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Recurrent DNA copy number changes in 1q, 4q, 6q, 9p,
13q, 14q and 22q detected by comparative genomic
hybridization in malignant mesothelioma
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Summary Comparative genomic hybridization (CGH) analyses were performed on 27 human pleural mesothelioma tumour specimens,
consisting of 18 frozen tumours and nine paraffin-embedded tumours, to screen for gains and losses of DNA sequences. Copy number
changes were detected in 15 of the 27 specimens with a range from one to eight per specimen. On average, more losses than gains of
genetic material were observed. The loss of DNA sequences occurred most commonly in the short arm of chromosome 9 (p21—pter), in 60%
of the abnormal specimens. Other losses among the abnormal specimens were frequently detected in the long arms of chromosomes 4
(931.1—qter, 20%), 6 (q22—q24, 33%), 13 (33%), 14 (q24—qter, 33%) and 22 (q13, 20%). A gain in DNA sequences was found in the long arm
of chromosome 1 (cen—gter) in 33% of the abnormal specimens. Our analysis is the first genome-wide screening for gains and losses of DNA
sequences using comparative genomic hybridization in malignant pleural mesothelioma tumours. The recurrent DNA sequence changes
detected in this study suggest that the corresponding chromosomal areas most probably contain genes important for the initiation and

progression of mesothelioma.
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Malignant mesothelioma is a rare tumour of mesodermal origin.
Exposure to asbestos and possibly genetic susceptibility are
considered to be contributing factors in the development of this
cancer (Wagner et al, 1960; Hirvonen et al, 1995). The biology of
this cancer is, however, poorly understood. The latent period
between the first exposure to asbestos and the diagnosis of
mesothelioma is very long and ranges from 20 to 40 years (Lynch
et al, 1985). This suggests that multiple genetic hits are required for
the development of the malignancy (Fearon and Vogelstein, 1990).

No specific chromosomal abnormalities have been found in
mesothelioma. However, cytogenetic analyses have demonstrated
that most mesotheliomas have numerical and structural changes.
Several recurrent abnormalities have been found, particularly losses
or structural rearrangements of 1p, 3p, 4, 6q, 9p, 14, 22 and gains of
chromosomes 5, 7 and 20 (Popescu et al, 1988; Flejter et al, 1989;
Tiainen et al, 1989; Hagemeijer et al, 1990; Taguchi et al, 1993).

The prognosis of patients with mesothelioma is poor because
the tumour is resistant to treatment. The median survival time after
diagnosis is 15 months (Antman et al, 1988). Flow cytometry
studies have revealed a better prognosis for patients with diploid
tumours and low S-phase fraction (Pyrhénen et al, 1991; Isobe et
al, 1995), whereas polysomy 7 and a hyperdiploid chromosomal
number correlate with a poorer survival (Tiainen et al, 1989).

The genes most commonly altered in other human malignancies,
such as p53 the retinoblastoma gene, and ras, are not frequently
mutated in mesothelioma (Metcalf et al, 1992; Van der Meeren et al,
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1993a). Studies on loss of heterozygosity, which are thought to
reveal chromosomal sites harbouring mutated tumour-suppressor
genes, have implicated 3p and 9p (Center et al, 1993; Cheng et al,
1993; Mead et al, 1994; Zeiger et al, 1994). Alterations of the newly
described tumour-suppressor genes p/6 (MTS1) and p/5 (MTS2) at
9p21 have been detected in mesothelioma tumours and cell lines
(Cheng et al, 1994; Kamb et al, 1994; Xiao et al, 1995). Platelet-
derived growth factor (PDGF) has been postulated to act as an
autocrine growth factor in mesothelioma (Gerwin et al, 1987).
Furthermore, a report by Van der Meeren et al (1993b) showed that
overexpression of the PDGF-A chain is associated with tumori-
genic conversion of human mesothelial cells. Even although some
specific genes have been found that might be important in the
development and progression of mesothelioma, little is known
about amplification of genes (oncogene activation) or inactivation
of tumour-suppressor genes, which have been shown to play an
important role in tumorigenesis (Knudson, 1985). The CGH tech-
nique, which we have used in this study, is a method expressly for
the detection of losses, gains and amplifications of genetic material,
which may be significant in the initiation, progression and drug
resistance of mesothelioma. CGH is a method that does not require
the tumour specimens to be cultured and makes it possible to screen
for losses and gains of DNA sequences along all the chromosomes
in a single hybridization (Kallioniemi et al, 1992).

MATERIALS AND METHODS

Tumour specimens

The study was carried out on 27 tumour specimens from patients
with malignant pleural mesothelioma. The patients were all from
the catchment area of the Helsinki University Central Hospital. The
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Table 1 Clinical characteristics, sample data and CGH findings from 27 patients with malignant pleural mesothelioma

Case Sex/ageat Histological Clinical Treatment Exposure Survival (months  F/P Tumour tissue CGH result
diagnosis  subtype stage before study to asbestos  from diagnosis) in the sample (%)
1 M/56 Sarcomatous  |IIB - - 3 P >75, necrosis Normal
2 M/54 Epithelial A - + 6 F NK —1p, +1q -9p21—pter,
—9q, -17p, —22q
3 F/61 Epithelial A - - 34 P 50-75 +1q, +6p, —14q21-qter
4 M/47 Epithelial 1A - + 5+ F NK —3q, —4q31.1-qter,
—6q, -9p, —13cen—q21,
+19q
5 F/43 Epithelial A - - 42 F NK +6p, —6q22—qter
6 M/51 Epithelial IIA - + 5 F NK -6q16—g24,
—9p13—pter
7 F/71 Epithelial A - = 7 F NK —9p21-pter
8 M/74 Epithelial A - + 14 P 50-75 Normal
9 M/71 Epithelial A - - 17 F NK Normal
10 M/56 Mixed | - + 15 F NK +1q, —4q, -6q21—qter,
-9p, —10p13—pter,
-10cen—q23, —14q
1 M/39 Mixed 1A - + 20 F NK +1q9, -4q, -14q
12 M/63 Mixed A - - 30 P >75 —9p, +17g21—qter
13 M/65 Mixed A - + 6 P >75 —9p21-pter,
—13g22—qgter
14 M/71 Mixed 1A - + 8+ F NK —9p, —13q,
—14g24—qter
15 M/67 Mixed A - 7+ 4 F NK —20p12—pter
16 Mm/62 Mixed A - + 17 P 50 -20p, —22q13
17 M/51 Mixed ns + + 35 F NK +1, —2q33—qter,
-10p12-pter, —13q,
—14q, +15g22—qter,
+17922—qter, —22q
18 M/60 Mixed nB - - 26 F NK —6q, —9p, +10q, —13q
19 M/41 Mixed 1A - + 18 F NK Normal
20 M/61 Mixed A - + 12 P <25 Normal
21 M/65 Mixed A - - 78 F NK Normal
22 M/71 Mixed A - + 6 F NK Normal
23 M/65 Mixed A - + 6 P <25 Normal
24 M/55 Mixed A - + 13 F NK Normal
25 M/59 Mixed A - + 4 F NK Normal
26 F/57 Mixed 1A - - 13 F NK . Normal
27 M/60 Mixed B - + 4 P 50 Normal

+, Alive; F, frozen sample; P, paraffin-embedded sample; NK, not known.

specimens comprised eight with epithelial histology, 18 with mixed
histology and one with sarcomatous histology. The histological
subtyping was performed by two mesothelioma panels, the Finnish
National Mesothelioma Panel and the European Organisation for
Research and Treatment of Cancer Mesothelioma Panel. Four of
the patients were women and 23 were men, with a median age of
59 years (range 39-74). Seventeen of the patients had a known
history of asbestos exposure. One of the patients had received treat-
ment before surgery. Eighteen samples were from frozen tumours
and nine from paraffin-embedded tumours, and they all originated
from the same sample on which the histological analyses were
performed (Table 1). High-molecular-weight DNA was extracted
from the frozen tumours and from peripheral blood samples from
two healthy donors, one man and one woman (reference DNA),
according to standard procedures. The DNA from the paraffin-
embedded tumours was isolated as described by Isola et al (1994).

The proportion of tumour tissue in the paraffin-embedded
samples, estimated by a pathologist from the Finnish National
Mesothelioma Panel after staining the tissue slides with haema-
toxylin and eosin, ranged from less than 25% to more than 75%
(Table 1).
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Comparative genomic hybridization

The hybridizations were performed according to the method of
Kallioniemi et al (1992), with some modifications. Briefly, tumour
DNA was labelled with biotin-14-dATP (Gibco BRL, Gaithersburg,
MD, USA) and the reference DNA, from the healthy blood donors,
with digoxigenin-11-dUTP (Boehringer Mannheim, Germany) in
a standard nick-translation reaction. Equal amounts (400-800 ng)
of the two DNAs together with 10-20 ug of human Cot-1 DNA
(Gibco BRL) in 10 pl of hybridization buffer [S0% formamide, 10%
dextran sulphate, 2 X SSC (1 x SSC is 0.15 M sodium chloride-0.015
M sodium citrate, pH 7)] were denaturated at 70°C for 5 min and
applied to normal lymphocyte preparations. Before hybridization,
the preparations were dehydrated in a series of 70, 85 and 100%
ethanols (to achieve better morphology) and denatured at 69-71°C
for 2-2.5 min in a formamide solution (70% formamide/2 X SSC).
The slides were then dehydrated on ice as described above and
treated with proteinase K (0.1 pg ml' in 20 mm Tris-HCI, 2 mm
calcium chloride, pH 7) in 37°C for 7.5 min and dehydrated once
again on ice. The hybridization was performed in a moist chamber
at 37°C during 2-3 days. After hybridization the slides were washed
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three times in 50% formamide/2 x SSC, twice in 2 x SSC, three times
in 0.1 X SSC at 45°C for 10 min each and once in 4 x SSC/0.2%
Tween at room temperature for 5 min, in order to remove unbound
and non-specifically bound probe fragments. Tumour and reference
DNA were detected with tetrarhodamine isothiocyanate (TRITC)-
conjugated avidin and fluorescein isothiocyanate (FITC)-conjugated
antibodies respectively. Finally, the slides were counterstained with
4’, 6-diamidino-2-phenyl-indole-dihydrochloride (DAPI; Sigma, St
Louis, MO, USA) and covered with an antifade solution (Vector
Laboratories, Burlingame, CA, USA).

Digital image analysis

The hybridizations were analysed using an Olympus fluorescence
microscope and the isis digital image analysis system (MetaSystems
GmbH, Altlussheim, Germany) based on a high-sensitivity inte-
grated monochrome charge-coupled device (CCD) camera and an
automated CGH analysis software package (for details see
Kivipensas et al, 1996). Briefly, three-colour images, red (TRITC)
for the tumour hybridization, green (FITC) for the normal reference
DNA hybridization and blue (DAPI) for the DNA counterstain,
were acquired from 5-8 metaphase spreads per hybridization. The
chromosomes were identified based on the DAPI banding pattern.
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Figure 1 Mean red-to-green ratio profiles from pter to gter, obtained from
CGH analysis of malignant mesothelioma. Pictured profiles are those of
chromosomes 1, 4, 6, 9, 13, 14 and 22, which showed the most frequent
genetic changes. Chromosome ideograms are presented for approximate
visual reference only. The line in the middle of the profile indicates the base
line ratio (1.0), the left and the right lines indicate ratio values of 0.85 and
1.17 respectively. Left: The profiles represent the following aberrations: loss
of 1p and gain of 1q (case no. 2), loss of 4q31.1—gter (no. 4), loss of
6g21—qter (no. 10), loss of 9p (no. 4), loss of 13g22—qter (no. 13), loss of 14q
(no. 10) and loss of 22q (no. 2). Right: The profiles of chromosomes with no
aberrations obtained from various negative control experiments
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The red and green fluorescence intensities were calculated and the
red-to-green ratio profiles along the chromosome axis were
displayed. For normalization of the ratio profiles the modal value of
the red-to-green ratio for the entire metaphase was set to 1.0. Finally
the individual ratio profiles were combined using separate p- and g-
arm length normalization to yield the average ratio profiles, which
were displayed next to ideograms together with significance inter-
vals of 0.85 and 1.17 (see below) (Figure 1).

Interpretation of CGH results and quality control

The regions in the chromosomes where the ratio exceeded 1.17 or
was less than 0.85 were considered overrepresented (gained) or
underrepresented (lost), respectively. These cut-off values were
based on hybridizations with DNA from the healthy donors (nega-
tive controls). Only ratio changes that exceeded the fluctuation
seen in the negative control experiments were interpreted as
evidence of a real gain or loss of DNA sequences. The chromo-
somal regions where the ratio changes exceeded the value 1.5 were
considered highly amplified. A positive control, with known DNA
copy number changes (both gains and losses), and a negative
control were included in each hybridization as quality controls.
Only the metaphases with a homogenous hybridization were
analysed. The heterochromatic regions at 1q12, 9q12 and 16q11,
the p-arms of the acrocentric chromosomes and the Y chromosome
were excluded from the analysis. The profiles of the chromosomes
1p32—pter, 16p, 19 and 22 were interpreted with special caution,
because these areas have been known to give false positive results
(A Kallioniemi et al, 1994).

Statistical analysis

The DNA sequence copy number changes detected by CGH were
correlated with the parameters mentioned in Table 1. P-values
were analysed using the Fisher’s exact test owing to the small
number of cases.

RESULTS

DNA sequence copy number changes were detected in 15 of the 27
specimens evaluated (Table 1). Changes were detected in 75%

1E |IE

13 14

H |II||]|||§ 'IE

-
BN E

E |z ? i
5 5 OB '8
15 7 19 20 22

Figure 2 Summary of all losses and gains of DNA sequences observed in

27 mesothelioma specimens using CGH. Losses are shown on the left side
of the chromosomes and gains on the right side. Only those chromosomes
where changes in the genetic material were detected are shown
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(6/8) and in 50% (9/18) of the epithelial and mixed specimens
respectively. No changes were observed in the sarcomatous spec-
imen. DNA copy number changes were detected in 14 chromo-
somes altogether. On average, there were 3.5 changes per
specimen (range from 1 to 8). Losses predominated over gains
with a ratio of 3.3:1 (40 losses and 12 gains; Figure 2). No highly
amplified chromosomal regions were detected.

Loss of DNA sequences was observed in 12 different chromo-
somes altogether (Table 1 and Figure 2). The chromosome arm most
frequently involved was the short arm of chromosome 9, lost in 9 of
the 15 abnormal tumours (60%). The minimal common region of
loss extended from band 9p21 to the p-telomere of chromosome 9.
Other regions commonly lost among the abnormal tumours were
4q31.1-qter (three cases, 20%), 6q22—q24 (five cases; 33%), 13q
(five cases; 33%), 14q24—qter (five cases; 33%) and 22q13 (three
cases; 20%). DNA sequences in the short arm of chromosome 9 and
the long arm of chromosome 6 were simultaneously lost in four
cases (27%; case nos 4, 6, 10, 18) as were DNA sequences in chro-
mosomes 9p and 13q in four cases (27%; case nos 4, 13, 14, 18).

Gain in DNA sequences was detected in six chromosomes and
in nine of the 15 abnormal tumours (Table 1 and Figure 2). A gain
of DNA sequences was most commonly observed in the long arm
of chromosome 1, in five of the abnormal cases (33%). The long
arms of chromosomes 10, 15, 17 and 19 were the other locations
where a gain in DNA sequences was observed.

A simultaneous gain in the long arm of chromosome 1 and a
loss in the long arm of chromosome 14 was detected in four cases
(27%; case nos. 3, 10, 11, 17). In cases 5, 7 and 15, copy number
changes were observed in only one of the chromosomes, namely a
simultaneous gain of 6p and loss of 6q22—qter, loss of 9p21—qter
and loss of 20p12-pter respectively.

The statistical analyses showed a higher probability that the loss
of genetic material in chromosome 6q would occur in epithelial
tumours when the epithelial group was tested against the
combined group of mixed and sarcomatous tumours. However,
this result was not statistically significant [odds ratio (OR) = 5.1,
90% confidence interval (CI) = 0.9-20.5, P = 0.28]. There were
however statistically significant correlations for the simultaneous
loss of chromosome 9p and either 6q or 13q and for the simulta-
neous gain of 1q and loss of 14q (OR = 13.6, 95% CI = 1.2-151,
P = 0.03). None of the aberrations detected in our CGH analysis
showed any statistical correlation with the survival data of the
patients or their exposure to asbestos.

DISCUSSION

This study is the first CGH analysis performed on uncultured
tumour cells of malignant pleural mesothelioma. A previous CGH
study of mesothelioma was based on cell lines (Kivipensas et al,
1996). The present study revealed DNA sequence copy number
changes in 15 (56%) out of the 27 specimens analysed. The 12
normal CGH results in our series were probably related to normal
cell contamination or intratumour genetic heterogeneity in these
samples, both of which are common occurrences in mesothelioma.
If normal tissue DNA amounts to more than 50% of the total DNA
in a sample, the reliable detection of ratio changes becomes
increasingly difficult (A Kallioniemi et al, 1994). This statement is
in agreement with our findings, because we were able to detect
changes in the genetic material in most of the paraffin-embedded
specimens, in which the malignant cells comprised more than 50%
of the sample tissue.
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In tumours that show intratumour genetic heterogeneity, the
different genetic aberrations present in individual clones may
sometimes balance one another or exist at too low a frequency
to be detected by CGH (Kallioniemi et al, 1994). The fact that no
gains in chromosomes 5, 7 and 20 or losses in the short arm of
chromosome 3, which are common aberrations found in cyto-
genetic studies (Popescu et al, 1988; Flejter et al, 1989; Tiainen et
al, 1989; Hagemeijer et al, 1990; Taguchi et al, 1993), were seen in
our CGH analyses, suggests that these changes possibly were
present in a small proportion of the cells and therefore not detected
by CGH. Furthermore, using in situ hybridization with centromere-
specific probes on mesothelioma paraffin sections, Tiainen et al
(1992) and Segers et al (1995) have shown a heterogeneous pattern
in chromosome copy numbers of chromosomes 1 and 7.

Our study revealed more losses than gains of DNA sequences.
The losses of DNA sequences in chromosomes 4q (minimal
common region between bands q31.1 and qter), 6q (q22—q24),
9p (p21-pter), 13q, 14q (q24—qter) and 22q (q13) observed in
this study, correlate well with previous cytogenetic studies of
mesothelioma (Popescu et al, 1988; Flejter et al, 1989; Tiainen et
al, 1989; Pelin-Enlund et al, 1990; Hagemeijer et al, 1990; Taguchi
et al, 1993). Losses in DNA sequences in the above mentioned
chromosomes were also detected in our previous CGH analysis of
mesothelioma (Kivipensas et al, 1996). One of our cases (no. 5)
did not show any changes other than a loss in 6q (q22—qter) and a
gain in 6p (cen—pter). This case and the other cases with losses in
6q (case nos. 4, 6, 10, 18), support the findings of Meloni et al
(1992) that deletion in 6q is associated with the loss of key genes,
which may be involved in initial transformations in at least some
cases of mesothelioma.

The most recurrent gain in genetic material found in this study
occurred in the long arm of chromosome 1. This aberration is
common among different tumour types and has been detected by
CGH for example in diffuse large B-cell lymphoma, breast cancer
and bladder cancer (Kallioniemi et al, 1994; Kallioniemi et al, 1995;
Ried et al, 1995; Monni et al, 1996). According to the Genome Data
Base, chromosome 1q carries several proto-oncogenes, which high-
lights the probability that imbalances at chromosome 1q may be
critical for oncogene dosage in certain neoplasias.

Homozygous deletions of chromosome 9p21-p22 have been
detected in various tumour types including leukaemia, mesothe-
lioma, melanoma, bladder carcinomas, lung cancer and renal cell
carcinoma (Diaz et al, 1990; Fountain et al, 1992; Cairns et al,
1993; Cheng et al, 1993; Mead et al, 1994). Recently, two putative
tumour-suppressor genes pl/6 (MTS1) and pl5 (MTS2), both
encoding cyclin-dependent kinase 4 (CDK4) inhibitors, have been
mapped to the short arm of chromosome 9 (p21) (Kamb et al,
1994). The p16 gene was initially thought to be altered more often
in mesothelioma cell lines than in primary tumours (Cheng et al,
1994). However, a recently published fluorescent in situ hybridiza-
tion study of 50 primary mesotheliomas showed complete and/or
partial deletion of p15 and p16 in 72% of cases (Xiao et al, 1995).
Whether the genes p15 and p16 are lost in our nine specimens with
a deletion in 9p, is so far unknown.

In conclusion, our report is the first genome-wide screening of
losses and gains of DNA sequences in human malignant pleural
mesothelioma tumour specimens. The detected DNA copy number
changes were clearly clustered on chromosomes 1q, 4q, 6q, 9p,
13q, 14q and 22q, suggesting that these chromosomal areas, which
could be the sites of currently unknown genes, may be involved in
the development and progression of this tumour.
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