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Abstract: NMR measurements do not require separation and chemical modification of samples and
therefore rapidly and directly provide non-targeted information on chemical components in complex
mixtures. In this study, one-dimensional (1H, 13C, and 31P) and two-dimensional (1H-13C and 1H-31P)
NMR spectroscopy were conducted to analyze yogurt without any pretreatment. 1H, 13C, and 31P
NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose
were separately observed in the 1H NMR spectra. In addition, the signals from the acyl chains of milk
fats were also successfully identified but overlapped with many other signals. Quantitative difference
spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the
quantitative 1H NMR spectra. This method allowed us to eliminate interference on the overlaps;
therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat
could be determined directly without separation. Moreover, the 1H-31P HMBC spectra revealed for
the first time that N-acetyl-D-glucosamine-1-phosphate is contained in yogurt.
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1. Introduction

NMR spectroscopy is highly quantitative and reproducible, and its sensitivity does not depend on
the types of metabolites [1]. As a non-targeted method, NMR measurements do not require separation
and chemical modification; therefore, comprehensive information regarding the chemical components
of mixtures can be rapidly and directly provided [2,3]. For the past decade, NMR has been recognized
as a powerful technique for discerning the chemical properties of complex mixtures and has been
widely applied to identify organic compounds in foods, such as milk [4], soy sauce [5], coffee [6],
wine [7], mango juice [8], and green tea [9]. Among NMR-based comprehensive analyses, 1H NMR
is the most useful tool because of its informative spectral patterns and high-throughput acquisition.
Compared with the NMR signals of isolated compounds, chemical shift changes are often caused by
interactions with other compounds in food mixtures [10,11]. In addition, food mixtures can also lead
to extreme signal overlaps. Therefore, 13C NMR spectra and two-dimensional NMR spectroscopy are
necessary to help assign each NMR signal in complex food mixtures.

Yogurt is traditionally made from milk fermentation by thermophilic cultures of Lactobacillus
delbrueckii subsp. bulgaricus and Streptococcus thermophilus. L. delbrueckii subsp. bulgaricus metabolizes
sugar to lactic acid with small amounts of by-products [12]. The benefits of yogurt include lactose
digestion, intestinal microflora modulation, cholesterol reduction, immune system stimulation,
and cancer prevention [13]. Texture is also a factor that influences the quality of yogurt and is
related to sensory perception of food products. Therefore, the chemical properties of yogurt can help
us analyze and improve the functional and gustatory qualities of yogurt [14].
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Many yogurt studies have been dedicated to identifying the chemical compositions of
yogurt [15–17]. In these studies, organic acids, acetaldehyde, and other compounds in yogurt have
been analyzed with conventional techniques, such as GC-MS [16] and LC-MS [17]. These methods
require appropriate extraction, separation and chemical derivatization of individual components.
However, qualitative and quantitative modifications of the original mixture can even be performed
by a simple treatment without any separation. A method for the simultaneous and nondestructive
identification of compounds in yogurt has not been established.

In a previous study, we reported the signals assignments of NMR spectra of milk, and the analysis
of the existing states of components [10]. Here, we assigned the signals of yogurt by combining 1D
and 2D NMR spectroscopy without changing the chemical compositions. In addition, quantitative
difference spectra between quantitative 1H NMR spectra and diffusion ordered spectroscopy (DOSY)
spectra were applied to quantitatively analyze the fermented metabolites whose signals overlapped
with broad signals from milk fat.

2. Results and Discussion

2.1. 1H NMR Spectra of Yogurt

A typical 1H NMR spectrum of yogurt is shown in Figure 1A. Proton resonances of aliphatic
groups were observed with considerable overlap in the region from 0.6 to 2.2 ppm. These signals
were assigned to the acyl chains of fatty acids from milk fats. In addition, the signals at 1.23 and
1.30 ppm were assigned to lactic acid and alanine, respectively. Compared with the chemical shifts
on the database, the weak signals from 2.2 to 3.1 ppm were suggested to be methyl or methylene
groups of citrate, creatine, and lecithin, which are minor components of yogurt. These signals were
finally assigned by interpreting the cross peaks on the 1H-13C HSQC, 1H-1H DQF-COSY, and 1H-13C
CT-HMBC spectra. The signals from 3.1 to 5.1 ppm were assigned to D-lactose and D-galactose.
These signals were sharp and highly sensitive but heavily overlapped with one another. Therefore,
their precise assignments were achieved by the 13C NMR and 1H-13C HSQC spectra. However,
the region from 5.5 to 9.0 ppm contained several weak signals that were considered to be the
amide protons of proteins. Caseins and lactoglobulins are the major proteins of cow's milk [18,19].
These proteins and their degradation products may be observed in the 1H NMR spectra of yogurt.
The details of the signal assignments are summarized in Table 1.
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Figure 1. (A) The 1H NMR spectrum of yogurt. (B) The 13C NMR spectrum of yogurt. Gal and lac are 
abbreviations for galactose and lactose, respectively. 
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  3.54 78.89  CH-α4 
  3.82 70.86  CH-α5 
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  3.54 78.75  CH-β4 
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Figure 1. (A) The 1H NMR spectrum of yogurt. (B) The 13C NMR spectrum of yogurt. Gal and lac are
abbreviations for galactose and lactose, respectively.

Table 1. Assignment of 1H and 13C signals of compounds in yogurt.

Compound
1H Multiplicity J

(Hz)

Chemical Shift (ppm)
Assignment a

1H 13C 31P

D-lactose d(7.70) 4.33 103.57 CH-11

3.43 71.79 CH-21

3.54 73.31 CH-31

3.80 69.38 CH-41

3.61 76.15 CH-51

3.64 61.94 CH2OH-61

d(3.05) 5.11 92.62 CH-α1
t(8.85) 3.47 71.98 CH-α2

3.71 72.24 CH-α3
3.54 78.89 CH-α4
3.82 70.86 CH-α5
3.76 60.66 CH2OH-α6

d(7.90) 4.55 96.55 CH-β1
t(7.83) 3.16 74.66 CH-β2

3.53 75.17 CH-β3
3.54 78.75 CH-β4
3.52 75.56 CH-β5
3.82 60.80 CH2OH-β6

D-galactose d(3.35) 5.14 93.06 CH-α1
3.69 69.18 CH-α2
3.72 69.99 CH-α3
3.85 70.11 CH-α4
3.96 71.25 CH-α5
3.66 62.02 CH2OH-α6

d(7.80) 4.46 97.23 CH-β1
3.36 72.70 CH-β2
3.53 75.17 CH-β3
3.82 69.56 CH-β4
3.60 75.94 CH-β5
3.63 61.84 CH2OH-β6
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Table 1. Cont.

Compound
1H Multiplicity J

(Hz)

Chemical Shift (ppm)
Assignment a

1H 13C 31P

acyl chains of fatty acids 0.76 14.74 CH3-ω1
1.17 23.54 CH2-ω2
1.45 25.60 CH2-∆3

1.89 27.93 oleate
CH2-ω8,11

1.17 29.78–30.90 CH2(ω4-n)
1.14 32.79 CH2-ω3
2.11 34.37 CH2-∆2
5.19 130.18 oleate HC=CH

glycerol backbone of fats 3.98, 4.16 62.54 glycerol-1,3
5.10 69.59 glycerol-2

acetic acid s 1.93 22.72 CH3
175.40 COOH

citric acid AB 2.53,2.69 44.93 CH2
75.80 C

177.70 CH2-COOH
181.40 COOH

lactic acid d(6.60) 1.23 20.84 CH3
dd 4.08 68.95 CH

182.50 COOH
alanine d(7.15) 1.36 17.09 CH3

3.66 51.49 CH
176.4 COOH

creatine s 2.90 37.40 CH3
s 3.81 54.78 CH2

158.30 C
175.40 COOH

lecithin s 3.10 54.28 trimethylamine
3.74, 3.80 ´0.20 CH2-3

4.18 60.22 ´0.20 CH2-4
3.54 67.09 ´0.20 CH2-5

cephalin 3.74, 3.80 0.33 CH2-3
3.97 0.33 CH2-4

N-acetyl-D-glucosamine-1-phosphate 5.30 ´1.44 O-CH
3.83 ´1.44 N-CH

a The symbol “ω” indicates the position from the methyl group; the symbol “∆” indicates the position from the
ester group.

2.2. 13C NMR Spectra of Yogurt

A typical 13C NMR spectrum of yogurt is shown in Figure 1B. The signals were well separated and
were completely assigned by utilizing the 1H-13C HSQC, 1H-1H DQF-COSY, and 1H-13C CT-HMBC
spectra. The signals from 10 to 55 ppm were assigned to the primary carbon atoms from the acyl
chains of fatty acids, lactic acid, and acetic acid. This region also contained some signals from minor
components, which were assigned to be alanine, creatine, and citrate. There were signals of tertiary
carbon atoms from the aliphatic rings of lactose and galactose in the region from 55 to 110 ppm.
The signals from 160 to 190 ppm were assigned to the quaternary carbon atoms of organic acids
and alanine based on the 1H-13C CT-HMBC spectrum. The details of the signal assignments are
summarized in Table 1.

2.3. Identification of Several Components with 2D NMR Spectra

Lactic acid. In the 1H-1H DQF-COSY spectra of yogurt (Figure 2A), the cross-peaks at 1.23 and
4.08 ppm were the correlations between –CH3 and –CH (Figure 2D), while the 1H signals at 1.23 ppm
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showed correlations with the 13C signals at 20.84 ppm, and the 1H signals at 4.08 ppm showed
correlations with the 13C signals at 68.95 ppm in the HSQC spectrum (Figure 2B). The 1H signals at 1.23
and 4.08 ppm were also connected to the 13C signals at 182.41 ppm in the 1H-13C CT-HMBC spectrum
(Figure 2C,D), which indicated correlations of –CH3 and –CH with –COOH.
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Figure 2. (A) The 1H–1H COSY NMR spectrum of yogurt. (B) The 1H–13C HSQC NMR spectrum of
yogurt. (C) The 1H–13C HMBC NMR spectrum of yogurt. (D-H) Correlations of lactic acid (D), acetic
acid (E), alanine (F), citrate (G), and creatine (H). Arrows show the cross-peaks in the 1H–13C HMBC
NMR spectrum, and bold bonds show the cross-peaks in the 1H–1H COSY NMR spectrum. Gal and lac
are abbreviations for galactose and lactose, respectively.

Acetic acid. The 1H signals at 1.93 ppm showed correlations with the 13C signals at 22.72 ppm in
the HSQC spectrum (Figure 2B) and were connected to the 13C signals at 175.46 ppm in the 1H-13C
CT-HMBC spectrum (Figure 2C). Therefore, the correlation between –CH3, and –COOH of acetic acid
was confirmed (Figure 2E).

Alanine. In the 1H-1H DQF-COSY spectra of yogurt (Figure 2A), the cross peaks at 1.35 and
3.65 ppm were assigned to the correlations between –CH3 and –CH. In the 1H-13C CT-HMBC spectrum
(Figure 2C), the 1H signals at 1.35 and 3.65 ppm showed correlations with the 13C signals at 176.40 ppm,
which confirmed the connectivity among –CH3, –CH, and –COOH of alanine (Figure 2F).

Citrate. The 1H signals at 2.53 and 2.69 ppm showed correlations with the 13C signals at 44.93 ppm
in the HSQC spectrum and were also connected to the 13C signals at 75.90, 177.18, and 180.81 ppm
(Figure 2C,G) in the 1H-13C CT-HMBC spectrum, which suggested that the signals should be assigned
to citrate. In whole milk, the citrate signals were assigned as the 1H signals at 2.40 and 2.54 ppm,
and the 13C signals at 44.93 ppm [4]. Citrate is the main organic acid in milk and binds to calcium ions
to act as a component of casein micelles [20]. The variety of chemical shifts may reflect differences in
the existing states of casein micelles, pH, and temperature.

Creatine. In the 1H-13C CT-HMBC spectrum (Figure 2C), the 1H signals at 3.81 ppm were connected
to the 13C signals at 37.40, 158.30, and 175.48 ppm, while the 1H signals at 2.90 ppm showed correlations
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with the 13C signals at 54.78 and 158.30 ppm (Figure 2C,H), which indicated correlations of –CH3 with
–CH2, –C[(NH)NH2], and –COOH.

Lecithin and Cephalin. In the 1H-13C HSQC spectrum (Figure 2B), the 1H signal at 3.10 ppm
was correlated with the 13C signal at 54.28 ppm and also showed a correlation with the 13C signals
at 54.28 and 67.09 ppm in the 1H-13C HMBC spectrum (Figure 2C). In addition, the 1H signal at
3.54 ppm showed a cross-peak with the 13C signal at 67.09 ppm. These correlations indicated that
yogurt contained compounds with trimethylamine groups. In the 1H-31P HMBC spectrum (Figure 3B),
the 1H signals at 3.54 and 4.18 ppm connected with the 31P signal at ´0.20 ppm supported the
existence of trimethylamine groups in yogurt (Figure 3D,E). The 1H signals at 3.74 and 3.80 ppm
showed correlations with the 31P signals at both ´0.20 and 0.33 ppm in the 1H-31P HMBC spectrum,
which suggested that the signals were derived from compounds with similar structures. Lecithin
and cephalin are the main phospholipids in milk23 and have similar structures. Enhancements of the
signals in the 1H-31P HMBC spectrum were observed when standard reagents were added. Therefore,
the 31P signal at ´0.2 ppm that connected the 1H signals at 3.55, 3.74, 3.80, and 4.19 ppm was assigned
to lecithin, and the 31P signal at ´0.2 ppm that connected the 1H signals at 3.74, 3.80, and 3.97 ppm
was assigned to cephalin.
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show the cross-peaks in the 1H–31P HMBC NMR spectrum.

N-acetyl-D-glucosamine-1-phosphate. There were some signals that were not assigned in the
1H-31P HMBC spectrum of yogurt. In a previous study, the signals of N-acetyl carbohydrates
were detected in whole milk [4]. We hypothesized that the compounds were phosphorylated
during fermentation. To assign the remaining signals, we performed spiking experiments with
the candidate compounds. The 1H-31P HMBC spectrum of N-acetyl-D-glucosamine-1-phosphate
was observed using standard reagents. Based on the 1H-31P HMBC spectrum (Figure 3B),
the 31P signal at ´1.44 ppm that connected the 1H signals at 3.83 and 5.30 ppm was assigned
to N-acetyl-D-glucosamine-1-phosphate. N-acetyl-D-glucosamine-1-phosphate is synthesized from
D-glucosamine-1-phosphate, which is one of the products made from lactic acid bacteria and is
needed for the synthesis of UDP-α-N-acetyl-D-glucosamine-1-phosphate, which is required for
UDP-N-acetyl-D-glucosamine biosynthesis [21]. UDP-α-N-acetyl-D-glucosamine-1-phosphate is an



Metabolites 2016, 6, 19 7 of 11

essential precursor of cell wall peptidoglycans, lipopolysaccharides, and enterobacterial common
antigens [22].

2.4. Concentrations of Yogurt Components

To control the quality and content of components in yogurt, we used a Bulgarian yogurt culture
that was prepared by adding a Bulgarian yogurt inoculum into whole milk. After cultivating at 40 ˝C
for 24 h, the sample was applied to NMR measurements for quantification. The components whose
signals did not overlap were quantified by the 1H NMR spectra, while the other compounds were
quantified using the difference spectra that were obtained by subtracting the DOSY spectra from the
1H NMR spectra.

The 1H NMR working curves of the citrate protons are shown in Figure 4A. We used the capillary
containing 1,1,2,2-tetrachloroethane for the working curves and quantified the concentrations of
the yogurt components. The working curves showed good linearity and therefore were used to
calculate the concentrations of yogurt components. In addition, the 1H NMR spectra of the self-made
yogurt were measured at 40 ˝C (Figure 4B), and the signals in the difference spectra were used for
quantification because the signals were recovered to their original shapes (Figure 4B,D). The inoculum
samples were prepared in triplicate with the same fermentation process.
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Figure 4. (A) Working curves of citrate for the 1H NMR spectrum. The integral value of the signal
arising from the protons of 1,1,2,2-tetrachloroethane was set to 100. (B) Quantitative 1H NMR spectrum
of yogurt. (C) DOSY NMR spectrum of yogurt. (D) The difference spectrum for quantifying the integral
of the signal at 4.08 ppm between (B) and (C). (E) Concentrations of yogurt components quantified
using the 1H NMR signals. The standard deviation is shown in parentheses (n = 3). Gal and lac are
abbreviations for galactose and lactose, respectively.

The concentrations of several yogurt components are shown in Figure 4E. The concentrations
of α-D-galactose, β-D-galactose, α-D-lactose, β-D-lactose, citric acid, and lactic acid were measured
using the quantitative 1H NMR spectrum. During milk fermentation, lactic acid bacteria convert
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part of α-D-lactose and β-D-lactose into α-D-galactose and β-D-galactose, which are finally broken
down to become lactic acids, causing a pH decrease that is responsible for casein coagulation [23].
These results showed that, even if the signals in the 1H NMR spectrum overlapped with the signals of
the acyl chains of fatty acids from milk fats, this quantitative method using quantitative difference
spectra can eliminate interference due to overlapping spectra to obtain the correct concentrations of
yogurt components.

The 1H NMR spectra of the ready yogurt measured at 40 ˝C in different lots were shown in
Figure 5. The spectra and the types of detected components were quite similar among the yogurt
in different lots. Both the ready yogurt and the self-made one from inoculum contained two types
of bacterial strains: L. delbrueckii subsp. bulgaricus and S. thermophiles. The 1H NMR spectra and
the NMR-detected components were also similar between the ready yogurt and the self-made one
(Figures 4B and 5).
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3. Experimental Section

3.1. Materials and Sample Preparation

Bulgarian yogurt and its inoculum were purchased at a local market. Bulgarian yogurt contained
two types of bacterial strains: L. delbrueckii subsp. bulgaricus and S. thermophilus. For signal assignments,
D2O was added to yogurt at a final concentration of 10% (v/v). Bulgarian yogurt samples (0.6 mL)
were then placed in a 5-mm NMR tube (Kanto Chemical Co., Inc., Tokyo, Japan). For quantitative
measurements, triplicate yogurt samples were made for this experiment from inoculum. Bulgarian
yogurt inoculum (1 g) was added to whole milk (1 L). The sample was immediately mixed with D2O at
final concentration of 10% (v/v) and was then placed in a 5-mm NMR tube. The volume of the sample
was adjusted to 0.6 mL. Fermentation was performed at 40 ˝C for 24 h after putting the sample into
the NMR equipment.

3.2. NMR Spectroscopy

NMR experiments were performed at 4 ˝C on a Unity INOVA-500 spectrometer (Agilent
Technologies, Santa Clara, CA, USA) to obtain 1H, 13C, and 31P 1D NMR spectra and 1H-13C HSQC,
1H-1H DQF–COSY, 1H-31P FG-HMBC, and 1H-13C CT-HMBC spectra.
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The 1H NMR spectra of yogurt were measured at 499.87 MHz, and the water signal was
suppressed by the pre-saturation method. 4,4-dimethyl-4-silapentane-1-sulfonic acid (Wako Pure
Chemical Industries, Ltd., Osaka, Japan) was used as an internal reference, and its chemical shift was
set to 0 ppm. For assignments, the acquisition parameters were as follows: number of data points,
30,272; spectral width, 8000 Hz; acquisition time, 1.892 s; delay time, 2.000 s; and number of scans, 8.
For quantification, NMR experiments were performed at 40 ˝C, and the acquisition parameters were
as follows: number of data points, 32,768; spectral width, 8000 Hz; acquisition time, 2.000 s; delay
time, 15.000 s; and number of scans, 32. The free induction decays (FIDs) were zero-filled to 65,536
data points and multiplied by an exponential window function with a 0.25-Hz line-broadening for all
1H NMR spectra by NMR software.

The 13C NMR spectra were measured at 125.71 MHz. Dioxane was used as an external reference,
and its chemical shift was set to 67.5 ppm. The parameters of the 13C NMR spectrum were as follows:
number of data points, 65,536; spectral width, 31,422 Hz; acquisition time, 1.043 s; delay time, 2.000 s;
and number of scans, 83,392.

The 31P NMR spectra were measured at 202.35 MHz. Potassium phosphate was used as an
external reference, and its 31P chemical shift was set to 0 ppm. The 31P NMR spectra were measured
with the following parameters: number of data points, 30,272; spectral width, 11,999 Hz; acquisition
time, 1.043 s; delay time, 2.000 s; and number of scans, 1024. The FIDs were zero-filled to be 65,536
data points and multiplied by an exponential window function with a 0.25-Hz line-broadening for 31P
NMR spectra by NMR software.

The 1H-1H DQF-COSY spectra were obtained by suppressing the water signal with the
pre-saturation method, and the acquisition parameters were as follows: number of data points,
2048 (F2) and 512 (F1); spectral width, 5911 Hz (F1 and F2); acquisition time, 0.202 s; delay time, 2.000 s;
and number of scans, 48.

The 1H-13C HSQC spectra of yogurt were generated in the phase-sensitive mode with the
following acquisition parameters: number of data points, 512 for 1H and 256 for 13C; spectral widths,
5498 Hz for 1H and 20,110 Hz for 13C; acquisition time, 0.186 s; delay time, 2.000 s; and number of
scans, 80.

The 1H-13C CT-HMBC spectra were measured in the absolute mode with the following parameters:
number of data points, 4096 for 1H and 512 for 13C; spectral widths, 5498 Hz for 1H and 27,643 Hz for
13C; acquisition time, 0.402 s; delay time, 3.000 s; and number of scans, 80.

The 1H-31P CT-HMBC spectra of yogurt were obtained in the absolute mode. Potassium phosphate
was used as an external reference, and its 31P chemical shift was set to 0 ppm. The acquisition parameters
were as follows: number of data points, 2048 for 1H and 128 for 31P; spectral widths, 5004 Hz for 1H and
4047 Hz for 31P; acquisition time, 0.402 s; delay time, 1.000 s; and number of scans, 200.

3.3. NMR Signal Assignments

The signals in the NMR spectra of yogurt were assigned in reference to the databases, Spectral
Database for Organic Compounds (SDBS, http://sdbs.db.aist.go.jp/sdbs) and Biological Magnetic
Resonance Data Bank (BMRB Metabolomics, http://www.bmrb.wisc.edu/metabolomics). Because the
chemical shifts of several signals were significantly different than those in the published data, their
correlations were confirmed in the 2D NMR spectra. Finally, authentic standard compounds were
added to yogurt for further confirmation of assignments.

3.4. Quantification of Yogurt Components

Because several signals overlapped with signals of the acyl chains of fatty acids from milk
fats, quantitative analyses of yogurt were performed using the difference spectrum between the
quantitative 1H NMR spectrum and the DOSY spectrum. The spin-lattice relaxation times (T1) for
the quantitative 1H NMR spectrum were measured by the partial relaxation Fourier-transform (FT)
method [4]. The delay time (d1) was determined with aq being the acquisition time.
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d1 ě 5ˆ T1´ aq .

A capillary containing 20% (v/v) 1,1,2,2-tetrachloroethane and 80% (v/v) chloroform-d (CDCl3)
was inserted into the NMR sample tubes as the concentration standard. It has been reported that
T1 of 1,1,2,2-tetrachloroethane was decreased from 2.0 to 0.4 s by adding the relaxation reagent
Cr(AcAc)3 at a concentration of 1 mg/mL [4]. Therefore, 1 mg/mL Cr(AcAc)3 was added to a 20%
(v/v) 1,1,2,2-tetrachloroethane solution. The integral value of 1,1,2,2-tetrachloroethane was measured
and compared with those of the compounds in yogurt to determine their concentrations.

3.5. Diffusion Ordered Spectroscopy (DOSY)

DOSY separates individual components in mixtures based on their diffusion. Molecules in
solution are in constant motion and are accompanied by both rotational and translational motions.
Diffusion experiments were performed in the z-direction using the DgcsteSL_dpfgse sequence [24].
The acquisition parameters were as follows: number of data points, 32,768; spectral width, 8000 Hz;
acquisition time, 2.048 s; delay time, 15.000 s; number of scans, 16; diffusion delay, 0.400 s; total
diffusion-encoding gradient pulse duration, 0.002 s; gradient stabilization delay, 0.0003 s. The signals
that overlapped with those of milk fats were quantified using difference spectra that were obtained by
subtracting the DOSY spectra from the quantitative 1H NMR spectra.

4. Conclusions

In conclusion, 1H, 13C, and 31P NMR spectra, as well as 1H-13C HSQC, 1H-1H DQF-COSY,
1H-31P CT-HMBC, and 1H-13C CT-HMBC spectra, of yogurt were successfully obtained without any
separation or pretreatment. In addition, the quantification of yogurt components was conducted using
the 1H NMR spectra and the difference spectra between the quantitative 1H NMR spectra and the
DOSY spectra. Therefore, this study of yogurt using NMR spectroscopy provides a promising method
to monitor the various components produced during yogurt fermentation and to classify yogurt types.
Moreover, the assignment data and quantitative method can be utilized for quality control and other
applications. The proposed method could be useful to analyze the differences between various kinds
of yogurt.
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