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Abstract: Sesquiterpenes are common small-molecule natural products with a wide range of promis-
ing applications and are biosynthesized by sesquiterpene synthase (STS). Basidiomycetes are valuable
and important biological resources. To date, hundreds of related sesquiterpenoids have been dis-
covered in basidiomycetes, and the biosynthetic pathways of some of these compounds have been
elucidated. This review summarizes 122 STSs and 2 fusion enzymes STSs identified from 26 species of
basidiomycetes over the past 20 years. The biological functions of enzymes and compound structures
are described, and related research is discussed.
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1. Introduction

Fungi are widely distributed in various ecosystems of the Earth. Based on high-
throughput sequencing methods, approximately 5.1 million species of fungi exist in nature,
but only approximately 100,000 species have been discovered [1]. Basidiomycota (com-
monly known as basidiomycetes) is one of the major phyla of the fungal kingdom, with
more than 31,000 species identified [2]. Basidiomycetes are divided into three subphyla:
rusts (Puccinomycotina), smuts (Ustilagomycotina), and mushrooms (Agaricomycotina),
with several taxonomic ranks below them. Sesquiterpenes are among the most struc-
turally diverse natural products and have many applications in various industries. They
contain C15 polymers composed of three isoprene units and derivatives with diverse chem-
ical skeletons. Fungi are rich in sesquiterpenoid natural products, many of which have
good biological activities, including antibacterial, antifungal, anti-inflammatory, antitu-
mor, vascular-relaxing, immunosuppressant, and cytotoxic activities. They can be used as
lead compounds for new drugs [3–10]; especially in basidiomycetes, sesquiterpenes have
various pharmacological activities [11].

Basidiomycetes often produce large fruiting bodies to disperse spores; however, these
fruiting bodies are constantly threatened by other organisms that feed on them [12]. As
a result, basidiomycetes have evolved a number of protective strategies against threats
from other organisms, one of which is the production of toxins. Basidiomycetes produce
toxic sesquiterpenes, mainly as protoilludane skeleton, to protect against predators [11].
In addition, basidiomycetes often form symbiotic relationships with roots and their hosts,
providing plant hormones [13,14]. For example, basidiomycetes in the genus Lactarius
produce modified lactarane and protoilludane-derived sesquiterpenes that promote plant
growth [15–17]. Sesquiterpenes isolated from basidiomycetes also exhibit pharmacological
activity. For instance, hydroxymethylacylfulvene (HMAF) is a semisynthetic antitumor
agent based on the naturally occurring illudin S from the mushroom Omphalotus olear-
ius [18]. It is currently in human clinical trials because of its anti-cancer properties [19,20].
Phellinignin A and 11,12-epoxy-12β-hydroxy-1-tremulen-5-one isolated from the genus
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Phellinus igniarius showed high cytotoxicity to HL-60, SMMC-7721, and SW480 cancer
cells [21]. 10β,12-Dihydroxy-tremulene isolated from Phellinus igniarius showed good
vasodilatory activity in the experiment [9].

So far, approximately one thousand sesquiterpenoids have been reportedly obtained
from basidiomycetes (Supplementary Table S1) [22,23]. Drimanes, protoilludanes, illudanes,
hirstutanes, cadinanes, and tremulanes sesquiterpene skeletons are the main skeleton
types of sesquiterpenoids in basidiomycetes, comprising approximately 60% of the total
population (Figure 1, Supplementary Table S2. There are 79 genera of basidiomycetes
that produce sesquiterpenes, and Lactarius, Xylaria, Armillaria, Phellinus, Granulobasidium,
and Conocybe are the main sources (Supplementary Table S1). According to the reported
genomic data, the average number of sesquiterpene genes per strain in basidiomycetes
is 12, which is much higher than the average 3.5 sesquiterpene genes in ascomycetes [24].
These results suggest that basidiomycetes produce more sesquiterpenes. However, most of
the compounds produced by these potentially functional genes are unknown and require
further clarification.
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2. Cyclization Mode of STSs

The sesquiterpene biosynthetic pathway is divided into two steps [25]. The first step
is a coupling reaction that connects isoprene precursors, dimethylallyl dipyrophosphate
(DMAPP) and isoprenyl dipyrophosphate (IPP), from geranyl pyrophosphate (GPP) in a
head-to-tail manner, and then condenses with another molecule of IPP to generate farnesyl
pyrophosphate (FPP), which is a sesquiterpenoid biosynthetic precursor and substrate
for STS [26]. As the second step, FPP generates different sesquiterpene carbon skeletons
through irregular coupling reactions. Typical STS contains conserved D(D/E)XXD and
NSE/DTE motifs, and these amino acid residues play important roles in coordinating the
stabilization of divalent metal ions at the active site for defocusing the catalytic reaction of
phosphoric acid. Cyclization is initiated by the metal-ion-induced departure of inorganic
pyrophosphate (PPi) to form allyl cations, facilitating the structural shift and catalyzing cy-
clization closure [27,28]. For cyclic sesquiterpenes, this step can be further divided into two.
FPP undergoes one or more cyclizations to form intermediates, which are then converted
to sesquiterpene skeletal end-products under the action of STS. The reaction mechanism
is divided into four categories [29–31] (Figures 2 and 3)—Clade I: After (2E,6E)-FPP is
deionized by pyrophosphate, it electrophilically attacks the double bond at the other end
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and forms a 10-membered ring carbon-positive intermediate E, E-germacradienyl cation
through a 1,10 cyclization reaction; Clade II: FPP is first ionized and isomerized to form
(3R)-nerolidyl diphosphate ((3R)-NPP), deionized by pyrophosphate, and electrophilically
attacks the double bond to form a 10-membered ring of the carbon-positive intermediate Z,
E-germacradienyl cation through 1,10 cyclization; Clade III: (2E,6E)-FPP removes pyrophos-
phate ionization, electrophilically attacks the double bond at the other end, and undergoes
1,11 cyclization reaction 11-membered ring carbocation intermediate trans-humulyl cation;
Clade IV: After (3R)-NPP is deionized by pyrophosphate, it electrophilically attacks the
double bond and forms a 6-membered ring carbocation intermediate (6R)-β-bisabolol
cation through a 1,6 cyclization reaction.
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Over the past 20 years, 122 STSs and 2 fusion enzymes STSs have been discovered and
identified from 26 species of basidiomycetes (Supplementary File S1), which are responsible
for the biosynthesis of hundreds of sesquiterpenes in four ways. The various STSs and
their catalytic production of sesquiterpenes are summarized and discussed in this review.
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3. STSs in Basidiomycota
3.1. Agaricales

Agaricales is the largest mushroom-forming flora, comprising more than 400 genera
and 13,000 species [32]. To date, 10 species have been experimentally identified with
58 different STSs.

3.1.1. Macrolepiota albuminosa

Macrolepiota albuminosa (Termitomyces albuminosus) is a special mushroom in China
that belongs to the Agaricaceae family. Bioinformatic analysis of the genome revealed the
presence of 22 terpene synthases [33], 3 of which (STC4, STC9, and STC15) were identified as
STSs and heterologously expressed by Escherichia coli [34]. Using FPP as a precursor, STC4
synthesized intermedeol (1) via C1,10 cyclization, which in turn enabled germacrene D-4-ol
(2) synthesization by STC15. Through C1,6 cyclization, γ-cadinene (3) was synthesized by
STC9 with NPP as a substrate.

3.1.2. Coprinopsis cinerea

Coprinopsis cinerea belongs to the Psathyrellaceae family. Six STSs (Cop1–6) have been
identified in this fungus [29] and heterologously expressed in Saccharomyces cerevisiae
and E. coli. With FPP as the precursor, Cop1 and Cop2 synthesized germacrene A (4) by
C1,10 cyclization, and Cop3 synthesized α-muurolene (5). Using NPP as the precursor, Cop4
synthesized δ-cadinene (6) by C1,10 cyclization, and Cop6 synthesized α-cuprenene (7) by
C1,6 cyclization [35]. Cop5 cannot be functionally expressed in either system.

3.1.3. Taiwanofungus camphoratus

Taiwanofungus camphoratus (Antrodia cinnamomea) belongs to the mushroom family
Fomitopsidaceae and is a rare medicinal fungus found in Taiwan, China. A total of
10 terpene synthases (AcTPS1–7, 9–11) have been identified in it and they are heterologously
expressed in E.coli, among which three were identified as STSs (AcTPS4, AcTPS5, and
AcTPS9) [31]. T-cadinol (8) was synthesized by C1,10 cyclization of AcTPS5 with FPP as a
substrate, and cubebol (9) and zonarene (10) were synthesized from AcTPS9 and AcTPS4,
respectively, via C1,10 cyclization with NPP as a substrate.

3.1.4. Clitopilus pseudo-pinsitus

Clitopilus pseudo-pinsitus, belonging to the family Entolomataceae, currently has 18 re-
lated STSs (CpSTS1–18) recorded [36]. Apart from the lack of conserved CpSTS10 sequences,
the remaining 17 were heterologously expressed by Aspergillus oryzae, and CpSTS15 was
found to be inactive. The biosynthesis of the remaining STSs can be summarized as fol-
lows: ∆6-protoilludene (11) was synthesized by CpSTS4 using FPP as a precursor and
C1,11 cyclization. Sterpurene (12), pentalenene (13), and α-farnesene (14) were synthe-
sized from CpSTS1, CpSTS6, and CpSTS7, respectively. After C1,10 cyclization, δ-cadinene
(6) was synthesized from CpSTS2, aristolene (15) was synthesized from CpSTS16, and
alloaromadendrene (16) and 9-alloaromadendrene (17) were synthesized from CpSTS8 and
CpSTS11, respectively. CpSTS9 and CpSTS12 synthesized virifloridol (18), and CpSTS13
synthesized ledene (19) with NPP as the substrate. CpSTS3 synthesized α-muurolene
(5) and δ-cadinol (20). CpSTS5 synthesized α-muurolene (5) with FPP as the substrate.
Through C1,6 cyclization, using NPP as a precursor, CpSTS14 synthesized β-elemene (21)
and β-farnesene (22), CpSTS17 synthesized β-caryophyllene (23), and CpSTS18 synthesized
γ-cadinene (3).

3.1.5. Hypholoma fasciculare

Hypholoma fasciculare is a clustered fungus belonging to the family Strophariaceae.
A total of 17 STSs have been previously identified in their genome using bioinformatic
methods [37], of which 4 (Hfas94a, Hfas94b, Hfas255, and Hfas344) were heterologously
expressed in A. oryzae. Using FPP as a precursor, Hfas94a and Hfas94b mainly synthe-
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sized α-humulene (24) through C1,11 cyclization. Hfas255 did not produce any products,
and Hfas344 synthesized an oxidized sesquiterpene with spectral data similar to that
of β-caryophyllene.

3.1.6. Hypholoma lateritium

Hypholoma lateritium (Hypholoma sublateritium) belongs to the same genus as H. fascicu-
lare and is widely distributed in China. Only one STS (Hypsu1_138665) has been identified
in this mushroom [38]. Using E. coli heterologous expression with FPP as the precursor,
Hypsu1_138665 was cyclized by C1,11 cyclization to synthesize ∆6-protoilludene (11).

3.1.7. Cyclocybe aegerita

Cyclocybe aegerita (Agrocybe aegerita), also known as pioppino mushroom, is a basid-
iomycete belonging to the Strophariaceae family. Eleven STSs have been identified, all of
which are heterologously expressed in E. coli [38]. Two of these (Agr10 and Agr11) failed to
detect the product. Using NPP as the precursor, δ-cadinene (6) was synthesized from Agr1
and Agr4, and viridiflorene (25) was synthesized from Agr2 and Agr5 by C1,10 cyclization.
Using FPP as a precursor, Agr3 synthesized α-muurolene (5) by C1,10 cyclization, Agr6 and
Agr7 synthesized ∆6-protoilludene (11), and Agr8 synthesized γ-muurolene (26) by C1,11
cyclization. Agr9 synthesized an unknown sesquiterpene alcohol.

3.1.8. Armillaria gallica

Armillaria gallica is a saprophytic or parasitic fungus belonging to the Physalacriaceae
family. Using bioinformatics analysis of its genome, 20 STSs were predicted [38], but
only 1 (Pro1) was heterologously expressed in E. coli [39]. Using FPP as a precursor, Pro1
synthesized ∆6-protoilludene (11) via C1,11 cyclization.

3.1.9. Galerina marginata

Galerina marginata is a common poisonous mushroom belonging to the Hymenogas-
traceae family that contains amino peptides. Only one related STS (Galma_104215) has
been identified and is heterologously expressed in E. coli [38]. Using NPP as the precursor,
Galma_104215 synthesized β-gurjunene (27) by C1,10 cyclization.

3.1.10. Omphalotus olearius

Omphalotus olearius belongs to the family Omphalotaceae and emits green fluorescence.
Ten STSs from this fungus have been identified [30]. E. coli was used for heterologous ex-
pression. With FPP as the precursor, Omp1 and Omp3 were used to synthesize α-muurolene
(5) by C1,10 cyclization, and Omp5a/b was used to synthesize γ-cadinene (3); Omp6 and
Omp7 synthesized ∆6-protoilludene (11) by C1,11 cyclization. With NPP as the precursor,
Omp4 was used to synthesize δ-cadinene (6) by C1,10 cyclization, Omp9 synthesized α-
barbatene (28), and Omp10 mainly guided the synthesis of (E)-dauca-4(11), 8-diene (29) by
C1,6 cyclization. Omp8 is a homologue of Omp9/10 that lacks approximately 100 amino
acids at its N terminus and was not functional when expressed in E. coli.

3.2. Polyporales

Polyporales contains approximately 1800 species of fungi, representing approximately
1.5% of all known fungal species [40]. At present, 8 species of fungi in this order have been
identified to contain 39 different STSs and 1 fusion enzyme.

3.2.1. Lignosus rhinocerus

Lignosus rhinocerus (Lignosus rhinocerotis), also known as tiger milk mushroom, is
a macrofungal belonging to the Polyporaceae family. Twelve terpene synthase genes
have been found [41], seven of which are actively expressed in the sclerotium. Three
STSs (GME3634, GME3638, and GME9210) were heterologously expressed by S. cerevisiae,
producing nineteen, eight, and two sesquiterpenes, respectively (29 in total). Using FPP
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as the precursor, through C1,10 cyclization, GME3634 mainly synthesized α-cadinol (30),
and GME3638 mainly synthesized torreyol (31). Using FPP as the precursor, GME9210
mainly synthesized 1,3,4,5,6,7-hexahydro-2,5,5-trimethyl-2H-2,4a-ethanonaphthalene (32)
and 1-napthalenol (33).

3.2.2. Cerrena unicolor

Cerrena unicolor belongs to the Polyporaceae family. A total of 14 STSs have been
found. Heterologous expression in E. coli was performed [42]. Four of these (Cun5765,
Cun6114, Cun7487, and Cun0802) were not produced, and the loss of Cun6114, Cun7487, and
Cun5765 activities might be caused by the difficulty in predicting introns [43]. The failure of
Cun0802 gene cloning may be related to its low transcription level [44,45], and the product
of Cun9106 could not be identified. The other 9 STSs produced 10 different sesquiterpenes.
Using NPP as the precursor, β-cubebene (34) was synthesized by Cun3157, and δ-cadinene
(6) was synthesized by Cun3158. Using FPP as a precursor, δ-cadinol (20) was synthesized
by Cun7050, α-copaene (35) was synthesized by Cun3574, α-muurolene (5) was synthesized
by Cun0759, γ-cadinene (3) was synthesized by Cun3817, and germacrene D (36) was
synthesized by Cun0773. Aromadendrene (37) was synthesized by C1,11 cyclization of
Cun5155 with FPP as the precursor; δ-cadinol (20) was synthesized by C1,6 cyclization from
Cun0716 with NPP as the precursor.

3.2.3. Rhodonia placenta

Rhodonia placenta (Postia placenta), formerly known as brown rot fungus, is a common
diseased wood-rot fungus belonging to the Polyporaceae family that can grow a large area
of mycelium. It is known that 6 STSs have been isolated from it; they were heterologously
expressed by S. cerevisiae. A total of 25 different sesquiterpenoids were synthesized with
FPP or NPP precursors [46]. Using FPP as a precursor, through C1,10 cyclization, PpSTS01
successfully synthesized α-muurolene (5), δ-cadinene (6), and β-elemene (21), PpSTS03
synthesized α-cadinene (38) and γ-cadinene (3), and PpSTS06 synthesized α-gurjunene
(39); ∆6-protoilludene (11) and pentalenene (13) were synthesized from PpSTS08 and Pp-
STS14, respectively, by C1,11 cyclization. δ-Cadinene (6) was synthesized from PpSTS10 by
C1,10 cyclization.

3.2.4. Fomitopsis pinicola

Fomitopsis pinicola is a brown rot basidiomycete species belonging to the family Fomi-
topsidaceae, commonly collected from dead conifer trees. One STS (Fompi1) was identified
and heterologously expressed in E. coli [30]. α-Cuprenene (7) was synthesized through
C1,6 cyclization by Fompi1 with NPP as the precursor.

3.2.5. Ganoderma lucidum

Ganoderma lucidum, which belongs to the Ganodermataceae family, is a well-known
medicinal fungus. However, only two STSs, GL26009 [47] and GISTS6 [48], have been
isolated and identified from this fungus and expressed heterologously in E. coli. Using FPP
as the precursor, GL26009 synthesized γ-muurolene (26) and α-muurolene (5), and GISTS6
synthesized γ-cadinene (3).

3.2.6. Ganoderma sinense

Ganoderma sinense is a medicinal fungus belonging to the same genus as G. lucidum in
the Ganodermataceae family. At present, six STSs have been isolated and identified from
this fungus and expressed in E. coli. (GS11330, GS14272, GS02363, GsSTS43, GsSTS45a, and
GsSTS45b) [48–50]. GsSTS45a has no function; GS02363 synthesized α-cadinol (30), δ-cadinene
(6), α-muurolene (5), and γ-muurolene (26); GS11330 synthesized α-cuprenene (7); GS14272
synthesized α-muurolene (5); and GsSTS43 and GsSTS45b synthesized γ-cadinene (3).
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3.2.7. Phanerodontia chrysosporium

Phanerodontia chrysosporium (Phanerochaete chrysosporium) belongs to the family Phane-
rochaetaceae. Eleven STSs have been recorded [51], of which seven were heterologously
expressed in S. cerevisiae and cultured in SDL medium. PcSTS01 synthesized γ-muurolene
(26), α-muurolene (5), and δ-cadinene (6). PcSTS02 and PcSTS04 synthesized β-copaene (40),β-
farnesene (22), cadina-1(6),4-diene (41), and δ-cadinene (6). Epicubenol (42) was synthesized
from PcSTS03. PcSTS06 synthesized α-barbatene (28) and β-barbatene (43). (E)-α-Bisabolene
(44) was synthesized from PcSTS08, and PcSTS11 synthesized α-santalene (45).

3.2.8. Steccherinum ochraceum

Steccherinum ochraceum belongs to the family Meruliaceae. Six STSs were deduced from
its genome, of which fusion enzyme A8411 was heterologously expressed in A. oryzae [52].
Hirsutene (46) was synthesized from A8411.

3.3. Russulales

Russulales comprises approximately 1767 species belonging to 80 genera and
12 families [1]. Two fungi of this order have been verified to contain fifteen different
STSs and one fusion enzyme.

3.3.1. Stereum hirsutum

Stereum hirsutum belongs to the family Stereaceae. Nearly 50 related sesquiterpenoids
have been found [53] as well as 18 STSs (ShSTS1-18, of which ShSTS2, 6, 9, 14 have not
been studied due to their high homology to other genes) and 1 fusion protein (HS-HMGS),
which were functionally verified by heterologous expression in E. coli or A. oryzae [36,38,54,55].
Their synthetic routes are summarized as follows: using NPP as a substrate, via C1,10
cyclization, ShSTS10 and ShSTS11 can synthesize δ-cadinene (6), ShSTS8 can synthesize
1-epi-cubenol (47), ShSTS12 can synthesize α-cubebene (48), and ShSTS10 can synthesize
germacrene D (36). Simultaneously, ShSTS1 synthesized β-barbatene (43), ShSTS3 synthe-
sized α-farnesene (14) and β-farnesene (22), ShSTS4 synthesized hirsutene (46), and ShSTS5
synthesized γ-cadinene (3) by C1,6 cyclization. Using FPP as a substrate, through C1,11
cyclization, ShSTS13 can synthesize β-caryophyllene (23), HS-HMGS can synthesize hir-
sutene (46), and ShSTS15, ShSTS16, ShSTS17, and ShSTS18 can synthesize ∆6-protoilludene
(11); ShSTS7 synthesized δ-cadinene (6) via C1,10 cyclization.

3.3.2. Heterobasidion annosum

Heterobasidion annosum belongs to the Bondarzewiaceae family of the order Russu-
lales. It is a forest pathogen that grows on large, perennial basidiocarps. Only one STS
(Hetan2_454193) was identified in this fungus [40] and was heterologously expressed in
E. coli. Using FPP as the precursor, Hetan2_454193 synthesized ∆6-protoilludene (11) by
C1,11 cyclization.

3.4. Other Basidiomycota

The basidiomycetes in this region cannot be classified by order. There are 6 species of
fungi in this part, and 10 different STSs have been verified by experiments.

3.4.1. Boreostereum vibrans

Boreostereum vibrans, originally named Stereum vibrans, is a macrofungus belonging to
the Gloeophyllaceae family of the order Gloeophyllales. Many sesquiterpenes have been
isolated from it [56]. BvCS is heterologously expression in E. coli [57]. δ-Cadinol (20) was
synthesized by C1,10 cyclization of BvCS with FPP as a precursor.

3.4.2. Sphaerobolus stellatus

Sphaerobolus stellatus belongs to the order Geastrales and family Geastraceae. One
STS (Sphst_47084) has been identified in this fungus [38] and heterologously expressed in
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E. coli. Using NPP as the precursor, viridiflorol (49) was synthesized via C1,10 cyclization
of Sphst_47084.

3.4.3. Sanghuangporus baumii

Sanghuangporus baumii belongs to the Hymenochaetaceae family of the order Hy-
menochaetales and is an important medicinal fungus. Only one STS has been isolated from
this species and heterologously expressed by E. coli, named SbTps1 [58].

3.4.4. Coniophora puteana

Coniophora puteana belongs to the Coniophoraceae family within the order Boletales.
Four STSs have been isolated from it (Copu2, 3, 5 and 9) [59,60]. β-Copaene (40) and
cubebol (9) were synthesized by C1,10 cyclization from Copu2 and Copu3 with NPP as the
precursor. Using FPP as the precursor, Copu5 and Copu9 synthesized δ-cadinol (20) through
C1,10 cyclization.

3.4.5. Serendipita indica

Serendipita indica is an endophytic root-colonizing species belonging to the order
Sebacinales and family Serendipitaceae. One STS has been recorded [61], which is hetero-
expressed in E. coli. Viridiflorol (49) was synthesized by C1,10 cyclization from SiTPS, using
FPP as the precursor.

3.4.6. Dendrodontia bispora

Dendrodontia bispora (Dendrothele bispora) is a basidiomycete species belonging to the
Corticiaceae family in Corticiales order. Two STSs (Denbi1_659367 and Denbi1_816208) have
been isolated from this fungus [38] and hetero-expressed in E. coli. ∆6-protoilludene (11)
was synthesized by C1,11 cyclization of Denbi1_659367. Viridiflorol (49) was synthesized
by Denbi1_816208.

The taxonomic data in the above content come from GBIF (Global Biodiversity In-
formation Facility, https://www.gbif.org/, accessed on 28 June 2022). A summary of
information on sesquiterpene biosynthesis in Basidiomycota is presented in Table 1.

Table 1. Classification of STSs from Basidiomycota.

Type of
Cyclization Precursor Metabolite Producer Biochemically

Verified Enzyme

Clade I C1,10 FPP Intermedeol (1) Macrolepiota albuminosa STC4
Germacrene D-4-ol (2) Macrolepiota albumi-nosa STC15

Germacrene A (4) Coprinopsis cinerea Cop1, Cop2
T-Cadinol (8) Taiwanofungus camphoratus AcTPS5

α-Muurolene (5) Omphalotus olearius Omp1, Omp3
Cerrena unicolor Cun0759

Coprinopsis cinerea Cop3
Rhodonia placenta PpSTS01
Cyclocybe aegerita Agr3
Ganoderma sinense GS14272
Ganoderma lucidum GL26009

Phanerodontia chrysosporium PcSTS01
Clitopilus pseudo-pinsitus CpSTS3, CpSTS5

α-Cadinol (30) Lignosus rhinoceros
Ganoderma sinense

GME3634
GS02363

Torreyol (31) Lignosus rhinocerus GME3638
δ-Cadinol (20) Cerrena unicolor Cun7050

Boreostereum vibrans BvCS
Coniophora puteana Copu5, Copu9

Clitopilus pseudo-pinsitus CpSTS3
α-Copaene (35) Cerrena unicolor Cun3574
γ-Cadinene (3) Cerrena unicolor Cun3817

https://www.gbif.org/
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Table 1. Cont.

Type of
Cyclization Precursor Metabolite Producer Biochemically

Verified Enzyme

Rhodonia placenta PpSTS03
Germacrene D (36) Cerrena unicolor Cun0773
δ-Cadinene (6) Rhodonia placenta PpSTS01

Phanerodontia chrysosporium PcSTS01
Stereum hirsutum ShSTS7

β-Elemene (21) Rhodonia placenta PpSTS01
α-Cadinene (38) Rhodonia placenta PpSTS03

α-Gurjunene (39)
Viridiflorol (49)
γ-Muurolene (26)

Rhodonia placenta
Serendipita indica

Ganoderma lucidum
Phanerodontia chrysosporium

PpSTS06
SiTPS

GL26009
PcSTS01

Clade II C1,10 NPP δ-Cadinene (6) Coprinopsis cinerea Cop4
Cerrena unicolor Cun3158

Rhodonia placenta PpSTS10
Clitopilus pseudo-pinsitus CpSTS2

Cyclocybe aegerita Agr1, Agr4
Omphalotus olearius Omp4

Stereum hirsutum
Phanerodontia chrysosporium

ShSTS10, ShSTS11
PcSTS02, PcSTS04

Cubebol (9) Taiwanofungus camphoratus
Coniophora puteana

AcTPS9
Copu2, Copu3

1-epi-Cubenol (47) Stereum hirsutum ShSTS8
Zonarene (10) Taiwanofungus camphoratus AcTPS4
Ledene (19) Clitopilus pseudo-pinsitus CpSTS13

Virifloridol (18) Clitopilus pseudo-pinsitus CpSTS9, CpSTS12
Viridiflorol (49) Sphaerobolus stellatus Sphst_47084

Alloaromadendrene (16) Clitopilus pseudo-pinsitus CpSTS8
9-Alloaromadendrene (17) Clitopilus pseudo-pinsitus CpSTS11

Aristolene (15) Clitopilus pseudo-pinsitus CpSTS16
Viridiflorene (25) Cyclocybe aegerita Agr2, Agr5
γ-Cadinene (3) Omphalotus olearius Omp5a, Omp5b
α-Cubebene (48) Stereum hirsutum ShSTS12
β-Cubebene (34) Cerrena unicolor Cun3157

Germacrene D (36) Stereum hirsutum ShSTS10

β-Copaene (40) Coniophora puteana
Phanerodontia chrysosporium

Copu2, Copu3
PcSTS02, PcSTS04

β-Gurjunene (27)
Epicubenol (42)
β-Farnesene (22)

Cadina-1(6),4-diene (41)

Galerina marginata
Phanerodontia chrysosporium
Phanerodontia chrysosporium
Phanerodontia chrysosporium

Galma_104215
PcSTS03

PcSTS02, PcSTS04
PcSTS02, PcSTS04

Clade III C1,11 FPP α-Humulene (24) Hypholoma fasciculare Hfas94a, Hfas94b
∆6-Protoilludene (11) Hypholoma lateritium Hypsu1_138665

Stereum hirsutum ShSTS15, ShSTS16,
ShSTS17, ShSTS18

Heterobasidion annosum Hetan2_454193
Cyclocybe aegerita Agr6, Agr7

Clitopilus pseudo-pinsitus CpSTS4
Rhodonia placenta PpSTS08

Omphalotus olearius Omp6, Omp7
Armillaria gallica Pro1

Dendrodontia bispora Denbi1_659367
Aromadendrene (37) Cerrena unicolor Cun5155
β-Caryophyllene (23) Stereum hirsutum ShSTS13

Pentalenene (13) Rhodonia placenta PpSTS14
Clitopilus pseudo-pinsitus CpSTS6

Sterpurene (12) Clitopilus pseudo-pinsitus CpSTS1
α-Farnesene (14) Clitopilus pseudo-pinsitus CpSTS7
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Table 1. Cont.

Type of
Cyclization Precursor Metabolite Producer Biochemically

Verified Enzyme

γ-Muurolene (26) Cyclocybe aegerita Agr8
1,3,4,5,6,7-Hexahydro-2,5,5-

trimethyl-2H-2,4a-
ethanonaphthalene

(32)

Lignosus rhinocerus GME9210

1-Napthalenol (33) Lignosus rhinocerus GME9210

γ-Cadinene (3) Ganoderma sinense GsSTS43,
GsSTS45b

Ganoderma lucidum GISTS6

Clade IV C1,6 NPP α-Cuprenene (7)
Coprinopsis cinerea
Ganoderma sinense
Fomitopsis pinicola

Cop6
GS11330
Fompi1

α-Barbatene (28) Omphalotus olearius
Phanerodontia chrysosporium

Omp9
PcSTS06

β-Barbatene (43) Phanerodontia chrysosporium PcSTS06
Stereum hirsutum ShSTS1

α-Farnesene (14) Stereum hirsutum ShSTS3

β-Farnesene (22) Stereum hirsutum
Clitopilus pseudo-pinsitus

ShSTS3
CpSTS14

Hirsutene (46) Stereum hirsutum ShSTS4

γ-Cadinene (3) Termitomyces
albuminosus STC9

Stereum hirsutum ShSTS5
Clitopilus pseudo-pinsitus CpSTS18

β-Elemene (21) Clitopilus pseudo-pinsitus CpSTS14
β-Caryophyllene (23) Clitopilus pseudo-pinsitus CpSTS17

(E)-Dauca-4(11),8-diene (29) Omphalotus olearius Omp10
δ-Cadinol (20) Cerrena unicolor Cun0716

(E)-α-Bisabolene (44) Phanerodontia chrysosporium PcSTS08
α-Santalene (45) Phanerodontia chrysosporium PcSTS11

others — Coprinopsis cinerea Cop5
— Clitopilus pseudo-pinsitus CpSTS10
— Hypholoma fasciculare Hfas255

Unknown Hypholoma fasciculare Hfas344
Unknown Cyclocybe aegerita Agr9

— Cyclocybe aegerita Agr10, Agr11
— Omphalotus olearius Omp8

— Cerrena unicolor Cun5765, Cun6114,
Cun7487, Cun0802

Unable to identify Cerrena unicolor Cun9106
— Ganoderma sinense GsSTS45a

Unknown Sanghuangporus baumii SbTps1
Viridiflorol (49) Dendrodontia bispora Denbi1_816208
Hirsutene (46) Stereum hirsutum HS-HMGS

Steccherinum ochraceum A8411

4. Research Process and Tools for STSs in Basidiomycetes

At present, the research process of basidiomycete STSs is mainly divided into three
parts (Figure 4), and the latest research tools are developed around the core steps of these
three parts (genome sequencing, basidiomycete culture methods, etc.).
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Figure 4. Technical research route of STS in basidiomycetes. The STS genome mining of basid-
iomycetes can be divided into three steps. The first step of genome mining is mainly based on the
whole gene sequence, using bioinformatics tools to mine and predict the biosynthetic gene cluster.
The second step is to obtain the target gene from the biosynthetic gene cluster of STS, and then
heterologously express the target gene to obtain the product. The final step is to purify and identify
the product to determine whether the gene is an STS.

4.1. Long-Read Whole-Genome Sequencing

The average genome size of basidiomycetes and ascomycetes is 46 Mb and 37 Mb,
respectively [62], and the genome size of archaea and bacteria is usually within 6 Mb [63].
This means that bacterial genomes can be sequenced using short-read sequencing, but
long-read sequencing and proper assembly are required for fungal genomes. Inexpensive
nanopore sequencing [64] has been applied to whole-genome sequencing of basidiomycetes.
For example, nanopore sequencing technology was used for whole-genome sequencing of
the basidiomycete Clathrus columnatus and Inonotus obliquus, and genome assembly was
completed [65,66].

Although nanopore technology enables long-read sequencing and is inexpensive, the
accuracy of base calling is 85–94% depending on the sequencing method [67]. However,
if nanopore long-read sequencing is used in combination with short-read sequencing, it
may be possible to assemble a higher quality genome, if the software that assembles the
genome has this capability. This functionality is currently available for bacterial and fungi
genomes, and the Pilon software can combine Illumina and Nanopore sequence data to
polish assemblies [68].

4.2. Basidiomycetes Cultures

Many basidiomycetes have high requirements for their growth environment; they can
only grow under specific conditions, and most of them cannot be cultivated artificially,
which greatly limits isolation and identification of sesquiterpenoids in basidiomycetes.
Fungal growth can be simply divided into two stages: (i) germination of fungal spores, and
(ii) subsequent filamentous growth, forming a network of hyphae called mycelium [69].



J. Fungi 2022, 8, 913 13 of 19

The conditions that induce or inhibit the germination of fungal spores have always
puzzled researchers. So far, the main research directions are growth factor induction, acti-
vator induction, co-culture, volatile organic compound induction, and physical factors [70].
Taking Agaricomycetes ectomycorrhizal (EcM) mushrooms as an example, the M factor
(growth-promoting metabolites in addition to b vitamins and amino acids are essential
for the growth of tree mycorrhizal fungi), as a growth factor, promotes its growth [71].
Placing EcM mushrooms together with specific tree seedlings on lipid or gel medium
can also promote spore germination, although this approach often fails [71,72]. There is
evidence that EcM mushroom spore germination can also be promoted when co-cultured
with bacteria [73].

The growth factors that induce the growth of fungal hyphae are mostly root exudates.
Studies on EcM fungi have shown that in addition to M factor, palmitic acid, stearic acid,
and cytokinins, such as kinetin, zeatin, and isopentenyl aminopurine, are also growth-
promoting factors. Root exudates can induce their growth [74].

At the same time, fungal gene expression is very complex and is affected by RNAi
silencing [75] and trans-acting elements of genome structure [76]. Therefore, many biosyn-
thetic gene clusters are silent. However, by adjusting the culture conditions (changing the
physical conditions of the culture, adding compounds, growth factors, etc.) [70], utilizing
co-culture [77], and chromatin-based transcriptional regulation [78], silenced biosynthetic
gene clusters can be activated. Studies on these operations are still in preliminary stages.
However, the metabolites produced by basidiomycete fungi in different growth cycles are
different [79], and many genetic regulators that control fungal development also control
the production of secondary metabolites [80,81]. Studies on the basidiomycetes Coprinop-
sis cinerea [82] and Lentinula edodes [83] have shown that gene expression differs at the
developmental stages of fruiting bodies, limiting the mining of active ingredients.

Cultivation technology for basidiomycetes has always been inadequate, but in recent
years, the development of new laboratory-level cultivation techniques has brought new
opportunities for artificial cultivation. For example, basidiomycetes are cultivated using
microfluidic culture technology [84].

4.3. Exogenous Expression Platforms and Bioinformatics Tools for Basidiomycetes STSs

Due to the complexity of basidiomycetes genes, traditional heterologous expres-
sion platforms cannot meet the functional identification of basidiomycetes STS. Although
E. coli can express STS genes, it lacks a post-translational modification system to express
complex proteins and entire biosynthetic pathways, and the eukaryotic expression system
in yeast cannot remove introns of fungal genes [85]. At present, A. oryzae is a relatively
successful heterologous expression platform, which can more accurately splice the intron
of the basidiomycetes terpenoid synthase gene [37] and correctly express the entire gene
cluster [86]. Ustilago maydis has also been developed as a heterologous expression platform
for the production of terpenoids [87]. It offers the advantage of metabolic compatibility
and potential tolerance of substances toxic to other microorganisms.

Successful characterization of the biosynthesis of basidiomycetes products requires
not only genetic engineering and heterologous expression, but also metabolic analysis [88].
Bioactivity-guided methods for isolating metabolites have been gradually replaced by
more sensitive methods, such as tandem mass spectrometry (MS/MS), for untargeted
metabolomics data analysis, resulting in data that can be compared with known spectral
databases. Researchers can also identify unknown metabolites and intermediates through
the Global Natural Products Social Molecular Networking (GNPS) [88,89] and infer biosyn-
thetic pathways. New technologies and tools are also being developed to assist in the
identification of STSs in basidiomycetes. Bioinformatics techniques can be used to establish
a general prediction framework for STS and to improve the accuracy of genome-based tools
for predicting biosynthetic gene clusters [58], such as antiSMASH [90] and PRISM [91].
Although it can predict the monomer sequences assembled into PKS and NRPS biosynthetic
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lines based on module specificity, the accuracy and specificity need to be further improved,
which is also the key to identifying STS [91].

5. Discussion

Sesquiterpenes play a very important role in basidiomycetes. They can attract insects
for pollination [92], defend against other organisms or parasites [93], and play an impor-
tant role in basidiomycete’s physiological effect. Moreover, when basidiomycetes form a
symbiotic relationship with plants, these sesquiterpenoids produced by basidiomycetes
can act as phytohormones [13,14]. Therefore, basidiomycetes produce many kinds of
sesquiterpenes to help them better adapt to the living environment. The influence of the
ambient environment on the production of sesquiterpenes by basidiomycetes includes
external physical factors (light, temperature, etc.) and chemical factors (exogenous chemical
substances, etc.). The changes of sesquiterpenes during basidiomycete development and
their biological roles are still unclear. At present, there are studies on the changes of
sesquiterpenes during the development of the fruiting bodies of the Cyclocybe aegerita
AAE-3 strain. In particular, the development of the fruiting body changes resulted in
greater changes during the sporulation process. In the early stage of sporulation, mainly
alcohols and ketones appeared, while in the later stage of sporulation, sesquiterpenes such
as ∆6-protoilludene (11), α-cubebene (48) and δ-cadinene (6) appeared. After sporulation,
sesquiterpenoids decreased and other compounds appeared, mainly octan-3-one [94].

Site-specific mutations are tools to study enzyme structure, function, and catalytic
mechanism, and they include single and combinatorial mutations [95]. In the study of
sesquiterpene synthases of basidiomycetes, the point mutations at residues near the con-
served region are mostly used. The current point mutation experiments for sesquiterpene
synthase of basidiomycetes are concentrated near the conserved regions of the RY Pair and
NSE Triad (Figure 5).
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Figure 5. (a) Comparison of the conserved regions of H-α1 loop and NSE/DTE motif. (b) Com-
parison of conserved regions of the RY Pair to the Thirteen Positions Upstream of the RY Pair. The
MUSCLE algorithm was used to compare the following protein sequences: Cop3 (XP_001832925),
Cop4 (XP_001836356), Cop6 (XP_001832549) in Coprinopsis cinerea; STC4 (KAH0582448), STC9
(KAH0583476), STC15 (KAG5341349) in Macrolepiota albuminosa.

Cop3, Cop4, and Cop6 were experimentally point mutated at the sites of their H-α1
loops, respectively. K233 in Cop4 and K251 in Cop3 did not play a major role in the side
chain and ligand interaction network formed during active-site closure; the mutations in
Cop4 (K233, H235, T236, N238, and N239) showed that the mutations in the H-α1 loop
region site significantly altered the type of product, with the mutation of N239L having
the greatest effect on the product; the mutation of Cop6 (C236, E237, and N240) showed
that the mutation of the H-α1 loop region site did not alter the product of Cop6. Structural
modeling of the Cop enzyme pointed to a potential interaction between the H-α1 loop
and the conserved residues of the two metal-binding motifs (DDXXDD and NSE/DTE).
Potential interactions between the conserved Asp/Glu and the Arg, Asn and Lys sites in
some sesquiterpene synthases in several fungi and plants may stabilize the closed enzyme
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conformation by closing the H-α1 loop [96]. STC4 was transformed into germacrene A (4)
synthase after the single site W335F mutation; various variants of the W314 point mutation
in STC15 were unable to obtain expressed protein, and enzyme activity was reduced after
the mutation of the putative C311 active site in STC9 [34]. A triple mutant Cop2(17H2)
was obtained by error-prone PCR. Cop2(17H2) contains three mutations in L59H, T65A
and S310Y, and the three mutations tend to make Cop2(17H2) products be specific. More-
over, compared to the original Cop2, Cop2(17H2) is more inclined to produce Germacrene
D-4-ol (2) [97].

6. Conclusions

A comparison of the reported genome sequences revealed that each basidiomycete
contained, on average, more than 12 STSs. Although the reasons for the existence of many
STSs are unclear, it is speculated that they are closely related to their biological activities.
The development of molecular tools for basidiomycetes research will allow researchers to
further explore these microbial taxa. These efforts have definitely resulted in a global push
for the discovery and characterization of fungal STSs, and they provide hope for the future
of fungal sesquiterpenoid discovery.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jof8090913/s1, Table S1: Sesquiterpene skeleton and production source of
basidiomycetes from different species; Table S2: Basidiomycetes sesquiterpenoid skeleton type and
the number of compounds; File S1: Gene name and amino acid sequence of sesquiterpene synthase
from basidiomycetes.
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