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Background. 18F-FDG PET/CT is widely used in the prognosis evaluation of tumor patients. -e radiomics features can provide
additional information for clinical prognostic assessment. Purpose. Purpose is to explore the prognostic value of radiomics
features from dual-time 18F-FDG PET/CT images for locally advanced pancreatic cancer (LAPC) patients treated with stereotactic
body radiation therapy (SBRT). Materials and Methods. -is retrospective study included 70 LAPC patients who received early
and delayed 18F-FDG PET/CT scans before SBRT treatment. A total of 1188 quantitative imaging features were extracted from
dual-time PET/CT images. To avoid overfitting, the univariate analysis and elastic net were used to obtain a sparse set of image
features that were applied to develop a radiomics score (Rad-score). -en, the Harrell consistency index (C-index) was used to
evaluate the prognosis model. Results. -e Rad-score from dual-time images contains six features, including intensity histogram,
morphological, and texture features. In the validation cohort, the univariate analysis showed that the Rad-score was the in-
dependent prognostic factor (p< 0.001, hazard ratio [HR]: 3.2). And in the multivariate analysis, the Rad-score was the only
prognostic factor (p< 0.01, HR: 4.1) that was significantly associated with the overall survival (OS) of patients. In addition,
according to cross-validation, the C-index of the prognosis model based on the Rad-score from dual-time images is better than the
early and delayed images (0.720 vs. 0.683 vs. 0.583). Conclusion. -e Rad-score based on dual-time 18F-FDG PET/CT images is a
promising noninvasive method with better prognostic value.

1. Introduction

Pancreatic cancer is a malignant tumor. Although the
prognosis of patients with pancreatic cancer patients has
improved due to early diagnosis and treatment methods, the
1-year and 5-year survival rate of patients is about 15% and
9%, respectively [1, 2]. Surgical resection can effectively
prolong the survival of patients with pancreatic cancer.
However surgical resection can only be performed in about
20% of patients, and most patients with locally advanced
pancreatic cancer (LAPC) cannot be treated with surgery,

and their median survival time was only 6–14 months [3].
For these LAPC patients who cannot tolerate surgical
treatment, stereotactic body radiation therapy (SBRT) was a
commonly used treatment [4, 5]. However, not all patients
with LAPC can benefit from SBRT [6], so it is very important
to predict the outcome of treatment based on the patient’s
information.

Compared with most normal organs and tissues, the
uptake of 18F-FDG in tumor areas increased significantly.
-erefore, 18F-FDG PET/CT images have been widely used
in tumor imaging [7]. In terms of pancreatic cancer, 18F-
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FDG-PET-CTscanning plays an important role in diagnosis,
staging, and efficacy evaluation [8]. Some quantitative pa-
rameters based on PET imaging were shown to have some
prognostic value in cancer patients, such as maximum and
mean standard intake values (SUVmax and SUVmean).
However, for pancreatic cancer [9–12], most studies show
that the standardized uptake value (SUV) cannot be used as a
prognostic indicator of survival. However, for metabolic
tumor volume (MTV) and total disease glycolysis (TLG),
findings demonstrated that they were significantly associated
with the OS of patient. It must be emphasized that the
importance of MTV and TLG in predicting the prognosis of
pancreatic cancer varies in different clinical trials, which
may be due to different criteria for tumor zoning. In ad-
dition, some researchers use the retention index (RI) from
the dual-time 18F-FDG PET/CT images for prognostic as-
sessment. Gupta et al. [13] found that RI > 18.7% was
positively associated with poorer survival in patients with
pancreatic lesions. Saga et al. [14] showed that pancreatic
cancer patients with a high RI (RI > 10%) had a longer
survival time. -e effectiveness of RI needs further experi-
mental verification. -erefore, there was a need for new and
robust imaging features to predict the prognosis of pan-
creatic cancer patients.

Tumor heterogeneity is an important factor affecting the
prognosis of patients after treatment [15]. Radiomics, which
involves the extraction of quantitative features from medical
images to provide a comprehensive characterization of the
entire tumor, reflects the spatial relationship and heteroge-
neity of voxel intensities within tumors [16–18]. Currently,
studies have shown that radiomics features can be used for
cancer diagnosis, prognosis, and preoperative staging [19–21].
Some studies have shown that texture features from PET/CT
images can be used as predictors for prognosis. For example,
Yue et al. [22] studied the relationship between texture fea-
tures from PETimages before and after chemotherapy and the
OS of patients with pancreatic cancer.-e results showed that
some texture features were prognostic factors of patients. Cui
et al. [23] showed that texture features from early PET images
showed better prognostic value than conventional PET fea-
tures in patients treated with SBRT. And studies have shown
that continuously dynamic 18F-FDG PET/CTparameters can
be used as predictors of patient survival [13, 24]. However, it
was difficult to achieve 60-minute, dynamic 18F-FDGPET/CT
scans for patient prognosis. Recently, the dual-time FDG-
PET/CT (early and delayed images) has been shown to be
helpful in distinguishing benign from malignant pancreatic
lesions [19, 25]. In general, the uptake of 18F-FDG in ma-
lignant tissues continues to increase over time [26, 27].
-erefore, the researchers believe that dual-temporal PET/CT
images contain more prognostic information for patients.
-ere, we assumed that the radiomics score (Rad-score) from
dual-time static 18F-FDG PET/CT images can replace dy-
namic imaging to a certain extent, and predict the prognosis
of patients according to the changes in tumor texture.

In this study, we hypothesized that the radiomics score
(Rad-score) calculated by a linear combination of the
radiomics features from dual-time images could be the
reference indicator for the prognosis of LAPC patients. We

evaluated whether the Rad-score from dual-time imaging
had a better prognostic value than the Rad-score from early
or delayed images. -e ultimate aim of this retrospective
study was to explore the role of the radiomics features from
dual-time 18F-FDG PET/CT images in predicting the
prognosis of LAPC patients treated with SBRT.

2. Patients and Methods

2.1. Patients. -is retrospective study was approved by the
Ethics Committee of Changhai Hospital, and informed
consent was given to all participants. -e criteria for patient
inclusion were (a) confirmation of pancreatic cancer on
pathological examination of the patient after PET/CT scan;
(b) available dual-time 18F-FDG PET/CT images; and (c)
underwent SBRT treatment. -e exclusion criteria were (a)
other malignant tumors; (b) death due to diseases other than
pancreatic cancer during the follow-up period; and (c) a
metal positioning mark implanted in the tumor lesion. Fi-
nally, a total of 70 patients who underwent dual-time 18F-
FDG PET/CTexaminations in our hospital between January
2012 and January 2018 were identified and included in the
study.-e survival time of patients was determined from the
date of the FDG-PET examination to the last follow-up
examination in Changhai Hospital or the patient’s death.
Some of the data in this study have been reported [9].

2.2. PET/CT Imaging Protocols. -e dual-time 18F-FDG
PET/CT images data of the patients were collected on a
Biograph tripoint 64-layer 52-ring HD PET/CT scanner
(Siemens, Germany). Before the whole-body scan, the pa-
tients were required to fast for at least 6 hours. When their
blood sugar was lower than 11.1mmol/L, 18F-FDG at the
dose of 3.70∼5.55MBq/kg was injected, and the early
scanning was started 50–60 minutes after the injection. -e
whole-body PET scan covers 5–6 beds, with an acquisition
time per bed of about 2.5 minutes, a spatial resolution of
4.07× 4.07mm2, and a scan thickness of 3mm. -e pa-
rameters of the CT scan were a current of 170mA, a voltage
of 120 kV, a spatial resolution of 0.98× 0.98mm2, and a scan
thickness of 3mm. -e PET and CT image matrix size were
168×168 and 512× 512, respectively. After 120–150 min-
utes, delayed scanning was started. -e delayed PET/CT
images only contain the head to tail of the pancreas. Patients
were required to breathe shallowly during PET/CT scans to
reduce the impact of breathing exercises.

2.3. Image Analysis. -e radiomics workflow is shown in
Figure 1. For image preprocessing, we used the 3D Slicer
(version 4.10.2) to resample the original PET image and co-
register it with the corresponding CT images [28, 29]. Under
the guidance of the PET images, two radiologists with more
than 10 years of clinical experience outlined the tumor
contour on the CT images. -en the voxels of the CT were
clipped to [−10, 100] Hounsfield Units to reduce the in-
terference of fat and other factors on texture features
[30, 31]. For the PET images, a classical normalization factor
(body weight) was used to convert the voxel values to SUV
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values [32], and a square root transformation was used to
reduce noise. Finally, the voxel values of PETand CT images
were normalized to [0, 255].

-e feature extraction algorithm was applied in MAT-
LAB (-e MathWorks, Inc. Natick, MA, USA). Before
extracting the three-dimensional radiomics features, firstly,
the volumes of interests (VOIs) were obtained by per-
forming the nearest cubic trilinear interpolation on all ROI
areas in the Z-axis direction. -en the spatial resolution of
CTand PET images was resampled to 1× 1× 1mm3 by cubic
trilinear interpolation. Finally, a total of 1188 features were
extracted from the early and the delayed PET/CT images,
respectively, including three groups: texture features, shape
features, and wavelet features (Supplementary Table 1).

2.4. Feature Selection. Before features analysis, each radio-
mics feature value was independently normalized by sub-
tracting its mean and then dividing by its standard deviation.
To improve the reproducibility and robustness of the op-
timal features, first, we used the intra-class correlation co-
efficient (ICC) to weed out features with a correlation lower
than 0.75. Second, the univariate Cox regression analysis
selection was used to select features that were significantly
associated with patients’ overall survival time (p< 0.05).
Finally, we used elastic nets [33] for final feature screening
and repeat this process 100 times, recording the features
selected each time. To calculate the Rad-score, we then
counted the frequency of the features and included the top
six features in the final feature set. -en we retrained the
multivariate Cox regression model [34] with the final feature
subset in the training cohort and get the corresponding
weights. -e Rad-score is defined as the sum of the weights
of each feature, which will be used in subsequent related
experiments. -e specific calculation formula is shown as
follows:

Rad − score � 􏽘 Featuresi ∗Weightsi, (1)

where Featuresi represent the value of selected features and
Weightsi represent the corresponding weight of these fea-
tures in the Cox regression model.

2.5. Statistics Analysis. To evaluate the effectiveness of the
proposed Rad-score, first, patients were divided into a high-
risk group and a low-risk group using themedian of the Rad-
score in the training cohort. And the Kaplan–Meier survival
analysis with a log-rank test was used to analyze significant
differences in low-risk and high-risk groups. Second, the
Rad-score was used to build the prognosis model based on
Cox proportional hazard regression analysis. -e average C-
index for three-fold cross-validation was used to evaluate the
performance of the prognosis model. -e Wilcoxon rank-
sum test was used to evaluate whether there are significant
differences between different Rad-score. Finally, the uni-
variate and multivariate Cox regression analyses were used
to analyze whether the candidate parameters are indepen-
dent risk prediction factors in all data. All the above code was
implemented in R (version 3.6.3) software.

3. Results

3.1. BaselineClinical Informationof thePatients. A total of 70
LAPC patients received early and delayed 18F-FDG PET/CT
scans before SBRT treatment, which were randomly divided
into a training cohort and a validation cohort at a ratio of 2:1,
with 46 patients in the training cohort and 24 patients in the
validation cohort.-e baseline clinical information is shown
in Table 1. Female patients accounted for about 38.6, with an
average age of 65.7± 8.59 years. All patients received SBRT
and underwent 18F-FDG PET/CT scan before treatment.
-ere was no significant difference among the clinical
variables between the training and validation cohorts.

3.2. Features Selection. To select more robust features, 216
features with ICC less than or equal to 0.75 were eliminated
through inter-observer analysis. -en, we incorporated the
remaining 972 features into the subsequent resampling
experiment. Finally, we selected the six most frequent fea-
tures to retrain the final Cox regression. -e categories of
these six features and their weights in the retrained Cox
model are given in Table 2.-e Rad-score was then built that
was weighted by their respective coefficients in the Cox
regression model and used as a risk predictor for OS.
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Figure 1: -e workflow of radiomics analysis for prognosis. (a) Dual-time 18F-FDG PET/CT image data construction, (b) data pre-
processing, including image registration, lesion segmentation, and data normalization, (c) features extraction, including statistical,
morphological, and texture features, (d) features selection, including the univariate analysis and elastic net, (e) statistics analysis.
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3.3. Early PET/CT Images Analysis. For early image analysis,
according to the median Rad-score in the training cohort,
patientswere divided into high-risk groups and low-risk groups.
-ere was a significant difference in the OS between the high-
risk group and the low-risk group (p< 0.05) in the training and

the validation cohorts. And the Kaplan–Meier curve for the
Rad-score is shown in Figures 2(a) and 2(b). In terms of the
prognostic accuracy of the prognostic model, the Rad-score
calculated from the early image reached 0.683±0.016 in the
validation cohort (0.726±0.030, training cohort).

Table 1: Clinical characteristics of the patients in the training cohort and the validation cohort. #Data are the number of patients and data in
parentheses are the ratio.

Variable Training cohort (n� 46) Validation cohort (n� 24) p value
Age (years)∗ 68 (26, 82) 67 (45, 84) 0.985
Sex# 0.156
Male 31 (67.4%) 12 (50.0%)
Female 15 (32.6%) 12 (50.0%)

T stage# 0.345
1 2 (4.3%) 1 (4.2%)
2 12 (26.1%) 5 (20.8%)
3 15 (32.6%) 13 (54.2%)
4 17 (32.7%) 5 (20.8%)

N stage# 0.102
0 30 (65.2%) 10 (41.7%)
1 16 (34.8%) 14 (58.3%)

ECOG# 0.458
0 8 (17.4%) 7 (29.2%)
1 23 (50.0%) 9 (37.5%)
2 15 (32.6%) 8 (33.3%)

CA19-9∗ 365 (2, 2125) 132 (2, 1200) 0.504
Longest diameter (cm)∗ 3.6 (1.5, 7.5) 3.9 (1.0, 6.3) 0.268
Location# 0.783
Head 34 (73.9%) 17 (70.8%)
Body/distal 12 (26.1%) 7 (29.2%)

Chemotherapy# 0.312
0 29 (63.0%) 18 (75.0%)
1 17 (37.0%) 16 (25.0%)

Dose∗ 37.2 (30, 46.8) 36 (30, 46.8) 0.454
OS (month)∗ 15.4 (7.5, 56.8) 14 (10.6, 43.9) 0.449
∗Data are the median and data in parentheses are the range. Chi-square test andMann–WhineyU test are used to compare the difference between categorical
and continuous variables in the training cohort and the validation cohort, respectively. ECOG, eastern cooperative oncology group; CA19-9, carbohydrate
antigen 19–9; dose, radiotherapy dose (Gy).

Table 2: Radiomics features were selected via the elastic net and the corresponding weights in retraining the Cox regression model.

Feature name Categories Modality Time
Weights

Early Delay Dual
Solidity Shape —

Early

−3.7884 — −2.0451
Contrast GLDS (HHH) CT 0.3654 1.4669
Contrast GLDS (HHH) PET 0.5546 1.9619
Energy GLDS (LLL) CT 6.4719 —
Contrast GLDS (HHH) PET −0.1456 —
Energy GLCM (LLH-LHL-HLL) CT −0.1552 —
Busyness NGTDM (LLL) PET

Delay

— 3.5622 2.3483
Entropy Histogram (original) CT 0.8987 2.5573
Gray level nonuniformity GLSZM (LLH-LHL-HLL) CT 3.1435 3.1575
Busyness NGTDM (original) PET −1.2738 —
Entropy GLDS (original) CT 0.3695 —
Mean GLDS (LLL) PET −0.2466 —
GLCM, gray-level co-occurrence matrix; GLDS, gray-level difference statistics; GLRLM, gray-level run length matrix; GLZSM, gray-level zone size matrix;
NGTDM, neighborhood gray-tone difference matrix; LHH� lowpass filter + highpass filter + highpass filter.
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3.4. Delayed PET/CT Images Analysis. For delayed image
analysis, the Kaplan–Meier curves of the high-risk group
and the low-risk group are shown in Figures 2(c) and 2(d).
-e OS of patients in the low-risk group was significantly
better than that of the high-risk group (p< 0.05 in training
and validation cohorts). We constructed a prognosis model
based on the Rad-score in the training cohort, and its
survival prediction accuracy in the validation cohort reached
0.583± 0.007 (0.653± 0.006, training cohort).

3.5. Dual time PET/CT Images Analysis. -e Kaplan–Meier
curve of the Rad-score for high-risk and low-risk groups was
seen in both training and validation cohorts (Figures 3(a) and
3(b), p< 0.05). In the training cohort, there was a significant
difference in the survival time of patients between the low-risk
group and those in the high-risk group, whichwas verified in the
validation cohort (p< 0.01). -e C-index of the dual-time
model based on theRad-scorewas 0.720±0.031 in the validation
cohort (0.729±0.031, training cohort). In addition, the results of
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Figure 2: -e Kaplan–Meier curve represents the OS of LAPC stratified according to the median value of the Rad-score in the training
cohort (early images (a) and (b), delayed images (c) and (d)). -e log-rank p-value is shown on the right side of each graph.
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the Wilcoxon rank-sum test show that there are significant
differences between models based on dual-time images and
single-time image models (p< 0.05, Supplementary Table 2).
Furthermore, we compared the prediction accuracy of several
major radiomic features used in the Rad-score.-e results show
that the Rad-score has better prediction performance.

To determine the independent risk factors for patients
treated with SBRT, we performed the univariate and mul-
tivariate Cox analysis of the Rad-score from dual-time
images, clinical information, and conventional PET features
(SUV, MTV, and TLG) in all data. -e results are shown in
Table 3. According to the univariate Cox regression analysis,
the Rad-score from dual-time images was significantly
correlated with the OS (p< 0.001) in the validation cohort.
And higher SUVmax, SUVmean, MTV, and TLG from the
delayed images were significantly correlated with shorter OS
(p � 0.07, 0.048, 0.003, 0.001), and clinical factors such as
T-stage, N-stage, dose, and chemotherapy were also sig-
nificantly correlated with OS (p< 0.05). On the other hand,
with a multivariate Cox regression analysis, the Rad-score
from dual-time images was the only independent prognostic
factor (p< 0.001).

4. Discussion

-e purpose of this study was to explore the predictive value
of radiomics features from dual-time images on the prog-
nosis of LAPC patients treated with SBRT. We found that
the Rad-score from dual-time 18F-FDG PET/CT images can
be used to predict the prognosis of LAPC patients, and can
achieve the prognostic stratification with OS of patients.-is
result has clinical significance for promoting the precise
treatment of LAPC.
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Figure 3: Kaplan–Meier survival curves and risk group stratification based on dual-time images.

Table 3: Univariate and multivariate regression analysis for the
Rad-score, clinical risk factors, and conventional PET features in
the 70 LAPC patients.

Parameters
Univariate analysis Multivariate analysis

HR (95% CI) p

value HR (95% CI) p

value
Age 1 (1–1) 0.084
Sex 0.99 (0.6–1.7) 0.98

ECOG 0.89
(0.63–1.3) 0.5

Tumor diameter 1.3 (1.1–1.5) 0.012 1.1 (0.86–1.4) 0.414
Location 1.1 (0.64–2) 0.68

T stage 1.8 (1.3–2.4) <0.01 0.99
(0.63–1.6) 0.97

N stage 1.7 (1.1–2.9) 0.031 1.2 (0.66–2.1) 0.61
CA19-9 1 (1–1) 0.063

Chemotherapy 0.39
(0.22–0.69) 0.001 0.55

(0.26–1.2) 0.11

Dose 0.9
(0.85–0.95) <0.01 0.47 (0.21–1) 0.056

SUVmax (early) 2.6
(0.88–7.5) 0.083

SUVmean (early) 2.5 (0.85–7.1) 0.097

MTV (early) 2.5
(0.65–9.3) 0.19

TLG (early) 3.6 (1.1–1.2) 0.037 0.77
(0.095–6.3) 0.806

SUVmax (delay) 5.1 (1.6–17) 0.007 2.1 (0.1–43) 0.632
SUVmean(delay) 3.2 (1–9.9) 0.048 4 (0.075–210) 0.494
MTV (delay) 8.9 (2.1–3.7) 0.003 - 0.537
TLG (delay) 9.8 (2.5–38) 0.001 - 0.717
Rad_score (dual) 3.2 (2.1–5) <0.001 4.1 (2.1–8.1) <0.001
ECOG, eastern cooperative oncology group; CA19-9, carbohydrate antigen
19–9; dose, radiotherapy dose (Gy); MTV, metabolic tumor volume; TLG,
total lesion glycolysis.
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-e radiomics has attracted a lot of attention in its ability
to noninvasively analyze tumor heterogeneity; and provides
a viable tool for patient prognosis. In this study, we con-
ducted a two-stage experimental setup to explore the best
model for a prognosis for patients with pancreatic cancer.
First, we use 594 radiomics features extracted from early or
delayed imaging to develop a single-time prognostic model,
and then we combined the radiomics features extracted from
dual-time PET/CT images to develop a dual-time prognostic
model. In these two stages, the six radiomics features with
the highest frequency were used to calculate the Rad-score.
Univariate analysis showed that the Rad-score of both early
and delayed images was significantly correlated with the OS
of LAPC patients (p< 0.01, HR: 3.00 and 2.70). -is result
indicated that both early and delayed PET/CT images
contain patient prognostic information [13, 23]. -e Rad-
score from dual-time images is also significantly correlated
with the OS of patients (p< 0.01, HR: 2.35). -e C-index of
the model based on dual-time images was significantly
higher than that of the model based on early and delayed
images (p< 0.05, Wilcoxon rank-sum test). At the same
time, it must be pointed out that there are differences in the
division of high-risk and low-risk groups according to the
Rad-score of single-time images, while an accurate grouping
can be obtained by analyzing the Rad-score of dual-time
images. -ese results showed that dual-time PET/CT images
can provide more prognostic information and offset the
limitations of single-time PET/CT images [13]. -is may be
related to the kinetics of tumor uptake. As the uptake time
increases, the uptake of 18F-FDG by malignant tumor tissues
will increase significantly [26, 27].

In this study, the Rad-score from dual-time images
includes three types of features such as shape feature, first-
order gray statistics feature, and texture feature. Different
types of texture features can reflect the inherent heteroge-
neity of tumors from different angles [35, 36]. In addition,
the optimal features include both original texture features
and texture features based on wavelet transform (wavelet
coefficients: HHH� highpass filter + highpass filter-
+ highpass filter), which reflect the heterogeneity of tumors
on different spatial scales. On the one hand, it must be
pointed out that when these six radiomics features were used
alone, none of the features can predict patient survival better
than the Rad-score, indicating the complementarity of in-
formation between different features. On the other hand,
these characteristics are also significantly related to the OS of
patients. -e solidity reflects the complexity of the ho-
mogenous region of the tumor. -e smaller the value, the
higher the complexity of the tumor and the worse the
prognosis of the patients [37]. -e gray level difference
statistics (GLDS) calculates the contrast of the image and
reflects the roughness of the texture. -e contrast [38] (PET,
GLDS, and HHH) shows that the metabolic changes in the
lesions in PET images have a strong resolution, the func-
tional metabolic changes in the lesions are larger, and the
texture is coarser in patients with poor prognosis. -e
Busyness (Neighborhood Gray-Tone Difference Matrix
(NGTDM) and PET) measures the change from pixel to the
adjacent pixel. A high value of business indicates that the

intensity between a pixel and its neighborhood changes
rapidly, indicating that the more complex the tumor is in
patients with poor prognosis. -e correlation and the energy
from the gray-level size zone matrix (GLSZM) in CT images
quantify the degree of nonuniformity of the gray level in
images. -e patients with a better prognosis showed better
texture consistency.

-e clinicopathological parameters, including T-stage,
chemotherapy, and dose were found to be strong predictors
of prognosis in LAPC patients receiving SBRT in the uni-
variate Cox analysis. However, the above indicators did not
show prognostic value for patients in the multivariate Cox
analysis study. For the conventional PET features, the TLG
from delayed PET/CT images is significantly associated with
a poor prognosis. -is reaffirms the fact that the metabolic
tumor volume combined with the tumor range is a better
predictor of patient survival. However, in this study, the TLG
of the early images does not correlate with the OS. One
possible reason is that compared with the early images,
delayed images may better reflect the uptake of 18F-FDG by
malignant tumors. -is result is different from our previous
research [9]. One possible reason is that the tumor contour is
outlined in different ways, and another possible reason is the
difference in the number of patients.

-ere are some limitations to this study. First, the
samples in this study were from a single center, the sample
size available for analysis was small, and the potential of
selection bias cannot be ruled out, which limits the accuracy
and reliability of the results. -erefore, we hope that the
results of this study can be repeated using larger datasets and
multiple centers in the future. Second, the ROI/VOI was
drawn manually, which is very time-consuming and in-
convenient, and the predicted performance may be sensitive
to the ROI/VOI depicting pancreatic lesions. In future re-
search, automatic segmentation or semi-automatic seg-
mentation could be achieved through the application of deep
learning.

5. Conclusion

In conclusion, the Rad-score obtained from dual-time 18F-
FDG PET/CT images reflects the heterogeneity of intertu-
moral metabolism from different aspects. It is a powerful
predictor of survival for patients with locally advanced
pancreatic cancer treated with SBRT. -e radiomics analysis
of dual-time PET/CT images can help patients choose the
appropriate treatment plan and realize precision medicine.
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