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Abstract

‘‘Moving to the beat’’ is both one of the most basic and one of the most profound

means by which humans (and a few other species) interact with music. Computer

algorithms that detect the precise temporal location of beats (i.e., pulses of musical

‘‘energy’’) in recorded music have important practical applications, such as the

creation of playlists with a particular tempo for rehabilitation (e.g., rhythmic gait

training), exercise (e.g., jogging), or entertainment (e.g., continuous dance mixes).

Although several such algorithms return simple point estimates of an audio file’s

temporal structure (e.g., ‘‘average tempo’’, ‘‘time signature’’), none has sought to

quantify the temporal stability of a series of detected beats. Such a method-a

‘‘Balanced Evaluation of Auditory Temporal Stability’’ (BEATS)–is proposed here,

and is illustrated using the Million Song Dataset (a collection of audio features and

music metadata for nearly one million audio files). A publically accessible web

interface is also presented, which combines the thresholdable statistics of BEATS

with queryable metadata terms, fostering potential avenues of research and

facilitating the creation of highly personalized music playlists for clinical or

recreational applications.

Introduction

With the proliferation of back-end warehouses of music metadata (e.g., AllMusic,

Gracenote, Last.fm, MusicBrainz, The Echo Nest [1]), front-end online music

stores (e.g., Amazon MP3, Google Play Music, iTunes, 7digital, Xbox Music [2]),

and streaming music services (e.g., Deezer, MySpace Music, Napster, Rdio,

Rhapsody, Spotify [3]) comes heretofore unparalleled opportunities to change the

way music can be personalized for and delivered to target users with varying

needs.
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One need, shared by both rehabilitation professionals and exercise enthusiasts,

is the ability to create music playlists which facilitate the synchronization of

complex motor actions (e.g., walking) with an auditory beat. Auditory-motor

synchronization has been deemed a human cultural universal [4] and a

‘‘diagnostic trait of our species’’ [5]. Even infants show perceptual sensitivity to

[6] and coordinated motor engagement with [7] musical rhythms. The

phenomenon of auditory entrainment (the dynamic altering of an ‘‘internal’’

periodic process or action generated by an organism in the presence of a periodic

acoustic stimulus) remains an active topic for the field of music cognition [8–14].

Auditory-motor synchronization has received particular interest in the context

of preventive and rehabilitative physical exercise, with a number of advantages for

participants (for recent summaries, see [15–17]): cognitively, by focusing

attention (cf. [18–20]); motivationally, by increasing arousal (cf. [21, 22]),

endurance during a session (e.g., [23, 24]), and adherence across sessions (e.g.,

[25, 26]); and socially, by enabling multiple individuals to participate and interact

in a coordinated manner, as in partnered or group dancing (e.g., [27, 28]).

A particularly successful application of auditory-motor synchronization

paradigms has been for patients with Parkinson’s disease (PD), where it is referred

to as ‘‘Rhythmic Auditory Stimulation’’ or ‘‘Rhythmic Auditory Cueing’’ (RAC).

Although the facilitative effects of an external auditory cue on parkinsonian gait

had been noted anecdotally since the 1940 s (e.g., [30, 31]), experimental work in

the 1990 s (e.g., [32, 33]) and subsequent multi-week clinical trials (e.g., [34, 35]),

systematic reviews [36, 37], meta-analyses [38, 39], and evidence-based ‘‘best

practice’’ treatment recommendations [40] have all pointed towards RAC as a

reliable and effective means of improving several features of gait: increasing

cadence, stride length, and velocity (as reviewed in [38, 39]); and decreasing gait

variability (i.e., moment-to-moment fluctuations in step timing or step length; for

comprehensive reviews, see [41–43]). A reduction in gait variability is of

particular importance, as it is linked both retrospectively [44] and prospectively

[45] with a reduced likelihood of falling, a costly event both financially (e.g., [46])

and psychologically (e.g., [47]). Although less well-explored, RAC-mediated

improvements in gait have also been noted for other neurological conditions,

including Huntington’s disease [48, 49], stroke [50, 51], spinal cord injury [52],

and traumatic brain injury [53]. (For a systematic review of this evidence, see

[54].).

1. Physical Isochrony versus Perceptual Stability

A basic requirement for the music used in auditory2motor rehabilitation

paradigms is it possesses a stable tempo (i.e., the rate at which beats or pulses are

perceived to occur), thereby facilitating motor synchronization to the beat. This

requirement is typically satisfied through the use of a digital metronome, either in

isolation or superimposed on top of computer-generated music (e.g., [51]),

ensuring a precisely isochronous inter-beat interval (IBeI). However, a slightly

more relaxed requirement could be proposed: that the sequence of IBeIs in the
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music stimulus need not be physically isochronous, but rather, be perceptually

stable.

Systematic investigations of just-noticeable differences (JNDs) or other

perceptual discrimination thresholds of anisochrony in auditory temporal

sequences date back several decades (for reviews, see [13, 14, 55–57]). A wide

range of stimuli has been explored:

(1) isolated time intervals (e.g., [58, 59]); (2) a single temporal perturbation

within an isochronous (e.g., [55, 56, 60, 61]) or anisochronous (e.g., [20, 62])

context; (3) a single tempo change between a pair of monotonic isochronous

sequences (e.g., [62–65]) or excerpts of computer-performed, quantized music

[66]; (4) a pair of sequences, one isochronous and the other with Gaussian

temporal ‘‘jitter’’ [67]; (4) continuously cosine-modulated temporal intervals

[68]; and (5) continuously accelerating or decelerating sequences (e.g., [69–71]).

In general, JNDs for anisochrony decrease as the number of repetitions of a fixed

temporal interval increases, and are higher overall within sequences in which

temporal instability is present.

Although these conditions are well-controlled experimentally, they do not

necessarily generalize to performed music. That is, absent from a digitally

produced rhythm track, it would be expected that IBeIs in performed music

exhibit some degree of ‘‘natural’’ variability in tempo (or, perhaps less

pejoratively, ‘‘flexibility in tempo’’). However, an important question that follows

from this assumption–namely, ‘‘How much physical variability in an IBeI

sequence results in the perceptual instability of tempo?’’–has not been clearly

asked, or answered. By contrast, studies seeking to quantify listeners’ perceptions

of tonal stability (e.g., [72, 73]), or overall ‘‘musical stability’’ (e.g., [74]) are more

frequent.

2. Beat Tracking and Tempo Extraction Algorithms

Accurately estimating the tempo of recorded music is an important topic within

the field of music information retrieval (e.g., [75–77]), and numerous algorithms

have been developed to accomplish this (for summaries, see [78–81]). Two broad

categories of algorithms can be defined. Beat tracking algorithms return a time

series of detected IBeIs along with a point estimate of ‘‘average’’ tempo in beats

per minute (bpm). Tempo extraction algorithms return only the latter.

An important goal for beat tracking algorithms is to identify the temporal

locations of each beat accurately (i.e., with respect to listeners’ ‘‘ground truth’’

perceptions) in the face of changes, drifts, fluctuations, or expressive variations in

tempo within an audio file. The ability of a beat tracking algorithm to accurately

identify the precise location of each beat in the face of a fluctuating temporal

surface, however, is independent from its ability to meaningfully quantify how

much temporal instability is actually present in the series of detected beats.

Similarly, the ability of a tempo extraction algorithm to provide a point estimate

(e.g., ‘‘tempo590 bpm’’) that agrees with human perception (e.g., the average

inter-tap interval when listeners were instructed to tap to the beat) reveals nothing
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about whether that estimate is stable across the entire audio file; and if not, over

what time indices of the file that estimate is stable. (The accuracy of any point

estimate is of course dependent upon the manner in which it was computed, as

will be illustrated in Section 4 of the Methods.).

To our knowledge, no current software algorithm, front-end interface, or back-

end metadata service provider has offered any statistic explicitly designed to

quantify the amount of beat-to-beat temporal instability within an IBeI series.

To address this issue, we expand upon our previous conference paper [82] and

present a novel analysis tool: a ‘‘Balanced Evaluation of Auditory Temporal

Stability’’ (BEATS). BEATS itself does not perform beat tracking, but instead takes

beat and barline (i.e., downbeat) onsets estimated by an independent beat tracking

algorithm as input. For its initial release, BEATS has been optimized to the data

structure of the ‘‘Million Song Dataset’’ [83] (MSD; http://labrosa.ee.columbia.

edu/millionsong/), a publicly available collection of computed acoustic features

(e.g., individual beat and barline onsets; average tempo; estimated time signature)

and music metadata (e.g., artist, album, and genre information) associated with

nearly one million audio files processed using the proprietary ‘‘Analyze’’

algorithm [84] developed by The Echo Nest (www.echonest.com). Compatibility

with this data structure has scalable advantages, as the full Echo Nest library

contains over 35 million analyzed audio files.

For each analyzed audio file, BEATS computes nine Summary Statistics that

quantify some characteristic of the inter-beat or inter-bar interval data. These

statistics can in turn serve as input to search engines for which tempo is a key

query feature (e.g., [75, 85–87]).

By providing a more comprehensive quantitative analysis of both tempo and

tempo stability, and incorporating those statistics as filterable features within an

online resource (‘‘iBEATS’’, described in Section 3 of the Results), BEATS

becomes a further step towards a solution that provides users with access to music

that has been tailored to their (or their patients’) recreation or rehabilitation

needs.

Methods

1. Platform

BEATS is implemented in Matlab (version §7.8), supplemented by a few publicly

available functions associated with the Million Song Dataset [88] and Matlab

Central (http://www.mathworks.com/matlabcentral).

2. Raw Data

For each metadata file, BEATS pulls four Echo Nest fields: beats_start and

bars_start (the estimated onsets of successive beats and barlines, respec-

tively); and tempo and time_signature (point estimates directly provided by

Echo Nest). Next, beats_start and bars_start are transformed into an
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inter-beat interval inter-bar interval series, respectively, by taking the first-order

difference of each timestamp vector.

3. Initialization Thresholds

BEATS requires the user to specify three Initialization Thresholds:

(1) ‘‘Local Stability Threshold’’, hLocal: a percentage value (default55.0%) used to

define the upper bound of what is deemed temporally stable at the level of

individual and successive IBeIs (detailed below).

(2) ‘‘Run Duration Threshold’’, hRun: the minimum duration (default510 s) of a

set of adjacent IBeIs (i.e., a ‘‘Run’’) that all fall below hLocal.

(3) ‘‘Gap Duration Threshold’’, hGap: the maximum duration (default52.5 s)

between the last element of Runj and the first element of Runj+1.

4. Internal Calculations

The first statistic calculated by BEATS is an estimate of an IBeI series’ central

tendency, or location, l. Common measures of l include the mean, median, and

mode. However, obtaining an optimal value for l can be more complicated than

simply taking the mean, median, or mode of a series. Consider the hypothetical

80-element IBeI series S shown in Figure 1A, which exhibits two tempo changes

(at the 21st and 41st elements). Visual inspection of the Matlab-derived mean,

median, and mode reveals that all are clearly inadequate measures of the ‘‘true’’

central tendency of S (i.e., < 1.0).

One widely used method of obtaining a more accurate value for the central

tendency of a dataset (specifically, the mode) has been the use of kernel density

estimation (KDE) techniques, first proposed in the 1960 s [89] Figure 1B plots the

estimated probability density of the distribution of values in S, using various

values for the kernel bandwidth (i.e., the smoothing parameter). The mode of S is

defined simply: the x-axis value at which the highest probability density (y-axis)

occurs. As can be appreciated from Figure 1B, the bandwidth plays a strong role in

the resultant mode: too narrow, and the mode will default to its most frequent

value; too wide, and the density estimate will ‘‘smooth over’’ distinct features (in

this case, time-varying features) within the data set, such as the presence of

multiple modes.

To circumvent this problem, and thus provide a more ‘‘representative’’ value

for l, BEATS makes use of a recent implementation of adaptive (variable-

bandwidth) Gaussian KDE [90, 91], which optimizes the bandwidth so as to

return a valid density estimate even in the presence of multiple modes. Using this

approach (shown as the blue density estimate in Figure 1B), l is calculated as

1.0002: a far more representative value.

Having determined l, the longest ‘‘Stable Segment’’ within the IBeI series is

then identified. The first step in this process is to identify the locations of ‘‘stable’’

IBeIs, where stability is operationalized in two ways: stability of each IBeI relative
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to l, and stability between successive IBeIs. The first type of stability is quantified

via a ‘‘percentage deviation from l’’ (PDL) transformation:

SPDL,i~100|
Si{l

l
: ð1Þ

The second type of stability is quantified via a ‘‘successive percentage change’’

(SPC) transformation between IBeIs i and i+1:

SSPC,iz1~100|
Siz1{Si

Si
: ð2Þ

(Both SPDL and SSPC are expressed as relative percentages so as to facilitate

comparisons across IBeI sequences in different tempo ranges.) These two

equations are used in sequence to identify the location of temporally stable IBeIs.

First, an initial determination of stability is made for each IBeI:

SStable,i~
1, if SPDL,ij jƒhLocal

0, otherwise

�
, ð3Þ

where ‘‘1’’ indicates a stable IBeI relative to l. Next, for all pairs of elements {i,

i+1} for which SStable,i has a value of {1, 1}, SStable,i+1 is then revised:

Figure 1. Illustrating different central tendency statistics. (A) A hypothetical IBeI series comprised of three
distinct tempo sections: 20 IBeIs with a mean of 0.5 s (i.e., 120 bpm), followed by 20 IBeIs with a mean of
0.75 s (80 bpm), followed by 40 IBeIs with a mean of 1.00 s (60 bpm). The mean, median, and mode of the
data fail to provide an adequate measure of central tendency. (B) Kernel density estimation (KDE) of the
distribution of IBeI values inFigure 1A, using various bandwidth values. The most accurate measure of central
tendency was obtained using adaptive Gaussian KDE [90, 91].

doi:10.1371/journal.pone.0110452.g001
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SStable,iz1~
1, if SSPC,iz1j jƒhLocal

0, otherwise

�
: ð4Þ

A ‘‘Run’’ (i.e., a string of 1 s) within SStable thus indicates both temporal stability

relative to l as well as between successive IBeIs; a ‘‘Gap’’ (i.e., a string of one or

more 0 s) indicates temporal instability. The Stable Segment is defined as the

longest consecutive sequence of adjacent Runs-plus-Gaps (e.g., {Runj, Gapj,

Runj+1}), where each Run has a duration § hRun and each Gap a duration # hGap.

E. Summary Statistics

For each file, BEATS computes nine Summary Statistics for the Stable Segment

(referenced throughout the text as ‘‘A’’ through ‘‘I’’).

(A) ‘‘Stable Duration’’: the duration (in seconds) between the first and last

timestamps of the Stable Segment.

(B) ‘‘Stable Percentage’’: the Stable Duration as a percentage of the duration

between the first and last timestamps of the IBeI series.

(C) ‘‘Run Percentage’’: the percentage of the Stable Duration comprised of Runs.

For example, if a Stable Segment was comprised of two Runs (each 30 s in

duration) separated by a single Gap (2 s in duration), then the Run

Percentage is 96.8%.

(D) ‘‘Estimated Tempo’’: the central tendency (l) of the entire IBeI series,

converted to beats per minute (e.g., a l of 1.0001 s yields an Estimated

Tempo of 59.994 bpm).

(E) ‘‘Estimated Tempo Mismatch’’ (ETM): the signed percentage error of the

tempo estimated by BEATS (T̂B, defined above) relative to the tempo

estimate calculated by Echo Nest (T̂E; i.e., the tempo statistic queried from

the MSD):

ETM~100|
T̂B{T̂E

T̂E
: ð5Þ

(F) ‘‘Estimated Meter’’: a more precise operationalization of meter than the

usual integer value (e.g., ‘‘4 beats-per-bar’’). Specifically, for a Stable Segment

with a bar timestamp series {ri, ri+1, …} and beat timestamp series {bj, bj+1,

…}, let ni be the number of beat timestamps for which ri # bj ,ri+1.

Estimated Meter is then taken as the mean of all ni. Only in the case when all

ni have the same value will a true integer result (e.g., 4:�0), providing an easy

way to identify audio files that have an unstable meter within the Stable

Segment.

(G) ‘‘Maximum of Percentage Deviations from l’’ (PDLmax): The absolute value

of the largest PDL (Eq. 1) across all Runs.
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(H) ‘‘Maximum of Successive Percentage Changes’’ (SPCmax): The absolute value

of the largest SPC (Eq. 2) across all Runs. Although hLocal sets the maximum

tolerated amount of instability in PDL and SPC a priori, the largest observed

PDL and SPC may in fact be smaller.

(I) ‘‘Maximum of Percentage Tempo Drift’’ (PTDmax): the largest observed

‘‘short term drift’’ in tempo across all Runs, expressed as a percentage, and

calculated as follows. First, within each Run, a series of 10-s windows is

defined, with each successive window overlapping half of the previous

window. Second, within each window, the best-fitting slope (i.e., linear

tempo drift) through the IBeIs is found using least-squares linear regression

Matlab’s polyfit (highlighted in red in the two example IBeI series shown in

Figure 2). Third, for each calculated regression slope, the y-axis endpoints

within window w are found, and expressed as percentage change (i.e., a

‘‘percentage of tempo drift’’, PTD). In Figure 2A, for example, the best-fit

slope in the 0 to 10 s window rises from y5.4997 to y5.5029 (yielding

PTD50.65%), whereas the best-fit slope in the 10 to 20 s window falls from

y5.5064 to y5.4897 (yielding PTD523.30%). Finally, PTDmax is taken as

the largest absolute value of all PTDs across all Runs. For the IBeI series in

Figure 2A, PTDmax53.30%.

Importantly, PDLmax, SPCmax, and PTDmax quantify partially independent

aspects of temporal instability. The IBeI series in Figure 2B is in fact simply a

random reshuffling of the IBeI series in Figure 2A, meaning that the two have

identical means (50.50), standard deviations (50.005), and PDLmax (52.69%)

statistics. Their SPCmax and PTDmax statistics, however, are markedly different (by

a factor of 4 and 3, respectively). Quantifying these three aspects of temporal

instability provides a richer description of each IBeI sequence, as well as how IBeI

sequences differ from one another.

F. Implementation

To illustrate its various features, BEATS was run on the full Million Song Dataset

using Initialization Thresholds of hLocal55.0%, hRun510 s, and hGap52.5 s. (The

values of these thresholds, especially hLocal, should be considered illustrative rather

than prescriptive; more will be said about this point in Section 1 of the

Discussion.).

Results

1. Individual Examples

Figure 3 presents four individual MSD audio files that visually highlight one or

more of the Summary Statistics. (All files had an Estimated Meter54:�0.)

Recordings of each audio file are available for listening via a Spotify URL.

In Figure 3A, the entire audio file consists of a repeating (looped) four-beat

percussion riff. The IBeI series is highly regular, with nearly all successive IBeI
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differences being less than 2 ms. This audio file represents an ‘‘ideal’’ case: near-

perfect isochrony from the first beat to the last, yielding very low values for the

three Summary Statistics that quantify IBeI variability (PDLmax, SPCmax, and

PTDmax), as well as excellent agreement between BEATS’ Estimated Tempo and

Echo Nest’s tempo estimate (a difference of less than one-tenth of 1%).

In Figure 3B, the audio file begins with a complex rhythm, to which a simple

drum-and-cymbal rhythm (at approximately 150 bpm) at a higher frequency

(pitch) and intensity (loudness) is added at the 13-s mark. This simple rhythm is

removed at the 110-s mark, reintroduced at the 116-s mark, and remains in place

until the end of the file at 199 s. It is this simple rhythm that drives the output of

the Analyze beat detection algorithm. As such, the 94-s Stable Segment (identified

by BEATS) is the longer of the two segments at that same tempo (the other being

roughly 83 s). Within the Stable Segment, most IBeIs differ by only a few ms

(similar to Figure 3A), yielding low values for the IBeI variability statistics.

However, although the estimates of tempo by BEATS and Echo Nest again show

excellent agreement, using the entire audio file in a motor synchronization

paradigm (rather than just the Stable Segment) may prove challenging for some

patients.

In Figure 3C, the Stable Segment is comprised of four distinct Runs bridged

across three Gaps (at roughly 40 s, 77 s, and 160 s) that emerge as a consequence

of unexpected syncopations in the voice (Gaps 1 and 2) or electric bass (Gap 3).

Figure 2. Illustrating the relationship between three measures of temporal instability. Two permutations
of the same set of IBeIs are presented; both have identical central tendency and PDLmax statistics. The IBeI
series in (A) exhibits temporal dependency, with gradual transitions from IBeI to IBeI. The IBeI series in (B)
exhibits a more stochastic pattern of IBeI transitions. These differences in temporal structure are reflected in
the SPCmax and PTDmax statistics.

doi:10.1371/journal.pone.0110452.g002
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Figure 3. Four examples from the MSD illustrating the calculated Summary Statistics. IBeIs (y-axis) are plotted as a function of real time (x-axis). The
central tendency (l) of each IBeI distribution is obtained via adaptive KDE (right subpanel), plotted in blue. Slopes used to calculate PTDmax statistics are
highlighted in red. The final Stable Segment (bridged across Gaps) is highlighted in green circles. Spotify URLs can be suffixed to https://play.spotify.com/
track/ for listening.

doi:10.1371/journal.pone.0110452.g003
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PDLmax and SPCmax both have higher values than in the previous two examples,

which might be expected as this audio file was recorded in a studio with session

musicians (as opposed to synthesized on a computer, like the excerpts highlighted

in Figures 2A and 2B) [92].

In Figure 3D, the accelerando for which the piece is famous is clearly visible in

the IBeI plot; such an acoustic feature would, in theory, make for poor temporal

stability. BEATS, however, was able to identify a 61-s Stable Segment where the

tempo accelerated in less than 5% increments (as quantified by the ‘‘Maximum of

Percentage Tempo Drift’’ statistic, PTDmax).

Another feature of this IBeI series is notable. Although the perceptual tempo of

the audio file continues to accelerate throughout its second half, the detected IBeI

series (which had been tracking the quarter-note pulse) dramatically shifts from

0.42 s (at the 113-s mark) to 0.74 s (by the 116-s mark). Listening to the recording

itself reveals a prominent change in timbre and intensity with the introduction of

the chorus (and its strong accents on alternating quarter notes) at this point in the

musical score (i.e., bar 49 in [93]). Although this musical event falls outside the

Stable Segment, it raises an important point about the intimate dependency of

BEATS on the beat tracking algorithm from which it takes its input data–a point

detailed further in Section 1 of the Discussion.

2. Static Presentation of Summary Statistics

Figure 4 presents a histogram (with log2 spacing along the y-axis for visual clarity)

for each Outcome Statistic. The number of files actually summarized in Figure 4 is

971,278; the remaining files (i.e., 2.9% of the full MSD) did not have an

identifiable Stable Segment which satisfied the Run Duration Threshold (i.e., were

found to have less than 10 s of temporal stability).

An immediate question of interest concerns the agreement in ‘‘average’’ tempo

as estimated by BEATS (T̂B) and Echo Nest (T̂E). As revealed in Figure 4E, this

match was generally quite high: 95% of all ETM percentage values fell within the

interval [–2.20, 1.69]. That a vast majority of T̂B values differed from their T̂E

counterparts by less than the just-noticeable-difference for changes in tempo in

isochronous IBeI sequences (cf. Section 1 of the Introduction) would seem, at first

blush, to eliminate the need for BEATS entirely. Critically, however, agreement in

terms of ‘‘average’’ tempo is only one piece of the puzzle, as it does address

whether (and over what portion of the audio file) that tempo is stable–thus

making that value statistically valid and experimentally useful.

In fact, Stable Percentage values (i.e., the percentage of each file’s duration that

consisted of temporally stable of Runs that were separated by temporally unstable

Gaps of no more than 2.5 s) varied widely across the MSD, as revealed in

Figure 4B. Less than 22% of MSD files (N5214,540) yielded a Stable

Percentage5100 (i.e., indicating temporal stability from the first detected beat to

the last). This result has important consequences for ‘‘unsupervised’’ tempo-based

playlist generation algorithms (e.g., [52]– [54]): only a fraction of audio files
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actually maintain their nominal tempo (i.e., the their Echo Nest tempo estimate)

over their entire duration.

By contrast, if a user simply requires music that is temporally stable over a

minimum duration (say, 90 s; useful for short gait training episodes or bouts of

rhythmic exercise between rest periods) rather than its entire duration, a more

optimistic picture emerges. As highlighted in Figure 4A, 61% of MSD files

(N5609,676) have a Stable Duration §90 s-nearly three times the number of

MSD files that have a Stable Percentage5100. Allowing BEATS to identify the

Stable Segment within each audio file (rather than using the entire audio file a

priori) yields a greater number of files that could be utilized in tempo-based

playlists.

With respect to meter, agreement between BEATS and Echo Nest was very high,

as highlighted in Figure 4F: for 99.6% (N5967,226) files, the two estimates

matched exactly (e.g., time_signature54 and Estimated Meter54:�0). An

unexpected result, however, also emerged: a substantial number of audio files

Figure 4. Histogram summaries of the nine Summary Statistics across the Million Song Dataset (N5971,278), using log2 scaling along the y-axis
to enhance visibility. Labels ‘‘A’’ through ‘‘I’’ correspond to the order in which Summary Statistics were defined in Section E of the Methods.

doi:10.1371/journal.pone.0110452.g004
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(N521,412) yielded an Estimated Meter57:�0. (This number was reduced to

11,164 when excluding audio files with a Stable Duration of less than 60 s.) This

‘‘odd’’ result was confirmed when comparing the time_signature statistic

(i.e., Echo Nest’s own meter estimation) for these files; agreement was found in all

cases. A cursory listening of these audio files revealed that the Estimated Meter

value was, not surprisingly, inaccurate. Identifying misclassifications such as these

will provide important ‘‘grist’’ to refine future beat tracking algorithms, a point

further elaborated upon in Section 2 of the Discussion.

A final question pertains to correlations among the three Summary Statistics

that most directly quantify the stability of an IBeI series: IBeI deviations from l
(PDLmax), successive changes between IBeIs (SPCmax), and IBeI drift within Runs

(PTDmax). Figure 5 provides the answer, using scatter plots to visualize pairwise

relationships between these three variables for the 609,676 MSD files with a Stable

Duration §90 s. (This threshold was applied so that the scatter plot relationships

would be less biased by Summary Statistics calculated from short excerpts of

music.) Although the correlation between each pair of variables is positive (and

‘‘very’’ statistically significant given the large number of observations), it is clear

that any one variable captures only a portion of what it means to be ‘‘temporally

stable’’.

3. Interactive Exploration of Summary Statistics

To more effectively interact with (and benefit from) the full set of Summary

Statistics, an interactive tool is required. To this end, a LAMP-based (Linux,

Apache, MySQL, PHP) web interface was developed. This interface, termed

iBEATS (with a permanent URL at http://ibeats.smcnus.org/), integrates the full

output of BEATS with three other valuable pieces of metadata: artist name, album

release year, and descriptive genre tags.

For each item in the MSD, album release year was obtained by querying the

7digital application programming interface (API) (http://developer.7digital.com)

using the MSD variable release_7digitalid. This yielded a total of 930,852

matches, a significant improvement upon the 515,576 files with a non-zero value

in the MSD year variable [83].

For each unique artist in the MSD, a set of descriptive terms were pulled (MSD

variable artist_terms) covering both high-level genre (e.g., ‘‘rock’’,

‘‘electronic’’, ‘‘heavy metal’’) and specific subgenres (e.g., ‘‘garage rock’’, ‘‘deep

house’’, ‘‘progressive metal’’, etc.), as well as broad geographic descriptors

(‘‘brazilian’’, ‘‘french’’, ‘‘swedish’’) and specific regional influences (e.g.,

‘‘brazilian pop’’, ‘‘french rap’’, ‘‘swedish hip hop’’), and up to 10 terms with an

artist_terms_weight §0.5 for that particular artist were retained. The

weight statistic, with values ranging from 0 to 1, reflects how descriptive a given

term is with respect to the artist in question (as proprietarily determined by Echo

Nest; cf. [94]), similar to a term frequency-inverse document frequency statistic.

Table 1 lists the 20 terms most frequently encountered artist terms in the MSD,

tallying the number of artists and the number of songs associated with each term.
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(The Spearman correlation between these two item counts is r5.966 for the 1080

terms associated with at least 10 unique artists in the MSD.) The final number of

MSD items which had valid tag data, year data, and a Stable Segment of at least

10 s was 902,081.

Figure 6 presents a screenshot of an iBEATS query. The nine Summary

Statistics are visualized using histograms, similar to Figure 2, and can be re-

Figure 5. Pairwise scatter plot relationships (with associated Spearman correlation r values) for three BEATS Summary Statistics that quantify
the stability of an IBeI series: PDLmax, SPCmax, and PTDmax.

doi:10.1371/journal.pone.0110452.g005

Table 1. The 20 most frequent artist_terms included in the Million Song Dataset.

Rank Term Number of artists Number of songs

1 rock 13276 334709

2 electronic 10684 182981

3 pop rock 6455 185476

4 hip hop 6287 134748

5 electro 4921 88383

6 pop 4823 124291

7 indie rock 4699 102716

8 downtempo 4444 99307

9 disco 4241 104308

10 jazz 4192 117261

11 techno 4163 71281

12 alternative rock 4117 98359

13 tech house 3930 71697

14 trance 3504 53061

15 chill-out 3440 89033

16 folk rock 3283 91270

17 ballad 3228 111634

18 progressive house 3223 60806

19 deep house 3179 62626

20 blues 2905 84925

doi:10.1371/journal.pone.0110452.t001
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thresholded at liberty. To facilitate users’ ability to navigate musical space, 952

distinct artist terms were mapped onto one of two browsable, two-level

hierarchies: one covering genre/style (with organization derived in part from

www.allmusic.com/genres; e.g., ‘‘garage rock’’ is mapped to Rock R Psychedelic/

Figure 6. The iBEATS website (http://ibeats.smcnus.org/). The nine Summary Statistics are visualized using histograms (1). The user queries iBEATS by
adjusting the numeric thresholds, browsing a two-level hierarchy of Genre/Style and Geography terms (2), and/or direct input to the Artist Name field (3).
Filtering (4) reveals the number of candidate songs satisfying the query, which may then be further examined (5) and an audio sample previewed (6). The
candidate playlist may then be exported (7) for subsequent use by a streaming music service (e.g., Spotify).

doi:10.1371/journal.pone.0110452.g006
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Garage), and the other covering geography (roughly corresponding to continent

and country; e.g., the term ‘‘suomi rock’’ is mapped to Europe, Northern R
Finland). Additionally, specific artist names may be retrieved using text-based

auto-completion (e.g., ‘‘ab’’ retrieves both ABBA and Abbott & Costello as

options).

In the example shown in Figure 6, a playlist has been created for a hypothetical

patient about to begin a gait rehabilitation paradigm. The following input

parameters were used: all Rock genre songs from 1950 to the present, with a Stable

Duration §90 s, Estimated Tempo between 115 and 125 bpm, Estimated

Meter54:�0, and PDLmax, PSDmax, and PTDmax all #5.0%. 19,725 audio files from

the MSD satisfy this query, and are returned in a pop-up window; where available,

30-s audio previews are provided by making use of Echo Nest’s integration with

7digital audio previews [95]. (Note that the number of available files for a

particular query is scalable: as BEATS expands further into the 35-million-item

Echo Nest catalog of metadata, so too does the number of candidate songs

satisfying that query.) The final, customized playlist (including, importantly, the

starting and stopping time indices demarking the Stable Segment) may then be

exported for subsequent handling by a streaming music player (e.g., Spotify; www.

spotify.com), as described further in Section 2 of the Discussion.

Discussion

Although many widely used beat tracking or tempo extraction algorithms, front-

end software interfaces, and back-end metadata service providers offer point

estimate statistics for the ‘‘average’’ tempo of an audio file, none has sought to

systematically quantify the amount of temporal instability within an inter-beat

interval (IBeI) series. Such an analysis is, we propose, acutely necessary to

accurately design playlists for motor rehabilitation or rhythmic exercise

paradigms, for which a stable beat is a prerequisite feature.

The proposed analysis tool, a ‘‘Balanced Evaluation of Auditory Temporal

Stability’’ (BEATS), seeks to fill this need. The ultimate utility of BEATS, however,

rests on (at least) two important caveats. The first caveat concerns the accuracy of

the beat tracking algorithm; the second concerns the choice of thresholds used to

define the Stable Segment.

1. Caveats

A first caveat, as noted in the Introduction, is that BEATS possesses no beat

tracking capabilities itself; its raw material is a timestamp vector of beat and

barline timestamps that had been previously detected by an external algorithm.

For this reason, the idiosyncrasies of a particular beat tracking algorithm (or a

systematic difference between two ‘‘competing’’ algorithms) will necessarily be

reflected in whether and where BEATS identifies a Stable Segment of IBeIs. An

algorithm’s beat tracking performance can be affected by both temporal (e.g., a

Quantifying Auditory Temporal Stability

PLOS ONE | DOI:10.1371/journal.pone.0110452 December 3, 2014 16 / 24

www.spotify.com
www.spotify.com


complex rhythm loop) and non-temporal (e.g., recording quality) features of an

audio file; examples of this were highlighted in Figure 3 and detailed in Section 1

of the Results.

Although this fact may make BEATS conservative (in that some audio files will

be deemed to lack a Stable Segment of a ‘‘useful’’ minimum duration if many

Gaps are present), such conservativeness may be beneficial in practice, as it will

exclude pieces of music that may in fact be too challenging for listeners to

synchronize with. (An ever-larger library of processed audio files will, of course,

mitigate this conservativeness.) Indeed, the relationship between how a beat

tracking algorithm performs and how listeners themselves perform when given a

beat tracking task continues to drive developments in the field [79, 96–99]. The

more closely an algorithm mimics human perception with respect to how it

responds to temporal instability, the higher the quality of the Summary Statistics

calculated by BEATS.

A second caveat is that the output of BEATS depends heavily on the choice of

its Initialization Thresholds (cf. Section 3 of the Methods): the Local Stability

Threshold (hLocal), Run Duration Threshold (hRun), and Gap Duration Threshold

(hGap). Of these three, hLocal perhaps has the strongest influence over the

likelihood of finding a Stable Segment with a ‘‘useable’’ duration (e.g., §90 s). In

the present report, a value of hLocal55.0% was selected. This value was chosen

after a careful examination of the literature exploring just-noticeable differences

(JNDs) within and between auditory temporal patterns (cf. Section 1 of the

Introduction)–and determining that no prior reported threshold satisfied the

constraints of the current project. Thus, the pattern of Summary Statistics

obtained using hLocal55.0% should be taken as illustrative rather than

prescriptive. A conservative hLocal value (e.g., 1.0%) would certainly decrease the

number of available audio files with a useable Stable Duration, but at the same

time increase the confidence that any audio files that ‘‘made the cut’’ were truly

perceptually stable. Ultimately, adjusting both the Initialization Thresholds and

the musical content (genre, artist, decade) to suit the needs and preferences of

each target user (and the goals of the accompanying motor task) would seem the

most prudent choice.

2. Future Directions

The primary aim of BEATS and iBEATS is to provide accurate statistics about

tempo stability in a large collection of audio files, and to make that information

easily accessible to users. Increasing the size of BEATS’ library (via access to Echo

Nest metadata) to provide a greater collection of potential music stimuli is

planned for the immediate future. Additionally, as noted by a reviewer, the

manner in which genre/style terms are made available to a user by iBEATS may be

as important as the statistics a user is hoping to obtain from iBEATS. Providing

additional tools for musical ‘‘navigation’’ would offer enhanced accessibility and,

in turn, widen the potential user base.
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Although iBEATS itself is not viable as a means of delivering a rhythmic

auditory cueing paradigm, we plan to author a mobile application that would (1)

take a user’s input (artist, genre, tempo range, tempo stability thresholds, etc.); (2)

query BEATS and obtain a candidate playlist; and (3) deliver that playlist using

existing APIs authored by licensed streaming music services such as Deezer

(http://developers.deezer.com/), Rdio (http://www.rdio.com/developers/), or

Spotify (https://developer.spotify.com/). The ability to pair iBEATS with other

mobile applications would offer novel ways to discover music; for example, by

identifying a segment of audio using a music identification service (e.g., Shazam;

http://www.shazam.com/) and then using BEATS to find music with similar

temporal characteristics (a form of ‘‘query by example’’; cf. [100]), or by utilizing

a touchscreen-based ‘‘query by tapping’’ (cf. [101]) to more intuitively capture the

desired movement rate.

In another vein, concurrent work from our laboratory [102] has sought to

validate a mobile application to quantify the basic temporal dynamics of human

gait in both healthy adults and Parkinson’s patients. A subject’s cadence (i.e.,

number of steps per minute) could then itself be used as an input parameter,

creating a ‘‘query by walking’’ paradigm (which, although proposed previously

[87], has yet to be explored within the music information retrieval literature).

3. Current Applications

Besides these future enhancements for ‘‘front end’’ users, current researchers may

already benefit from BEATS. For researchers seeking to improve beat tracking

algorithms, for example, BEATS could be used to identify audio files with

‘‘strange’’ IBeI patterns (e.g., Figure 3D) that may reflect an inherent limitation of

a certain beat tracking algorithm, or to find those audio files with a sizable

Estimated Tempo Mismatch (cf. Figure 4E).

BEATS could also prove useful with respect to identifying an algorithm’s

misclassifications of meter (e.g., [103]) or tempo ‘‘octave’’ (e.g. [104]). Because

the Stable Segment identified by BEATS within a given audio file possesses, by

definition, a repeating acoustic pattern at some rhythmic level (e.g., eighth note),

only a brief portion of the Stable Segment should be necessary for a human

annotator to (1) indicate (i.e., tap) the pulse level (e.g., eighth note, quarter note,

half note) they felt was most natural and (2) indicate whether the meter estimated

by the algorithm (e.g., 3, 4) agreed with their own perceptions. This ‘‘accelerated’’

annotation process would greatly reduce the labor required to confirm these

important statistics and identify misclassifications (e.g., the suspiciously high

number of audio files with an ‘‘Estimated Meter57:�0’’, as noted in Section 2 of

the Results). Such audio files would provide an immediate set of diagnostic stimuli

that could be used to compare how beat tracking algorithms-particularly those

informed by computational, psychological, and neurobiological models of how

human listeners track patterns in time; for recent comprehensive reviews, see [12–

14, 105, 106]–perform relative to listeners’ ground-truth tapping annotations.

Fusing ‘‘bottom-up, data-driven’’ retrieval methods with ‘‘top-down, knowledge-
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based’’ models of human perception, cognition, and emotion remains a key focus

for the field of music information retrieval (e.g., [43, 83–86]).

Conclusion

We present a novel tool to quantify auditory temporal stability in recorded music

(BEATS). An important departure that BEATS makes from other methods is that

it seeks to identify the most temporally stable segment within an audio file’s inter-

beat interval (IBeI) series, rather than derive a point estimate of tempo for the

entire IBeI series. This increased flexibility enables BEATS to identify a greater

number of candidate audio files for use in tempo-based music playlists. An online

interface for this analysis tool, iBEATS (http://ibeats.smcnus.org/), offers

straightforward visualizations, flexible parameter settings, and text-based query

options for any combination of artist name, album release year, and descriptive

genre/style terms. Together, BEATS and iBEATS aim to provide a wide user base

(clinicians, therapists, caregivers, and exercise enthusiasts) with a new means to

efficiently and effectively create highly personalized music playlists for clinical

(e.g., gait rehabilitation) or recreational (e.g., rhythmic exercise) applications.
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