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Macrophages are important immune cells of the innate immune system that are involved in organ-specific homeostasis and
contribute to both pathology and resolution of diseases including infections, cancer, obesity, atherosclerosis, and autoimmune
disorders. Multiple lines of evidence point to macrophages as a remarkably heterogeneous cell type. Different phenotypes of
macrophages exert either proinflammatory or anti-inflammatory roles depending on the cytokines and other mediators that they
are exposed to in the local microenvironment. Proinflammatory macrophages secrete detrimental molecules to induce disease
development, while anti-inflammatory macrophages produce beneficial mediators to promote disease recovery. The conversion
of the phenotypes of macrophages can regulate the initiation, development, and recovery of autoimmune diseases. Human
neuroimmune diseases majorly include multiple sclerosis (MS), neuromyelitis optica (NMO), myasthenia gravis (MG), and
Guillain-Barré syndrome (GBS) andmacrophages contribute to the pathogenesis of these neuroimmune diseases. In this review, we
summarize the double roles of macrophage in neuroimmune diseases and their animal models to further explore the mechanisms
of macrophages involved in the pathogenesis of these disorders, which may provide a potential therapeutic approach for these
disorders in the future.

1. Introduction

Macrophages distributed in tissues throughout the body play
a key role in immune response, tissue homeostasis, metabo-
lism, and repair [1]. Mature macrophages in different tissues
present with different phenotypes, such as microglia in the
brain, alveolar macrophages in the lungs, Kupffer cells in
the liver, and osteoclasts in bone tissue [2]. In addition,
macrophages can switch their phenotypic and functional
properties depending on the signals in their microenviron-
ment in homeostasis and disease [3].The polarization ofmac-
rophages is determined by the cytokines and other mediators
they encounter. Different subsets of macrophages exert either
proinflammatory or anti-inflammatory roles. Recently, the
studies have demonstrated that macrophages take part in the
pathological process of neuroimmune diseases. This review
outlines the double roles of macrophages in human neuroim-
mune diseases, such asmultiple sclerosis (MS), neuromyelitis

optica (NMO), myasthenia gravis (MG), and Guillain-Barré
syndrome (GBS) as well as their animal models.

2. An Overview of Macrophages

2.1. The Origin of Macrophages. Historically, macrophages
were considered to derive primarily fromhematopoietic stem
cells (HSCs) via bone marrow progenitors and circulating
bloodmonocytes intermediates [4].However,more andmore
evidences have revealed that there are dual origins of tissue
macrophages, either from embryonic progenitors or from
blood monocytes (Figure 1). The major macrophage popu-
lations are established prior to birth [5]. These cells develop
from either primitive yolk sac macrophages or embryonic
fetal liver monocytes and self-replenish themselves [1, 6].
Hoeffel and colleagues have shown that yolk sacmacrophages
derive from early erythromyeloid progenitors (EMPs), while
late c-Myb+ EMPs seed the fetal liver and give rise to fetal
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Figure 1: Origin and self-renewal of macrophage. Tissue macrophages have dual origins. One part develops from embryonic progenitors in
the yolk sac and fetal liver and self-renew.The other part derives from hematopoietic stem cells (HSCs) in bone marrow and blood monocyte
intermediates.HSCs also can self-replenish themselves.Monocyte-derivedmacrophages can give rise to some subsets of residentmacrophages
under certain conditions. Resident macrophages and monocyte-derived macrophages ultimately constitute macrophages in all tissues, such
as microglia in the brain, Langerhans cells in the skin, and Kupffer cells in the liver. EMPs, erythromyeloid progenitors; HSCs, hematopoietic
stem cells.

monocytes. Both early EMPs and late c-Myb+ EMPs are gen-
erated in the yolk sac [6]. Yolk sac macrophages are the main
precursors of microglia, while fetal monocytes differentiate
into most other macrophages (alveolar macrophages in the
lung and Kupffer cells in the liver, for example) [6–8]. In der-
mis and gut tissues, macrophages are renewed by adult HSC-
derived monocytes [9, 10]. Besides, in spleen, kidney, and
pancreas, macrophages with dual origins coexist [11]. How-
ever, most studies on origin of macrophages are focused on
rodents and cells, so the exact origin of human macrophages
is urgent to be clarified.

2.2.The Polarization and Roles ofMacrophages. Macrophages
not only present antigens as other antigen presenting cells
(APCs) such as dendrite cells, but also eliminate microbes
and tumor cells together with natural killer cells, T cells and B
cells. What is more, macrophages contribute to tissue repair
and remodeling, as well as restoration of pathogen-disturbed
homeostasis [12]. The activated state, or polarization, of
the macrophages depends on numerous factors from the
microenvironment they reside in during normal homeostasis
and in the pathological conditions [3]. Pathogen- and self-
local environment-derived stimuli induce the macrophage
phenotypic polarization [13]. Proinflammatory subtype/anti-
inflammatory subtype polarization is themostwell-described
and commonly reported paradigm of macrophage polariza-
tion [14] (Figure 2). Proinflammatory subtype, also known as
classically activated macrophages, is generally instigated by

the presence of microbial products, such as lipopolysaccha-
ride (LPS), proinflammatory cytokines, interferon-𝛾 (IFN-
𝛾), and tumor necrosis factor-𝛼 (TNF-𝛼), as well as damage
associated molecule patterns high mobility group box 1.
Anti-inflammatory subtype, regarded as alternative activated
macrophages, is activated by T helper 2 (Th2) cell-associated
cytokines (IL-4 and IL-13), anti-inflammatory molecules (IL-
10 and glucocorticoids), and immune complexes (IC) [15,
16]. Proinflammatory macrophages, characterized by their
expression of high levels of TNF-𝛼, IL-1, IL-6, IL-12, IL-23,
nitric oxide (NO), and reactive oxygen intermediates (ROI),
by their upregulation of major histocompatibility complex-
II (MHC-II), costimulatory molecules, and T helper 1- (Th1-)
recruiting chemokines, have a strong microbicidal and
tumoricidal activity [17–19]. By contrast, anti-inflammatory
macrophages, which upregulate surface molecules including
mannose receptor CD206 and scavenger receptor CD163 and
produce high levels of IL-10, transforming growth factor-
𝛽 (TGF-𝛽), and chemokines, are supposed to contribute to
parasite infestation, tissue remodeling, and tumor progres-
sion [14, 17, 19, 20]. Anti-inflammatory macrophages can
be further subcategorized into M(IL-4), M(IC), M(IL-10),
and so on [15, 19]. M(IL-4), activated by IL-4, produces
CCL24 and CCL22 in mice and CCL17 and CCL18 in
human, resulting in the recruitment of eosinophils, basophils,
and Th2 cells [19]. M(IC), stimulated by immune com-
plexes (IC), produces CCL1 in mice, recruiting regulatory
T cells (Tregs) [19]. M(IL-10) is activated by IL-10, which



Mediators of Inflammation 3

IC

MHC-II
CD40
CD80
CD86 CXCL9, CXCL10, CXCL11

Th1 response
IL-23, NO, ROI Killing of microbes

Tumor resistance

MHC-II
MR
SR

IL-10, IL-1Ra
CCL17, CCL18
CCL22, CCL24

Th2 response

Allergy

Parasite infestation

MHC-II
CD86IL-10

IL-4

IL-10
CCL1

Th2 response

Immunoregulation

Immunoregulation

MR

Immunoregulation

Tissue remodeling

SLAM

M0

Proinflammatory
macrophages

Anti-inflammatory
macrophages

M(IL-10)

M(IC)

M(IL-4)

IL-10, TGF-𝛽

TNF-𝛼, IL-1, IL-6, IL-12

LPS, IF
N-𝛾,

 TNF-𝛼

Figure 2: Macrophage polarization into proinflammatory and anti-inflammatory macrophages. Macrophages polarize and acquire different
functional properties in response to numerous factors from the microenvironment. Macrophages activated by IFN-𝛾, LPS, or TNF-𝛼 can
develop proinflammatory macrophages, with strong microbicidal and tumoricidal properties. In contrast, anti-inflammatory macrophages
contribute to Th2 response, immunoregulation, and tissue remodeling. Anti-inflammatory macrophages have different subsets. M(IL-4)
macrophages (induced by exposure to IL-4) secret TNF-𝛼, IL-1, and IL-6 and induce Th2 cell response and allergy. M(IC) macrophages
(induced by IC) secret IL-10 and exert immunoregulatory function. M(IL-10) macrophages (induced by IL-10) secret IL-10 and TGF-𝛽,
suppress immune responses, and promote tissue remodeling. CCL, CC-chemokine ligand; CXCL, CXC-chemokine ligand; IC, immune
complexes; IFN-𝛾, interferon 𝛾; LPS, lipopolysaccharide; MHC-II, major histocompatibility complex-II; MR, mannose receptor; NO, nitric
oxide; ROI, reactive oxygen intermediates; SLAM, signaling lymphocytic activation molecule; SR, scavenger receptor; TGF-𝛽, transforming
growth factor-𝛽; TLR, toll-like receptor; TNF-𝛼, tumor necrosis receptor-𝛼.

is immunosuppressive and engaged in extracellular matrix
remodeling [14]. Diverse microenvironmental factors shape
macrophage different activation states, which induce the
dynamic switch of macrophage phenotype and function,
showing different extremes of a continuum ranging from
proinflammatory subtype to anti-inflammatory subtype [21,
22]. Transcription factors including STAT1, STAT6, C/EBPb,
IRF-4, IRF-5, and PPAR-𝛾 can regulate transcription pro-
grams which control the polarization of proinflamma-
tory/anti-inflammatory macrophage [23, 24]. Proinflamma-
tory subtype/anti-inflammatory subtype polarization status is
regulated by the complex and interacting endogenous cellular
signaling pathways in the microenvironment, such as C-Jun
N-terminal kinase (JNK) signaling pathway, phosphatidyl-
inositol-3-kinase (PI3K)/Akt signaling pathway, Notch sig-
naling pathway, and JAK/STAT signaling pathway [2].

Macrophages are dispersed in many tissues and have
distinct functions influenced by their location in the body
[25]. Kupffer cells in liver contribute to the uptake of lipopro-
tein for maintenance of homeostasis and the endocytosis of
pathogens and waste materials for host defense [26]. Alveolar
macrophages in lung are involved in the uptake of inhaled
particle and host defense against many borne microorgan-
isms [27]. In homeostasis, Kupffer cells achieve immune
surveillance and liver tolerance through IL-10 secretion [28].

Perturbation of homeostasis results in the activation of Kupf-
fer cells by 𝛽-glucans from bacteria and fungi or lipopolysac-
charide (LPS), the endotoxins of Gram-negative intestinal
bacteria [29]. Activated Kupffer cells present either proin-
flammation or anti-inflammation phenotype [17]. Upon acti-
vation,microglia acquire an amoeboid shape and exert proin-
flammation or anti-inflammation roles dependent on differ-
ent cytokines and other mediators they are exposed to [30].

In disease state, identifying different subsets ofmacropha-
ges, activated states of macrophages, and macrophage polar-
ization is crucial forunderstanding thepathogenesis and treat-
ment of human disease.

3. Macrophages in Human Neuroimmune
Diseases and Their Animal Models

Macrophages represent a ubiquitous yet complex population
of immune cells that play major roles in both disease and
homeostasis throughout the body. They contribute to both
pathology and resolution in all acute and chronic inflamma-
tory diseases including infections, cancer, obesity, atheroscle-
rosis, and autoimmune disorders [31]. Neuroimmune dis-
eases are a series of complex autoimmune diseases which
involve the nervous system, including MS, NMO, GBS, and
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MG. The exact pathogenesis of these diseases is essentially
ambiguous. But emerging data has suggested that macropha-
ges may be associated with the development of these diseases
(Table 1).

3.1. Macrophages inMultiple Sclerosis and Experimental Auto-
immune Encephalomyelitis. MS, one of the most frequent
central nervous system (CNS) diseases in young adults, is a
progressive autoimmune disease caused by damage to the
myelin and axons of brain and spinal cord [56]. MS patients
show various neurological symptoms which originate in dif-
ferent areas of theCNS, such asmotor deficits, sensory distur-
bances, visual disturbances, and neuropsychological symp-
toms [57]. So far, the etiology of MS is still not well under-
stood; genetic, metabolic, environmental, and immunolog-
ical factors have all been implicated [58]. The pathological
hallmarks of MS consist of lymphocytes and macrophage
infiltration, axonal demyelination, neuronal impairment, and
remyelination [59, 60]. Different functional subpopulations
of macrophages, with various roles including phagocytosis,
antigen presentation, and lymphocyte stimulation, are abun-
dantly present in inflammatoryMS lesions [61].Macrophages
not only induce lesion formation and axonal damage, but
also contribute to remyelination. On one hand, macrophages
exert proinflammatory, neurotoxic, and myelin-attacking
properties through secretion of inflammatory mediators,
reactivation of pathogenic T cells, and suppression of Tregs
expansion [32]. On the other hand, macrophages present
repair mechanisms through the production of neurotrophic
factors and clearance of myelin debris [33, 34]. Experimental
autoimmune encephalomyelitis (EAE) is an animal model
used to explore the mechanisms of MS and translate them
into therapeutic interventions [62]. EAE can be induced
either by active immunization with myelin components
coupled with adjuvant or by passive transfer of myelin-
reactive T cells [63]. EAE shares many pathological features
with MS, such as chronic demyelination, neuronal damage,
and neuroinflammation [64, 65]. It has been demonstrated
that macrophages have a pathogenic role in initiating EAE,
and eliminating macrophages significantly inhibits disease
[35]. Another study showed that macrophages predomi-
nated in demyelinated areas and the macrophage number
was correlated with tissue damage in EAE [36]. However,
macrophages are also beneficial to remyelination. Undoubt-
edly, macrophages in MS or EAE consist of different pheno-
typical and functional subpopulations (Table 2).

3.1.1. Microglia and Monocyte-Derived Macrophages. His-
torically it was difficult to distinguish activated microglia
from activated macrophages in CNS lesion sites because
they both present similar antigenic markers [87]. Thanks to
chimeric mice, whose bone marrow (BM) cells are replaced
by donor BM cells containing mismatched-MHC of fluores-
cently labeled myeloid cells, microglia can be distinguished
from monocyte-derived macrophages [88, 89]. Microglia
andmonocyte-derivedmacrophages are functionally distinct
populations of macrophages with unique origins. Microglia
are located in the parenchyma and rely on local self-renewal,

while monocyte-derived macrophages are renewed by blood
derived monocytes and situated in both the parenchyma and
the CNS barriers of the choroid plexus, perivascular space,
and the meninges [30]. In addition, a TGF𝛽-1 dependent
microglial signature of microglia can provide the ability
to distinguish microglia from infiltrating myeloid cells in
the CNS [90]. Also, an evolutionarily conserved protein
TMEM119 serves as a reliable microglial marker that dif-
ferentiates microglia from monocyte-derived macrophages
in human brain [91]. Interestingly, there is virtually no
background trafficking of monocyte-derivedmacrophages in
the CNS parenchyma of healthy organism [36]. Perturba-
tion of CNS homeostasis can result in the recruitment of
monocyte-derived macrophages which are associated with
axonal loss, astrogliosis, and neurodegeneration in the CNS
[30]. Once homeostasis is restored, these monocyte-derived
macrophages seem to vanish [30]. A recent study revealed
important physiological roles of microglia in learning and
memory by promoting learning-associated synaptic struc-
tural remodeling using CX

3
CR1CreER mice which express

tamoxifen-inducible Cre recombinase [92]. Now it has been
generally accepted that EAE is characterized by activation
of resident microglia and extensive infiltration of monocyte-
derived macrophages. Monocyte-derived macrophages are
important in the effector phase of EAE and actively initiated
demyelination. But the activation of microglia precedes the
massive immune cells infiltration and the demyelination
cascade and finally dominates the remyelination and repair
of disease [93]. Microglia not only boost inflammatory and
degenerative events in the CNS, which are correlated with
axon andoligodendrocyte pathology, but also exert neuropro-
tective role in EAE [30]. Ponomarev et al. found that activated
microglia promote the development and maintenance of
inflammatory lesions in the CNS before the infiltration of
circulating monocytes/macrophages into the CNS, implying
the contributions of microglia in the early stages of EAE
[78]. However, another study showed that microglia elim-
inated debris and suppressed cellular metabolism at EAE
onset, presenting a beneficial role [36]. After myelin inter-
nalization, microglia gain a less-inflammatory phenotype
and support tissue repair [94–96]. In addition, microglia
express high levels of TGF-𝛽 and low levels of activation
markers CD45, CCR1, and CCR5, which induces a protective
process [37]. Monocyte-derived macrophages are phago-
cytic and inflammatory cells which initiate demyelination at
EAE onset [36]. Monocyte-derived macrophages can present
antigens and activate myelin-reactive T cells in CNS of
EAE and then express high levels of adhesion molecules
(ICAM-1 and VCAM-1) and chemokines (CCL2 and CCL3),
attracting leukocyte infiltration into CNS [79–81]. Moreover,
monocyte-derived macrophages induce the activation of
residentmicroglia to accelerate inflammation, indicating that
they are important population in EAE pathology [82]. These
results show that macrophages play a key role in disease
processes. The intervention of macrophage/microglia activa-
tion prior to disease induction had modest effects in disease
progression; nevertheless the intervention at disease onset
significantly improved disease severity [97]. Furthermore,
inhibiting the activation of microglia induced a delayed
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onset of EAE [98]. Another study showed that conditional
depletion of microglia-endogenous TGF-𝛽-activated kinase 1
(TAK1) suppressed disease, strongly diminished CNS inflam-
mation, and decreased tissue damage by cell-autonomous
inhibition of the NF-𝜅B, JNK, and ERK1/2 pathways in EAE
[99, 100]. Through CD11b-HSVTK mice which express her-
pes simplex thymidine kinase in macrophages andmicroglia,
Heppner et al. found that microglial paralysis suppressed the
development and maintenance of inflammatory CNS lesions
in EAE [101]. A recent study has demonstrated that CXCR7
suppression modulated microglial chemotaxis to ameliorate
the clinical severity of EAE [102]. In addition, hydroxy-
chloroquine treatment suppressed the activation of human
microglia and attenuated EAE [103]. 18𝛽-glycyrrhetinic acid
can attenuate EAE through suppressing microglia activation-
mediated CNS inflammation and promoting neuroprotec-
tive roles of microglia [104]. Fingolimod treatment of EAE
resulted in diminished microglial activation in vivo PET
imaging [105]. From these studies, it has been speculated that
microglia/macrophages, which display double roles in the
disease course of EAE, are quite important for exploring the
pathogenesis and progression of MS.

In MS, microglia turn into competent APCs for T cells
after eating myelin and axonal remnants, which promote
their expression ofMHC-II and costimulatorymolecules and
their secretion of inflammatory and neurotoxic molecules,
resulting in neuroinflammation and demyelination [66, 67].
Moreover, microglia play a crucial role in the maintenance
of CNS homeostasis [68]. Microglia in normal appearing
white matter of MS patients display features of immuno-
suppression and expressed molecules to prevent activation
and tissue damage [69]. Monocyte-derived macrophages are
found in active demyelinating lesions of MS patients [106,
107]; one part contains myelin remnants [70] and the other
secretes inflammatory cytokines and expressed costimulatory
molecules, both inducing MS lesion development [71, 72].
Besides, some monocyte-derived macrophages display an
intermediate activation which suppress neuroinflammation
and promote CNS repair, presenting a neuroprotective role
in MS [73, 74]. Glucocorticoids, IFN-𝛽, glatiramer acetate,
and fingolimod, commonly used drugs forMS, can effectively
inhibit macrophage or microglia activation and alleviate
disease severity in early stage of MS [108–111]. Therefore, tar-
geting macrophages or microglia is an attractive therapeutic
option for the treatment of MS.

3.1.2. Proinflammatory and Anti-Inflammatory Microglia/
Macrophages. The current concept of macrophage polar-
ization describes two subtypes with distinct but opposing
functions [112], the proinflammatory subtype with secretion
of TNF-𝛼, IL-1𝛽, IL-12, and IL-23 and the anti-inflammatory
subtype with secretion of IL-10, TGF-𝛽, and sIL-1R𝛼
[113–115]. It has been demonstrated that proinflammatory
microglia/macrophages induce tissue damage due to exces-
sive secretion of proinflammatory cytokines, ROI and NO
[75, 76]. In contrast, anti-inflammatorymicroglia/macropha-
ges can phagocytose debris and promote tissue repair and ter-
mination of neuroinflammation, leading to a neuroprotective
response [77].

In EAE,microglia/macrophages also can be classified into
proinflammatory and anti-inflammatory microglia/macro-
phages. Proinflammatory and anti-inflammatory microglia/
macrophages predominate differentially during disease
course. For instance, proinflammatory microglia/macropha-
ges contribute to the establishment of early inflammation
in EAE, whilst anti-inflammatory microglia/macrophages
induce the resolution of inflammation [83]. What is more,
proinflammatorymicroglia/macrophages are associated with
increased EAE severity, whereas anti-inflammatory micro-
glia/macrophages are correlated with ameliorated clinical
disease [84].Anti-inflammatorymicroglia/macrophages pro-
mote the differentiation of Th2 cells and Tregs, which can
suppress EAE severity [85]. Anti-inflammatory microglia/
macrophages also participate in the development of relapses
in EAE [116]. Administration of ex vivo activated anti-inflam-
matory macrophages may not only suppress ongoing severe
disease but also promote immunomodulatory expression
pattern in CNS lesions, indicating their anti-inflammatory
role in the recovery of EAE [116]. Adoptive transfer of anti-
inflammatory macrophages could inhibit the development of
T helper 17 (Th17) cells and induce the differentiation of Th2
cells and Tregs which both reverse EAE, confirming their
direct therapeutic relevance [85, 86].

Recent studies also have shown that there are CD163+
and Arg-1+ anti-inflammatorymicroglia/macrophages inMS
brain [94, 117]. In addition, primary cultures of humanmono-
cyte-derived macrophages were exposed to IFN-𝛾 and LPS
for the activation of M1 and to IL-4 for the activation of
anti-inflammatory macrophages. Anti-inflammatory macro-
phages migrated over longer distance and with higher veloc-
ity towards CCL5, CXCL10, CXCL12, and C1q, all of which
were key factors for monocytes recruitment into MS lesions,
whereas proinflammatory macrophages did not respond and
remained sessile [118]. Upon stimulation with CCL2, anti-
inflammatory macrophages were able to make filopodia,
while proinflammatory macrophages adapted a spherical
morphology, suggesting that the cytoskeleton of proinflam-
matory and anti-inflammatory macrophages was rearranged
[118]. So, the activation status of macrophage induced the
cytoskeleton rearrangement and affected macrophage migra-
tion, which may involve the pathological process of MS [118].
Intriguingly, another study showed that, in active demy-
elinating MS lesions, although macrophages and acti-
vated microglia predominantly displayed proinflammatory
characteristics, the majority of these cells coexpressed
the markers of proinflammatory and anti-inflammatory
macrophages, suggesting an intermediate activation sta-
tus [59]. The balance between proinflammatory and anti-
inflammatory microglia/macrophages is proposed to predict
the development of disease and relapse [66]. Furthermore,
anti-inflammatory microglia/macrophages are increased in
MS after treatment with glatiramer acetate. Induction
of anti-inflammatory microglia/macrophages may suppress
neuroinflammation and promote CNS repair. Hence, the
treatment of MS may focus on shifting proinflammatory
microglia/macrophages into anti-inflammatory microglia/
macrophages.
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In conclusion, the double roles of microphages and iden-
tifying the beneficial subset in disease course should be clari-
fied. Of course, future studies should shed light on the double
roles of microglia and CNS-infiltrating macrophages, proin-
flammatory and anti-inflammatory microglia/macrophages
in different stages of disease process, and the cell intrinsic
and extrinsic pathways that regulate the roles and phenotype
change. Most of all, shifting the phenotype of macrophages
into the beneficial one is an attracting therapeutic hint.

3.2. Macrophages in Neuromyelitis Optica and Its Animal
Model. NMO is a neuroimmune disorder characterized by
recurrent episodes of optic neuritis and transverse myelitis,
resulting in significant blindness and/or paralysis [119]. Anti-
bodies against aquaporin-4 (AQP4) are found in the serumof
most NMO patients [120]. AQP4 is a water channel protein
expressed on astrocytic end-feet in CNS, as well as skeletal
muscle cells and epithelial cells in kidney, lung, and gastroin-
testinal tract [121]. Anti-AQP4 autoantibody (NMO-IgG)
plays a key role in the pathogenesis of NMO [122]. NMO-
IgG binds to AQP4 on astrocytes, then induces complement-
dependent cytotoxicity (CDC) and antibody-dependent cel-
lular cytotoxicity (ADCC), and finally leads to blood-brain
barrier disruption, demyelination, and neuronal injury [38].
The pathological features of NMO include vasculocentric
deposition of immunoglobulin and activated complement,
loss of AQP4 and glial fibrillary acidic protein, marked
granulocyte and macrophage infiltration, and demyelination
with axon loss [39]. Macrophages also participate in CDC
and ADCC of NMO. So far, no single rodent model has
proven to be a perfect representation of NMO in humans
[123]. Commonly used experiments are obtained through
passive transfer of NMO-IgG in certain contexts in rats or
spinal cord cultures [124]. A study showed that macrophages
exacerbated the severity of NMO lesions in spinal cord
cultures exposed to NMO-IgG and complement [41]. In a
model of NMO in rats produced by intracerebral injection of
NMO-IgG, depletion of monocytes and macrophages (both
proinflammatory and anti-inflammatory subtypes) could
reduce the severity of NMO pathology [42]. Macrophages
exacerbate astrocyte damage of NMO lesions through phago-
cytosis and secretion of proinflammatory cytokines or oxida-
tive metabolites [33]. In the brain lesions of patients with
NMO, CD68+ macrophages and microglia expressed intense
immunoreactivities for interferon gamma-inducible protein
30 (IFI30) and CD163, suggesting that severe fulminant acti-
vation of macrophage-mediated proinflammatory immune
mechanism exerted a crucial role in the generation of NMO
lesions [40].

Only a few of studies have shown that macrophages
involve NMO and its animalmodels, let alone the roles of dif-
ferent subsets of macrophages, such as microglia/macropha-
ges, and the different polarization of macrophages in NMO.
Future studies should focus on the roles of macrophage
subsets and clarify whether macrophages can become the
therapeutic target of NMO.

3.3. Macrophages in Myasthenia Gravis and Experimental
AutoimmuneMyastheniaGravis. MG, an antibody-mediated

neuroimmune disease of the neuromuscular junction, is
characterized by fluctuating muscle weakness and abnor-
mal fatigability [125]. Pathogenic autoantibodies consist of
antibodies against acetylcholine receptor (AChR), muscle-
specific tyrosine kinase (MuSK), lipoprotein receptor-related
protein 4 (LRP4), and so on [126]. The autoantibodies are
produced in T cell dependent and B cell mediated pathogenic
processes, which further activate the complement system
and induce inflammation of the postsynaptic muscle mem-
brane. The abnormalities of the thymus are related to the
pathogenesis of MG, including thymoma and thymic hyper-
plasia [127]. Experimental autoimmune myasthenia gravis
(EAMG), induced by immunization with Torpedo AChR,
is a conventional animal model of MG, commonly used to
investigate the mechanism underlying the pathophysiology
of MG for the development of novel therapeutic strategies
[128]. A previous study indicated that the pathologic features
of EAMG in the acute phase includedmacrophage infiltration
and inflammation of muscle endplates and muscle fiber
necrosis [44]. Macrophages act as APCs during the acute
phase of EAMG, while they promote the production of anti-
bodies to self-AChR in the chronic phase [45]. However,
large suppressive macrophages generated from restimulating
spleen cells from EAMG could induce apoptosis in activated
T cell blasts in vitro, indicating a potential immunotherapy
of EAMG [46]. In human, there are poliovirus-infected
macrophages in thymus of several MG patients, which may
be involved in the intrathymic alterations leading toMG [43].
Future studies may be conducted with respect to analysis of
the macrophage subsets and polarization in the pathogenesis
and treatment of MG.

3.4. Macrophages in Guillain-Barré Syndrome and Experi-
mental Autoimmune Neuritis. GBS is an acute inflammatory
demyelinating neuropathy, resulting from a complicated
immune response to incompletely characterized antigens
in the peripheral nervous system [129]. Acute inflamma-
tory demyelinating polyneuropathy (AIDP) and acute motor
axonal neuropathy (AMAN) are typical subsets of GBS [47].
Both cellular and humoral immunity contribute to disease
development, resulting in neuroinflammation, demyelina-
tion, and axonal damage in the peripheral nervous sys-
tem (PNS) [47, 130]. AIDP is majorly related to CD4+ T
cell induced macrophage associated demyelination, while
AMAN mostly involves autoantibodies against ganglioside
[48]. Experimental autoimmune neuritis (EAN) which is a
T cell mediated inflammatory demyelinating disease induced
by immunization with proteins and peptides of PNS myelin
together with Freund’s complete adjuvant is regarded as a
useful animal model of GBS [131, 132].

Macrophages exercise their functions through profes-
sional antigen presentation and secretion of cytokines and
other inflammatory mediators [47, 49, 50]. Macrophages
express high levels of MHC-II in EAN [131]. What is more,
macrophages secrete proinflammatory cytokines IL-12 and
TNF-𝛼, matrix metalloproteinase-9 (MMP-9), and inducible
nitric oxide synthase (iNOS), which propagate inflammation
and induce myelin and axonal damage in EAN [52, 53].
Interestingly, macrophages in PNS not only contribute to
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the inflammatory pathology and tissue destruction, but also
promote recovery in EAN [52]. In EAN, macrophages induce
T cell apoptosis by secreting proapoptotic mediators if they
contact with their targets [54]. Macrophages also secrete IL-
10 and TGF-𝛽 in EAN, which both inhibit the disease and
reduce disease severity [48, 55]. What is more, macrophages
are involved in the pathogenesis of GBS. Macrophages
phagocytose myelin in AIDP and axons in AMAN [51].
Macrophage-mediated segmental demyelination and axonal
loss are the pathological features of GBS [133]. Macrophages
express high levels MHC-I and MHC-II in GBS [134]. In
addition, macrophages are directed towards myelin or axonal
targets by antibodies and attack targets in a complement-
dependent manner [53]. Interestingly, macrophages in PNS
promote recovery in GBS [48].

There are resident endoneurial and monocyte-derived
macrophages in GBS and EAN. Different from microglia,
most of these resident macrophages in the PNS are renewed
by monocyte-derived macrophages [135]. In PNS, resident
endoneurial macrophages express MHC-I, MHC-II, and
complement receptors [136]. Monocyte-derived macropha-
ges are important for full-brown inflammatory disease in
EAN because elimination of these cells reduced disease
severity [137]. A study indicated that TNF-𝛼 exacerbated
EAN by inducing proinflammatory macrophages. However,
TNF-𝛼 deficiency attenuated EAN by inducing a switch
of macrophage phenotype from proinflammatory subtype
to anti-inflammatory subtype [52]. Similarly, compound A
which is a plant origin ligand of glucocorticoid receptors also
could relieve the severity of EAN by inducing anti-inflamma-
tory macrophages [138].

So, it is better to understand the roles of resident and
blood derived macrophages, as well as M1 andM2 cells in the
development of GBS and EAN.

4. Conclusion

Macrophages, both proinflammatory and anti-inflammatory,
participate in the complex immunopathological framework
in the pathologies of neuroimmune diseases. The change of
microenvironment in disease process dictates macrophage
polarization, such as functional and hypotypic differentia-
tion. Future studies are needed for the exploration of the exact
double roles of macrophage subsets and the shift between
them, indicating a macrophage-centered therapeutic strategy
for neuroimmune disorders.
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