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A B S T R A C T   

Background: Lesion segmentation is a critical step in medical image analysis, and methods to identify pathology 
without time-intensive manual labeling of data are of utmost importance during a pandemic and in resource- 
constrained healthcare settings. Here, we describe a method for fully automated segmentation and quantifica
tion of pathological COVID-19 lung tissue on chest Computed Tomography (CT) scans without the need for 
manually segmented training data. 
Methods: We trained a cycle-consistent generative adversarial network (CycleGAN) to convert images of COVID- 
19 scans into their generated healthy equivalents. Subtraction of the generated healthy images from their cor
responding original CT scans yielded maps of pathological tissue, without background lung parenchyma, fissures, 
airways, or vessels. We then used these maps to construct three-dimensional lesion segmentations. Using a 
validation dataset, Dice scores were computed for our lesion segmentations and other published segmentation 
networks using ground truth segmentations reviewed by radiologists. 
Results: The COVID-to-Healthy generator eliminated high Hounsfield unit (HU) voxels within pulmonary lesions 
and replaced them with lower HU voxels. The generator did not distort normal anatomy such as vessels, airways, 
or fissures. The generated healthy images had higher gas content (2.45 ± 0.93 vs 3.01 ± 0.84 L, P < 0.001) and 
lower tissue density (1.27 ± 0.40 vs 0.73 ± 0.29 Kg, P < 0.001) than their corresponding original COVID-19 
images, and they were not significantly different from those of the healthy images (P < 0.001). Using the 
validation dataset, lesion segmentations scored an average Dice score of 55.9, comparable to other weakly su
pervised networks that do require manual segmentations. 
Conclusion: Our CycleGAN model successfully segmented pulmonary lesions in mild and severe COVID-19 cases. 
Our model’s performance was comparable to other published models; however, our model is unique in its ability 
to segment lesions without the need for manual segmentations.   

1. Introduction 

The Coronavirus Disease 2019 (COVID-19) pandemic has caused 

hundreds of millions of confirmed infections worldwide as of 2022 [1]. 
Of significant clinical consequence was the high case-fatality rate during 
the beginning of the pandemic, peaking in May of 2020 and has 
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decreased worldwide since. Similarly, within Italy’s initial outbreak the 
case fatality rate was nearly 5 times greater than that at the time of this 
publication [2]. During this time in Italy, the Lombardy region hospitals 
bore the greatest number of COVID-19 cases, attributed deaths, and the 
highest case fatality rate compared to all other regions. COVID-19 out
breaks risk overwhelming healthcare resources and remain a threat to 
under vaccinated and resource-poor nations, especially as new variants 
emerge. 

Characterizing the radiologic findings of lung injury can help the 
clinical evaluation of COVID-19 [3–9] and in fact, the Fleischner Society 
recommends chest computed tomography (CT) in patients with - or at 
risk of - worsening respiratory status [10]. Clinical studies correlated 
density of opacities and greater total lung involvement on chest CT with 
worse clinical outcomes, including intensive care admission, greater 
respiratory support requirements, organ failure, and death [11,12]. 
These findings suggest a role of quantitative CT characterization of 
COVID-19 patients to inform prognostication and treatment plans. Un
supervised machine learning applied to medical imaging has the po
tential to aid in the diagnosis, prognosis, and characterization of COVID- 
19 lung findings. These approaches seek to improve the efficiency of 
imaging analysis workflows and offer clinicians a valuable tool during 
outbreak conditions with high patient volumes. 

Many machine learning techniques have been proposed for COVID- 
19 imaging analysis. A key step in CT analysis is the lesion segmenta
tion: separation of pathologic tissue from the surrounding non- 
pathologic tissue. There are a broad range of segmentation ap
proaches. Some techniques have focused on preprocessing to exaggerate 
the distinction between the target lesion tissue and the surrounding 
tissue, which then aids in Hounsfield unit (HU) thresholding-based ap
proaches. One such study, Oulefki et al, uses predefined filters to 
improve segmentation performance via a previously published multi
level thresholding process [13]. Most techniques, however, have made 
use of deep neural networks to achieve accurate segmentations. Super
vised networks are quite common, despite the labor-intensive manual 
lesion segmentations required to train such models. These supervised 
approaches have recently seen considerable improvement. He et al 
introduced a supervised evolution-based adversarial network that out
performed multiple existing supervised networks [14]. Mu et al also 
introduced a novel supervised approach to COVID-19 lesion segmenta
tion that segments on multiple topographic scales, each segmentation 
improving on the previous resulting in “polished” segmentations [15]. A 
major disadvantage of these supervised approaches is that they involve 
manually segmenting CT scans, which is expensive, time-consuming, 
prone to observer bias, and requires radiology experts [16,17]. More
over, the reliance on labeled images limits the scale at which training 
data can be generated. This prevents the use of large imaging data 
sources such as aggregated repositories of health records, which could 
further enhance machine learning-based methods. An unsupervised 
learning approach is particularly useful for lesion segmentation, often 
the first step in quantitative image analysis, as it eliminates the need for 
manual annotation of training data lesions. 

Several strategies have been proposed for weakly (minimally) su
pervised lesion segmentation. CoSinGan used a multi-scale architecture 
with conditional GANs to achieve plausible lesion segmentation per
formance with only two manually labeled images [18]. Laradji et al’s 
Active Learning allows for weakly supervised learning by working with 
human annotations to label regions of high interest, and allowing point- 
level labeling rather than pixel-level labelling [19]. Similarly, Liu et al 
allow an annotator to “scribble” rough hand-drawn segmentations, 
which the network then refines [20,21]. Still, CoSinGan, Active Learning 
and Liu et al’s “scribble” approach still require some human annotation 
for the generation of each segmentation. Xu et al. proposed GASNet, 
which requires as little as one manual segmentation to achieve good 
performance [20]. GASNet makes use of a CycleGAN-like network that 
incorporates a supervised “Segmenter” network to perform lesion seg
mentation. Additionally, Yao et al. proposed a network that randomly 

generates fake lesions to superimpose on normal CT images. The 
resulting NormNet is able to recognize out-of-distribution voxels, which 
correspond to COVID-19 lesions [22]. While these approaches perform 
strongly, they have certain limitations. GASNet requires some manual 
segmentation, and NormNet generates synthetic lesions to augment U- 
net training, rather than using an unsupervised method that in
corporates real lesions. Our proposed model is unique as it is fully un
supervised, requires no manual annotations to learn lesion 
segmentation, and trains on real COVID-19 lesions. 

GANs are useful for unsupervised training because they can learn the 
data distribution of a given domain without requiring a human to 
explicitly annotate domain-specific features [23]. In particular, condi
tional GANs, which are capable of image-to-image translation, have 
become popular in the medical imaging research community [24]. These 
networks have proven useful in a wide range of tasks, including 
denoising, cross-modality image synthesis, and data augmentation [24]. 
Recent work in brain MRI and liver CT also showed that cycle-consistent 
GANs, given images from both a normal and pathological population, 
can be used to create a “normal” looking version of pathological tissue 
[25], yielding an “abnormality map”. 

CycleGANs [26] are a particular class of GAN that allows for images 
to be converted from one domain into another. Critically, there does not 
need to be direct correspondence between the two sets of images (i.e. the 
images can be “unpaired”), and they do not require explicit annotation 
of the features that differ between the two domains. In this paper, we 
leverage these advantages to create an algorithm capable of recognizing 
and removing lesioned tissue. 

Here we train a CycleGAN on a dataset of healthy and COVID-19 
positive chest CT scans to create a model that recognizes and removes 
pulmonary lesions. By subtracting these synthetically produced healthy 
equivalents, we are left with a map of pathological tissue, which can 
then be thresholded to yield a lesion segmentation. 

2. Materials and methods 

2.1. Definitions 

In order to clarify terminology we use repeatedly, here we provide a 
list of terms along with their definition in the context of this paper. 

Domain: a group of images that share some common characteristic, in 
this case the presence of COVID-19 or the lack of pathology. These are 
referred to as the COVID domain and the healthy domain, respectively. 
In other CycleGAN implementations, the network may learn to convert 
images of apples into images of oranges and vice versa. In this case, the 
network learns to convert images from the COVID-19 domain into the 
healthy domain and vice versa. 

COVID-to-Healthy generator: a neural network that learns to convert 
images from the COVID domain to the healthy domain. One of four 
networks that comprise the CycleGAN. 

Healthy-to-COVID generator: a neural network that learns to convert 
images from the healthy domain to the COVID domain. One of four 
networks that comprise the CycleGAN. 

COVID discriminator: a neural network that learns to differentiate real 
images from the COVID domain from those made by the Healthy-to- 
COVID generator. 

Healthy discriminator: a neural network that learns to differentiate 
real images from the healthy domain from those made by the COVID-to- 
Healthy generator. 

Original COVID-19 images: 153 chest CT scans obtained from Italian 
hospitals of patients who tested positive for COVID-19 via RT-PCR. 

Original healthy images: 356 chest CT scans obtained from the 
COPDGene dataset with <15% abnormal aeration of the lung. We 
recognize that these images do not represent truly healthy lungs, how
ever, they do appear grossly normal upon inspection. Furthermore, there 
is minimal pathology visible on the scans, and no obvious emphysema or 
bronchitis. 
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Generated healthy images: 153 original COVID-19 images after being 
passed through the COVID-to-Healthy generator. 

Original healthy images passed through the COVID-to-Healthy generator: 
The 356 COPDGene images after being processed by the COVID-to- 
Healthy generator. This was done for the purpose of studying the ef
fects of the COVID-to-Healthy generator on healthy images. 

2.2. Dataset 

The original COVID-19 images group consisted of chest CT scans 
from 153 unique patients with SARS-CoV-2 infections confirmed by 
nucleic acid amplification tests from two Italian hospitals. The original 
healthy group consisted of 356 inspiratory chest CT scans, all from 
unique patients. All original healthy images came from the COPDGene 
dataset and had <15% of lung tissue with high attenuation (HU 〈− 950) 
[27]. Finally, the publicly available Coronacases dataset was used as an 
external validation set [28]. The validation dataset contains 10 complete 
chest CT scans of patients with confirmed COVID-19, consisting of 2,506 
individual coronal slices used for validation testing, as well as the cor
responding lung segmentations and radiologist-reviewed lesion seg
mentations. As a validation set, these images were never used in the 
training of the network. These 10 scans represent a subset of the total 
linked dataset, as not all images had thin axial slices and thus sufficient 
coronal resolution to be used in this study. Furthermore, the data used in 
the regular dataset of 153 COVID-19 images and 356 healthy images 
were all thin-slice CT scans with high resolution in the coronal dimen
sion. All methods and data use performed in this study were in accor
dance with the guidelines and regulations set forth by COPDGene, 
CoronaCases, and the Institutional Review Boards at the University of 
Milano-Bicocca, the Hospital of San Gerardo, and the University of 
Pennsylvania. All data was anonymized and considered non-patient 
data. 

2.3. Data preprocessing and network training 

Chest CT scans from COVID-19 and healthy images were sliced 
coronally, resampled from various dimensions to 256 × 256 pixels, and 
restricted to a range of − 1150 to 350 Hounsfield units (HU). Slices not 
including any lung tissue were removed. The model was then trained on 
the original COVID-19 images as well as the original healthy images for 
40,000 iterations at a learning rate of 0.0005 with batch size of 1 on an 
NVIDIA Tesla T4 GPU. The training was repeated at a learning rate of 
0.005 and with various network architectures. Following training, all 
images from the COVID-19 dataset were converted to their generated 
healthy equivalents. Once an image in the COVID group was converted 
to the healthy domain, each voxel in the generated healthy image was 
subtracted from the original to yield a lesion map. For the purposes of 
displaying and analyzing results, a whole-lung segmentation mask of the 
original image was generated using a previously trained network [29], 
and regions outside the mask were set to zero. Every 1000 iterations, the 
validation set was tested which produced lesion segmentations that were 
compared to the radiologist-reviewed segmentations and Dice co
efficients of similarity were recorded. Alternative learning rates and 
architectures were tested to determine their effect on model 
performance. 

Outside of the validation set, cases were sorted by mean lung density 
inside the whole-lung segmentation of the original image as a proxy for 
severity, and representative images were chosen. Healthy cases were run 
through the COVID-to-Healthy generator to determine whether the 
model introduces undesired transformation in healthy tissue. To obtain 
a lesion segmentation mask, threshold cutoffs from 10 to 500 HU were 
tried, and 200 units of HU difference was determined to include un
healthy tissue while still removing most noise. Therefore, all voxels 
above a difference of 200 HU were labeled as lesions. Frequency dis
tributions of HU densities in COVID and COVID-to-Healthy GAN 
generated images and used to calculate metrics of whole-lung gas 

volume and tissue weight using a previously established methodology 
[30]. Paired T-tests were performed on lung gas volumes and lung 
masses of original COVID images vs. generated healthy images, as well 
as generated healthy images vs. original healthy images and original 
COVID images vs. original healthy images. In order to determine 
whether the network preserved the pulmonary gravitational gradient, 
all segmented lungs from generated healthy images and original healthy 
images were sliced into six equally spaced regions along the anterior- 
posterior axis. 

2.4. Implementation 

The network was trained on a virtual machine instance created via 
Google Cloud Platform. The instance, n1-highmem-8, was equipped 
with 8 virtual CPUs, 400 GB of disc storage, and 52 GB of RAM. An 
NVIDIA Tesla T4 graphics card was attached to the instance. A boot disc 
with Pytorch version 1.4 and CUDA version 10.1.243 preinstalled was 
selected. An XFCE desktop environment was installed and managed via 
Google Remote Desktop to facilitate development and visual inspection 
of network results. Development was primarily conducted using Jupyter 
Notebooks. The official CycleGAN implementation (https://github. 
com/junyanz/pytorch-CycleGAN-and-pix2pix) [26] was cloned from 
GitHub and functions to allow for intermittent comparison of network 
output vs CoronaCases ground truth were added. To facilitate this, 
functions to allow for voxel-wise subtraction, thresholding, and 3D 
image reassembly were written. Finally, the network architecture was 
modified to allow for testing of different-sized networks. Beyond this, all 
network customizations were made using built-in options available in 
the public implementation. 

3. Theory 

3.1. Network architecture 

Unpaired image-to-image translation (Fig. 1) was accomplished via a 
modified version of a publicly available 2-dimensional CycleGAN 
implementation (Fig. 2) [26]. All networks used an Adam optimizer with 
a batch size of 1. Adversarial loss was calculated using L2 loss, while 
cycle-consistency and identity loss used L1 [31]. Generators with 6, 9, 
and 18 ResBlocks were trained, and the version with 9 ResBlocks was 
determined to have the best combination of speed and accuracy (Sup
plementary Figure 1). From these data the model performed optimally 
with 9 Resnet blocks, 40,000 training iterations, and a learning rate of 
0.0005 (Supplementary Figure 2). As such, the 9-ResBlock model with 
these hyperparameters was selected for further use. The model’s per
formance with and without the validation set included in the training 
data set is shown in Supplementary Figure 3. 

3.2. Loss function 

The loss function of a CycleGAN involves two primary types of loss 
terms: adversarial loss, which is dependent on the discriminator’s 
evaluation of the generated images as compared to the originals, and 
cycle-consistency loss, which is dependent on the generator’s ability to 
reconstruct the original image after processing by both generators [26]. 
Some CycleGANs, including ours, also make use of identity loss, which 
encourages a generator to not change an image that is already in that 
generator’s output distribution [32]. Adversarial loss, also called GAN 
loss, is commonly used in other generative adversarial networks. For a 
given domain, the generator tries to minimize the GAN loss by gener
ating realistic outputs that will fool the discriminator, while the 
discriminator tries to maximize it by correctly classifying real images as 
real and generated images as generated. Note that adversarial losses use 
L2 loss, while cycle-consistency and identity losses use L1. Mathemati
cally, adversarial loss for COVID discriminator Dc and healthy-to-COVID 
generator GH2C is as follows: 
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Ladv(GH2C,DC,H,C) =
1
n
∑n

i=1

[
(1 − DC(GH2C(Hi)))

2
+(1 − DC(Ci) )

2 ] (1) 

Similarly, the adversarial loss for healthy discriminator DH and 
COVID-to-Healthy generator GC2H is given by: 

Ladv(GC2H ,DH ,C,H) =
1
n

∑n

i=1

[
(1 − DH(GC2H(Ci) ) )

2
+ (1 − DH(Hi) )

2 ]

(2) 

Cycle-consistency loss represents the intuition that putting a COVID 
image through the COVID-to-Healthy generator and then putting the 
resulting image through the healthy-to-COVID generator should result 
in the recreation of the original image. The difference between this 
recreated image and the original gives the cycle-consistency loss. Cycle- 
consistency loss for generators GH2C and GC2H is as follows: 

Lcyc(GC2H ,GH2C,C,H) =
1
n
∑n

i=1
[|GC2H(GH2C(Hi) − Hi ) |+ |GH2C(GC2H(Ci)

− Ci ) | ]

(3) 

We also make use of an identity loss, which helps preserve the true 
HU values of each region. It does this by encouraging a generator to not 
change an image that is already in that generator’s output distribution. 
Identity loss for GH2C and GC2H is given by: 

Lid(GC2H ,GH2C,C,H) =
1
n

∑n

i=1
[|(GC2H(Hi) − Hi)| + |(GH2C(Ci) − Ci)|] (4) 

Different types of loss are given different weight in the combined loss 
function. The weights for cycle consistency loss and identity loss were 10 

Fig. 1. Diagram of the CycleGAN training loop 
and the novel process for generating unsupervised 
COVID-19 lesion segmentations. The model is 
composed of four networks: two generators and 
two discriminators. Beginning with an original 
image from the COVID domain, the COVID-to- 
Healthy generator converts it into the healthy 
domain. The image is then converted back into the 
COVID domain by the healthy-to-COVID gener
ator, and it is compared to the original COVID 
image to calculate cycle consistency loss. Along 
the way, the original healthy and generated 
healthy images are given as input to the healthy 
discriminator, which attempts to correctly classify 
the image as original or generated and subse
quently calculate adversarial loss. This process is 
then repeated with a real image from the healthy 
domain. After training, the COVID-to-Healthy 
generator is used to convert unseen COVID im
ages to generated healthy equivalents. These are 
then subtracted from the original lesioned tissue to 
create a difference map, which can then be 
thresholded to produce a lesion segmentation.   

Fig. 2. General network architecture of the COVID and Healthy discriminators (A) and the COVID-to-Healthy and Healthy-to-COVID generators (B). Tensor di
mensions are given above their respective representations, with the number of filters preceding the @ sign, and spatial dimensions following it. Sample images show 
inputs and outputs from COVID-19 discriminator and COVID-19-to-Healthy generator. 
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and 5, respectively. These numbers were based off recommendations in 
the original CycleGAN paper. The combined loss function is thus given 
as: 

Ltotal(GH2C,GC2H ,DH ,DC,C,H)=Ladv(GH2C,DC,H,C)+Ladv(GC2H ,DH ,C,H)

+10Lcyc(GC2H ,GH2C,C,H)

+5Lid(GC2H ,GH2C,C,H)

(5)  

4. Calculations 

4.1. Evaluation metrics 

Hounsfield Units: Hounsfield units (HU) are a commonly used 
measure of radiodensity in CT scans. HU represents the radiodensity on a 
scale defined by the radiodensities (μ) of air and water. A Hounsfield 
unit is defined as: 

D = 1000
(

μobserved − μwater

μwater − μair

)

(6) 

Tissue Mass: Tissue mass was calculated using a previous method 
[30]. The lungs are modeled as a mixture of tissues (density equal to that 
of water, 1 g/cm3) and air (density of 0 g/cm3). The percent of the lung 
that corresponds to tissue is called the tissue fraction (Ft), thus the air 
fraction is given by (1- Ft). Given that HU are measured on a scale from 
− 1000 (air) to 0 (water and tissue), we can derive the tissue fraction by 
dividing the mean lung HU value by − 1000 (i.e. a lung with mean HU of 
− 500 will be 50% air and 50% tissue, − 500/-1000 = 0.5). Once we have 
the tissue fraction, we can obtain the tissue mass by multiplying by the 
total lung volume and the density of tissue (defined as 1 g/cm3): 

Tissuemass =
(

Dmean

− 1000

)

Vlung*1g/cm3 (7) 

Tissue Volume: Tissue volume was calculated using a similar 
equation [30], but with the tissue fraction replaced by the air fraction, 
and without the density term: 

Tissuevolume =

(

1 −
Dmean

− 1000

)

Vlung (8) 

Dice Score: For two volumes X and Y, the Dice score between them 
is: 

2(X ∩ Y)

|X| + |Y|
(9)  

4.2. Lesion segmentation operations 

To generate segmentations, we first train a CycleGAN as described 
above. Once training is complete, we generate a healthy equivalent for 
each COVID image using the COVID-to-Healthy generator. This healthy 
equivalent is then subtracted from the original to yield a difference map, 
represented as Δ: 

Δ = C − GC2H(C) (10) 

These difference maps represent the degree of aberrant radiodensity 
present in lesioned tissue as compared to a healthy equivalent. We 
threshold them such that each voxel at or >200 HU is included in the 
segmentation. This voxelwise binary classification results in a lesion 
mask M, thus the value of each voxel Δijk in difference map Δ determines 
the value of corresponding mask voxel Mijk: 

Mijk =

{
0,Δijk < 200
1,Δijk ≥ 200 (11)  

5. Results and discussion 

5.1. COVID-19 lesion segmentation 

After model training was completed, original COVID-19 images were 
used as inputs to the COVID-to-Healthy generator, resulting in generated 
healthy images. Difference maps were created by subtracting the HU 
value for each corresponding voxel in the generated image from that of 
the original image (Fig. 3 top rows). In order to determine whether the 
COVID-to-Healthy generator altered scans with normal radiological 
features, healthy images from the COPDGene data set were used as in
puts to the COVID-to-Healthy generator. A representative example 
shows the results are nearly superimposable with the originals, as 
demonstrated by the difference map (Fig. 3, bottom row). 

Generated healthy images had lower mean HU than their corre
sponding original COVID-19 images (− 830.1 ± 152.3 HU, 95% CI for 
SEM [− 842.4, − 817.8] vs − 652.5 ± 240, 95% CI for SEM [− 690.7, 
− 614.2], P < 0.001 via paired t-test (Fig. 4B, Table 2). There was no 
significant difference between the mean HU of the original healthy 
images and the generated healthy images (P > 0.05). Original COVID-19 
images showed a significantly greater decrease in mean HU following 
input to the COVID-to-Healthy generator than the original healthy im
ages (mean ΔHU 140, 95% CI [123.02, 156.98] and 23, 95% CI [21.25, 
24.75]) for original COVID and original healthy, respectively, P < 0.001 
via paired t-test, Fig. 4A). When the original COVID-19 images were 
converted into the healthy domain, voxels in the higher ranges of HU 
were predominantly converted to lower HU (Fig. 4B). While the original 
healthy images did have voxels in high HU ranges when they were run 
through the COVID-to-Healthy generator, these voxels were not pref
erentially substituted, and there is no discernable pattern in their sub
stitution (Fig. 4C). The model successfully replaced high HU voxels in 
pulmonary lesions with voxels in the range of normal healthy lung pa
renchyma without altering normally present high HU voxels found in 
vessels, or fissures. Furthermore, the generator functioned consistently 
among the coronal slices resulting in normal-appearing sagittal and axial 
views; inconsistency between coronal slices would result in a “choppy” 
appearance when reconstructed sagittally or axially (Fig. 5, left). The 
final step in our pipeline - thresholding based on difference >200 - 
resulted in 3D segmentation maps (Fig. 5, right). 

Our method was compared to the traditional thresholding techniques 
using HU cut offs published for ARDS and COVID-19 (Fig. 6). Our model 
was able to differentiate between lesioned tissue and blood vessels- of 
similarly high radiodensity, a feat well outside the capabilities of 
thresholding. Previous thresholding guidelines for ARDS have used a 
range of − 500 to − 100 HU to segment poorly aerated regions and − 100 
to 100 for loss of aeration [31,33]. However, the traditional Hounsfield 
unit range for poorly aerated lung tissue does not include all ground- 
glass regions. Recent work suggested that ranges for COVID-19 pa
tients be adjusted to − 750 to − 300 for ground glass opacities (GGO) and 
− 300 to 50 for consolidation, in order to include more unhealthy tissue 
and lessen the amount of pulmonary vasculature included in a given 
segmentation [31]. Even with these adjustments, thresholding still re
sults in considerable erroneous inclusion of proximal and prominent 
distal pulmonary vasculature. In contrast, our model has the ability to 
separate GGO, atelectasis, and consolidation from healthy tissue. Rather 
than simply lowering the attenuation globally, our network distin
guishes between healthy and unhealthy regions of tissue, and selectively 
modifies the latter. 

Taken together, these data indicate that the COVID-to-Healthy 
generator distinguishes between diseased lung tissue and normal lung 
tissue. We observed that lesions were removed from original COVID-19 
images and that the generator made nearly no changes to the original 
healthy images. Furthermore, the COVID-to-Healthy generator was able 
to discern between the abnormal tissue and the normal anatomic fea
tures within the COVID-19 scans as only the lesions were removed, 
without affecting the vessels, airways, and fissures regardless of their HU 
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ranges. Our model removes lesions from COVID-19 scans generating an 
anatomically healthy image that can be subtracted from the original 
yielding a lesion segmentation. 

5.2. Preservation of normal physiology in generated healthy images 

After the original COVID-19 images were processed through the 
COVID-to-Healthy generator, the generated healthy images showed an 
increased gas volume (2.45 ± 0.93 vs 3.01 ± 0.84 L, P < 0.001) and 
decreased lung tissue mass (1.27 ± 0.40 vs 0.73 ± 0.29 Kg, P < 0.001), 
indicating the physiologic effects of lesion removal Fig. 7A and B). The 
generated healthy lungs had no difference in gas volume (3.01 ± 0.84 vs 
3.12 ± 0.83 L, P > 0.05) Fig. 7A) or mass (0.73 ± 0.29 vs 0.75 ± 0.15 
Kg, P > 0.05) Fig. 7B) compared to the original healthy images (Table 2). 
Upon averaging the HU among 6 equidistant regions along the anterior 
to posterior axis, the physiologic gravitational tissue gradient is pre
served between original healthy images and generated healthy images 
(P > 0.05 in all regions, Fig. 8). This supports the notion that generated 
healthy images contain the same gravitational gradient of tissue density 
seen in normal healthy supinated lungs. Thus, our model substitutes 
diseased tissue with healthy tissue in a physiologically realistic manner. 

5.3. Validation of COVID-19 lesion segmentations 

We sought to objectively evaluate our lesion segmentations using a 
validation dataset. We tested our model on 10 CoronaCases COVID-19 
images with which our model was not trained. We compared our 
lesion segmentation to the radiologist reviewed lesion segmentations of 
CoronaCases yielding an average Dice score of 55.9 (Table 1). Our model 
had comparable performance to three other models, however ours is the 
only model that trains on real data without the need for manual 
segmentation. 

Semi-supervised approaches to lesion segmentation, such as GASNet, 
achieve good results, but still require some level of manual segmenta
tion. This still requires resources and limits their ability to be translated 
into other problem domains. Other approaches to lesion segmentation 
use convolutional neural networks, namely U-Net and U-Net-like ar
chitectures, to identify COVID-19 lesions [16]. While effective, these 
methods require extensive manually labeled training data, and often 
perform suboptimally on images that are unlike those contained in the 
original training set. Their performance is thus restricted by the amount 
and diversity of training data available, which is in turn restricted by the 
labor required to produce manual annotations. Our model has no such 
labor requirement, which removes a critical barrier to increased training 
set sizes and performed similarly to them on the validation dataset. 
Furthermore, inclusion of the validation dataset into the training dataset 
did not improve our model’s performance, underlining how our unsu
pervised model is able to generalize it’s COVID-to-Healthy generator 
network to succeed on images it has not seen before (Supplementary 
Figure 3). 

5.4. Future directions and limitations of our approach 

Beyond lesion segmentation and quantifying characteristics such as 
lung mass and volume, we believe that our healthy-to-COVID generator 
can be used to create synthetic training data. These can then be used 
along with the original segmentation mask to train segmentation models 
using supervised methods. This would be further augmented by the use 
of network structures that allow for multimodal outputs, such as MUNIT 
[29] or U-GAT-IT [34]. 

Our approach has several limitations. On rare occasions, our COVID- 
to-Healthy generator generates false positive healthy lung tissue in areas 
such as the chest wall or large airways. Although this does not impede 
lesion segmentation, which uses a separately generated whole-lung 

Fig. 3. Representative original images from mild COVID-19, severe COVID-19, and healthy cases (left) and their corresponding generated images (middle). Sub
traction of the generated image from the original image results in the difference map (right). 
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segmentation, it does prevent our current model from being used for 
thresholding-based whole-lung segmentation. Although these issues 
improve with longer training times, another issue arises after approxi
mately 50,000 training iterations: the model learns to “cheat” the cycle- 
consistency constraint. This issue has been addressed in previous liter
ature, and a solution was presented [35]. Future work could implement 
a version of this solution that is customized for COVID-19 pathology 
recognition wherein generators are trained separately to prevent coop
erative “cheating”. We believe that once this limitation is overcome, 
errors will be further reduced by training on a larger data set and 
extending our current 2D CycleGAN to 3D. A further limitation was our 
use of a 2-dimensional model, which was chosen because CycleGANs are 
very memory-intensive, and thus difficult to fit on a single GPU if 
training in 3D. Although the model showed good spatial consistency of 
healthy features between slices, there were severe cases where patho
logical tissue was removed unevenly between slices. Many of the COVID- 
19 scans were taken with contrast, and as a result the network tends to 
remove contrast in images where it is present. This occasionally results 
in changes in intensity on pulmonary blood vessels, yielding sub-optimal 
difference masks. In the future, we plan on training contrast and non- 
contrast groups separately in order to avoid this issue. An additional 
limitation to this approach is that healthy training data was a subset of 
the COPDGene dataset, specifically patients that had <15% of lung 
tissue with abnormal aeration. Patients do not need a diagnosis of COPD 
in order to be enrolled in the study, but they do need to have certain risk 
factors, such as a history of smoking. Thus, it is possible that our healthy 
dataset does contain pathologies that went undetected by our review, 
despite having mostly healthy lung tissue. Finally, our validation set 
contained only 10 complete COVID-19 CT images. It reflects a range of 
disease severity, and contains a total of 2506 coronal slices, but is still 
small for a robust test of a deep learning model’s performance. While 

other publications similarly use small validation sets, a larger sample 
would improve our ability to evaluate and compare the performance of 
our unsupervised model to that of competing models. 

6. Conclusion 

We presented a CycleGAN-based model for unsupervised COVID-19 
lesion segmentation. Our CycleGAN model successfully segmented pul
monary lesions in mild and severe COVID-19 cases. Our model’s per
formance was comparable to other published models when tested on a 
validation dataset. Our model, at the time of writing, is the first 
approach that describes an unsupervised COVID-19 lesion segmentation 
process that trains on real human data. The lack of manually labeled 
data represents a key bottleneck in COVID-19 research, and our 
approach circumvents this problem. This is of particular importance 
given the clinical burden placed on much of the expert population by the 
present COVID-19 pandemic. 
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Fig. 5. Axial and sagittal views of the two original COVID-19 images from Fig. 1 (Left), their corresponding COVID-to-Healthy generated images, and the resulting 
difference map (Middle). 3D rendering of lesion segmentation mask (Right). Difference maps were thresholded to 200 Hounsfield units of difference, and all voxels 
above the threshold were included in the mask. 

Fig. 6. Comparison of thresholding-based segmentation and our method. ARDS guidelines for lesion segmentation define HU between − 500 and − 100 as poorly 
aerated and − 100 to 100 as loss of aeration. COVID-19 threshold guidelines define HU between − 750 and − 300 as ground glass opacities and between − 300 and 50 
as consolidation. 
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Fig. 7. Lung gas volumes (A) and lung masses (B) of 153 COVID-19 images in their original and generated healthy images compared with the 356 original healthy 
group images. 

Fig. 8. Mean Hounsfield attenuations of six equally spaced regions of lung along the anterior-posterior axis of the generated healthy images and original healthy 
images. Intensities reflect the mean HU value of each equidistant section across all available CT scans and the corresponding 95% confidence intervals are repre
sented by the bars. (n = 153 for generated healthy, n = 356 for original healthy). 

Table 1 
Comparison of Dice scores for lesion segmentation between various weakly su
pervised networks and ours. Note that our evaluation only used 10 of 20 images 
in the CoronaCases dataset due to lack of sufficient coronal resolution on the 
other 10. Other networks in this chart trained on axial images and were therefore 
able to make use of all 20.  

Method Number of manual segmentations used in training Dice score 

ActiveLearning 16  52.4 
CoSinGan 2  57.8 
GASNet 1  70.3 
Ours 0  55.9  

Table 2 
Summary of Computed Tomography-Derived Physiology among the Original 
Healthy, Original COVID-19, and Generated Healthy Images. CT density is dis
played in Hounsfield units (HU). All measures are averages followed by their 
standard deviation. P values result from two-tailed paired t tests.  

Images Average CT density (HU) Gas volume Tissue mass 

Original COVID-19 − 652.5 ± 240.6** 2.45 ± 0.93** 1.27 ± 0.40** 
Generated Healthy − 830.1 ± 152.3 3.01 ± 0.84 0.73 ± 0.29 
Original Healthy − 816.9 ± 109.3 3.12 ± 0.83 0.75 ± 0.15 

**P < 0.001 compared to Generated Healthy group. 
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