The methods applied in feature extraction are ones that
have been proven to be suitable for machining operations. Time-domain features were
extracted using the prescribed feature set in Table 2. This method generates 54 features,
i.e., 9 new features for each of the 6 signals. Frequency-domain features were generated
using the prescribed feature set in Table 3, generating an additional 42 features, i.e., 7 new
features for each of the 6 input signals. The total generated features are 96, which is a
highly dimensional feature set.

Once the features are extracted, we note that some of the new features are on varying
scales that could skew the modeling approach. Features based on Kurtosis of Band Power
and Relative Spectral Peak per Band consist of values that are significantly higher than
values of features based on Mean of Band Power and Variance of Band Power. Therefore,
we choose to apply min–max normalization, a method shown in Equation (1). This ensures
that all the features are on the same normalized scale.
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5.2.4. Feature Evaluation and Selection

The feature set after extracting features from signals consists of a total of 103 features.
Seven features are parameters of the experiment: case, run, VB, time, DOC, feed and
material. The other 96 features are extracted as discussed in the previous step. The data
in their current state consist of 145 instances and 103 features. To ensure that the curse of
dimensionality is avoided in the modeling phase, the most important features to predict
VB and the RUL need to be identified. As a first step, we perform a univariate analysis by
calculating the correlation coefficients between the individual features and the response
variable VB. All 96 newly generated features are considered, ignoring the 7 experimental
parameters since they are important and must be included in the analysis. The correlation
coefficients are then ranked in descending order, allowing us to observe which of the newly
generated features have a relationship with the response. Next, we calculate the correlation
matrix for all 96 features and use the univariate ranking with VB to choose the best features.
Feature pairs that have a Pearson correlation coefficient of 0.75 or more are considered for
potential elimination by comparing their relationship with VB. From the feature pair, the
one that has a higher correlation coefficient with VB is retained, while the other is dropped.
This method allows us to identify the most important features without having to specify
the number of features, which is a big research problem by itself. The final dataset consists
of 34 features, out of which 27 features are extracted from the input signals, 6 of them are
experimental parameters, and 1 is the response variable. The correlation matrix for the
final set of features is shown in Figure A2 of Appendix A. As we can see, features that
have a pairwise correlation coefficient of 0.75 or more are noted. The ranked correlation
coefficients of these features with VB are compared, and features are removed accordingly.
This is a simple, yet effective strategy to eliminate features that have no strength in the
analysis.

6. Results

The application of Phases 1 and 2 of the proposed SPHM framework to milling ma-
chine operations provides us with a thoroughly prepared dataset for ML and DL purposes.
The milling machine experimental setup is reviewed, and the operating parameters are
noted. Details on the acquisition of the data are listed along with a data dictionary consist-
ing of the attributes and their description. The final dataset is cleaned of missing values
and outliers. Signals are preprocessed, and suitable features are extracted based on prior
knowledge and proven extraction methods. The final set of features is selected based on a
comparison of pairwise correlation coefficients and the ranking of the correlation coeffi-
cients with the response variable, VB. The link between the steps in the first two phases
of SPHM and its application to the milling machine case is shown in Table 5. The SPHM
framework thus far has proven to be an effective methodology to setup the experiment,
acquire data, prepare data, preprocess data and the signals, extract features and evaluate
and select features.
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Table 5. SPHM Phases implemented on milling data.

SPHM Phase Steps Relevant Section Implementation on Use-Case

Phase 1: Setup and Data
Acquisition

• Shopfloor Setup • Section 5.1.1
• Milling operation setup

and sensors used
reviewed

• Data Collection and
Understanding • Section 5.1.2

• Dataset explored,
features described and
preliminary
investigation of data
conducted

Phase 2: Data Preparation and
Analysis

• Data Cleaning and
Preprocessing

• Section 5.2.1

• Missing values identified
and eliminated

• Outliers visualized and
removed

• Section 5.2.3 • Feature Scaling

• Signal Processing • Section 5.2.2
• Signal Preprocessing

steps: Amplification,
filtering, RMS

• Feature Extraction • Section 5.2.3
• Features extracted in

time domain and
frequency domain

• Feature Evaluation and
Selection • Section 5.2.4

• Correlation-based
feature selection

7. Conclusions and Future Work

This paper provided an in-depth understanding of PHM and maintenance approaches
to manufacturing. The different approaches and challenges to PHM were outlined, and
the current trends in PHM research were reviewed. A unique SPHM framework that is
interoperable to all areas of manufacturing was proposed and the multifaceted SPHM
framework was described in 3 phases—Phase 1: Setup and Data Acquisition, Phase 2: Data
Preparation and Analysis and Phase 3: SPHM Modeling and Evaluation. In this paper,
Phase 1 and Phase 2 were discussed in detail, with the nuances and the elaboration of
Phase 3 considered as future work. In future studies, we wish to focus on advanced Deep
Learning methods as a part of SPHM Phase 3 and compare their performance with baseline
Machine Learning methods, such as regression, SVM, etc.
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Appendix A

Table A1. Snapshot of the dataset.

Case Run VB Time DOC Feed Material smcAC smcDC vib_table vib_spindle AE_table AE_spindle

1 1 0 2 1.5 0.5 1 9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

1 2 NaN 4 1.5 0.5 1 9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

1 3 NaN 6 1.5 0.5 1 9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

1 4 0.11 7 1.5 0.5 1 9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

1 5 NaN 11 1.5 0.5 1 9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim

9000 × 1
dim
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