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Abstract

Review Article

IntroductIon

Since the commercial introduction of whole-slide 
imaging (WSI), digital pathology has developed into a 
thriving field.[1,2] The ability to digitize an entire pathology 
glass slide has been transformational and engendered numerous 
clinical, educational, and research applications. The capacity 
to rapidly generate large quantities of microscopy information 
has become feasible as a result of ongoing technical advances 
in optical imaging technologies. The first digital microscope 
systems cost about $300,000 to set up and took over 24 h to 
scan a single slide. These devices have advanced significantly 
over the past 20 years. Today, whole‑slide scanners are capable 
of automatically producing very high-resolution images 
that replicate glass slides (so‑called virtual microscopy). 
Equally dramatic improvements in storage and computational 
technology have made possible the processing of large WSI 
datasets. As a result, WSI devices have become important 

tools that can support routine diagnostic work and scientific 
discovery in pathology and have enabled the development of 
next‑generation tools including artificial intelligence (AI).

This article provides an overview of WSI and the 
state‑of‑the‑art, promise and challenges of digital pathology. It 
presents a compendium of past and present efforts to develop 
devices and infrastructure to scan, catalog, and store large 
collections of WSIs. This article also reviews the methods 
and tools used to carry out large-scale, integrated analyses 
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with visualization, interrogation, and mining of WSI for 
research and clinical decision‑making. Integration is the key 
to correlate WSI data with clinical, radiological, and genomic 
information. A number of examples are also described from 
different institutions and consortia that launched into very 
large-scale digital pathology data acquisition, storage, and 
integration efforts.

EvolutIon of thE vIrtual MIcroscopE

Current software systems and methods for WSI data 
management, query and viewer methods arose from the 1990s 
era of computer science spatial dataset research. This research 
was initially motivated by the need to analyze, visualize, and 
query sensor data acquired from satellites and from basic 
and applied earth science applications. Through the use of 
this software, raw data acquired by orbiting satellites could 
be associated with appropriate geospatial regions, spatially 
related data could be aggregated, and useful datasets could 
be produced.

In the context of a National Science Foundation Grand Challenge 
Award, the Saltz group developed software – the Active Data 
Repository (ADR) system – designed to carry out combined 
retrieval and processing of large amounts of spatio-temporal 
data.[3] This software motivated the development of innovative 
spatial indexing methods and also made use of the map-reduce 
paradigm later employed by Hadoop and Spark. Motivated 
by a discussion with Sal Pizzo, the pathology chair at Duke 
concerning eventual replacement of microscopes with 
computers in anatomic pathology, Saltz realized that the 
methods employed for satellite and earth science data could also 
be applied to the very large datasets obtained by digitization 
of WSIs. The realization that this nascent technology, being 
developed to process satellite data, could be applied to WSIs 
was the nidus that triggered the development of software 
necessary to support the earliest Virtual Microscope [Figure 1] 
that was developed from 1996 to 1998.[4]

When the Saltz group launched their “Virtual Microscope” 
research in 1996, there were no whole‑slide scanners, so data 
were acquired by tiling WSIs using a platform designed to 
acquire photomicrographs. The initial Virtual Microscope 
software used the ADR to carry out spatially accessed data 
retrieval and to generate output data at varying levels of 
magnification. This initial prototype system was soon refined 
to support data caching, prefetching, support for simultaneous 
queries from multiple clients, and precomputed image 
pyramids.[5] A follow‑on system employed a different backend 
architecture called DataCutter. Both the ADR and DataCutter 
were also adapted to support visualization [Figures 2 and 3] as 
well as analysis and visualization of three‑dimensional (3D) 
images obtained from serial sections.[6,7]

Flexible, high‑end software systems such as the ADR, 
DataCutter,[8] Hadoop geographic information system (GIS),[9] 
and SPARK GIS[10] have continued to be used for applications 
such as rendering 3D pathology microanatomic objects and 
complex problems in pathology spatial analytics, but over 
the ensuing years, a variety of software systems have been 
developed to support multiresolution two‑dimensional (2D) 
dataset traversal. It was recognized that in many cases, all 
that was required to be supported was to pan and zoom across 
and into multi‑resolution 2D datasets represented by image 
pyramids. Zoomify, Keyhole EarthViewer (acquired by Google 
and integrated into Google Earth), Lizardtech (now Extensis) 
GeoExpress, and Microsoft’s Seadragon technology were 
pioneering examples of systems of this kind. These systems 
have continued to evolve. There is now an open‑source variant 
of Seadragon (Open Seadragon).

Today, a variety of companies produce commercial WSI 
scanners, and these systems acquire WSIs in proprietary 
formats, either via tile‑based or line‑based scanning. The 
capability to transform data between some of these formats 
is provided by the OpenSlide library, a vendor neutral C 
library.[11] A standard whole‑slide format developed by the 
Digital Imaging and Communications in Medicine (DICOM) 

Figure 1: Screenshot of the early Johns Hopkins/University of Maryland 
“Virtual Microscope” whole‑slide imaging viewer client

Figure 2: Architecture of the active data repository spatial data query 
system used as the virtual microscope backend
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standards committee working group (WG) 26 (Supplement 
145) has defined standards for tiled pyramid‑based data 
storage and frame of reference.[12] There are currently a variety 
of actively supported open-source WSI systems, in addition 
to proprietary whole-slide software systems supported by 
vendors. Examples of such systems are caMicroscope, the 
Digital Slide Archive, the Sedeen viewer, and QuPath.[13‑16] 
These Virtual Microscope software systems make use of 
image pyramid-based data management systems to support 
multiresolution pan‑and‑zoom operations. Each of these 
systems supports invocation of image analysis software, and 
to varying degrees, each also supports management, query, and 
visualization of imaging features obtained by image analysis 
algorithms.

WholE‑slIdE IMagIng MIlEstonEs

WSI (previously referred to as virtual microscopy) involves 
scanning (digitization) glass slides to produce digital slides (also 
known as WSIs or eSlides). Such digitization is performed on 
a WSI scanner. The first commercial slide scanner, called the 
BLISS (Bacus Laboratories Inc., Slide Scanner) system (http://
www.jamesbacus.com/page10.html), was designed by James 
Bacus in 1994.[17] Bacus Research Laboratory were awarded 
the first two WSI patents. These were filed in 1997 and 
1998, so this industrial work was contemporaneous with the 
above‑described academic efforts. Bacus was later acquired 
by Olympus. InterScope Technologies was founded in 1998 
by Dr. Michael Becich et al. associated with the University 
of Pittsburgh Medical Center. InterScope’s ultrafast robotic 
whole-slide digitizer supported integrated slide imaging, case 
flow, and clinical data management applications. InterScope 
was acquired by Trestle Holdings in 2005. Trestle developed a 
robotic telepathology system (MedMicroscopy) that supported 

dynamic image capture along with motorized panning and 
zooming. Tresle was acquired by Chromavision (later renamed 
Clarient), and their first product was an automated cellular 
imaging system (ACIS). The ACIS system was capable of 
quantitative analysis, rare event detection, object counting, and 
incorporated tissue microarray technology and an interface to 
Dako automated stainers. Clarient split into a telepathology 
business unit later bought by Carl Zeiss, and a companion 
diagnostic company with Dako. In 2000, Aperio developed a 
linear array detector synchronized with a positioning stage to 
acquire and compose image strips obtained from successive 
scans of each specimen. In 2004, Dr. Ronald Weinstein 
developed a highly innovative scanning technology consisting 
of a microscope array designed to rapidly acquire WSI data; 
he created a company called DMetrix to commercialize 
the technology. Aperio also developed a multi‑sensor array 
approach where a microscope objective lens projects an image 
on to multiple sensors, allowing concurrent image acquisition 
and data processing. Today, many novel scanners have been 
built incorporating state-of-the-art optics, robotics, and 
computers. These instruments typically contain a microscope 
with one or more objective lenses, digital cameras, robotics, 
and numerous other parts (e.g., slide trays/cartridges, light 
source, barcode reader). Currently, there are a plethora of WSI 
scanners on the market that cater to a variety of uses.

A contemporary WSI system includes two integrated 
components [Figure 4]:[2] (1) the scanner that handles image 
acquisition and (2) the workstation that includes a monitor. 
According to published guidelines by the College of American 
Pathologists for clinical validation of WSI, it is unnecessary 
to separately validate each component of a WSI system.[18] 
Over the years, manufacturers have continually developed 
scanners to address clinical needs. Some of these innovations 

Figure 3: Architecture of the DataCutter system used to support the Virtual Microscope application
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include devices that offer brightfield and/or fluorescence light 
sources, oil magnification, Z-stacking, and slide capacities that 
range from holding 1 to 1000 slides. Z-stacking capability 
is especially valuable for laboratories that scan cytology 
specimens.[19] Several newer scanners [Figure 5] offer hybrid 
WSI scanning and a live view mode that permits glass slides to 
be viewed in real time by remotely controlling magnification, 
navigation, and focus function with robotics. Such hybrid 
scanners are particularly desirable for intraoperative 
consultations accomplished by means of telepathology.

There are many clinical and nonclinical uses of WSI. Of 
all the potential use cases, the one that has caused the 
most excitement and anxiety is the utilization of WSIs for 
making primary diagnoses. Numerous validation studies 
have been published indicating that WSI is a reliable tool 
for routine diagnosis in surgical pathology.[20-23] For most 
subspecialties, the published data show excellent correlation 
between diagnoses made with WSI and conventional light 
microscopy [Table 1].[24] A meta‑analysis of publications 
regarding WSI compared with light microscopy revealed 
355 out of 8069 discordant instances (4%), of which 
109 cases (32%) were related to diagnosis or grading of 
dysplasia and 32 cases (10%) were ascribed to the inability 

to find a small object.[25] Cytology no longer appears to be 
an exception as similar positive findings have been recently 
demonstrated using WSI for cytopathology.[26] Not surprisingly, 
several pathology labs around the world have successfully 
gone “fully digital.”[27‑29] Indeed, WSI technology has many 
advantages over conventional microscopy such as portability, 
ease of sharing, and retrieval of images, workload balancing, 
and image analysis.[30]

Despite the aforementioned accomplishments, the adoption 
of WSI in clinical practice has been relatively slow. This 
has been attributed to technical, cultural, financial, and, in 
the United States, regulatory barriers. Table 2 highlights 
several milestones related to regulations in the United 
States. Major progress was made when the Food and Drug 
Administration (FDA) allowed marketing the first WSI system 
for primary diagnosis in surgical pathology.[31] Following a 
pivotal noninferiority clinical trial,[32] the Philips IntelliSite 
Pathology Solution was the first WSI system to receive FDA 
approval. This first authorized de novo WSI predicate device 
has paved the way for other manufacturers who now only need 
510(k) clearance instead of premarket approval. As a result, 
this has piqued the interest of many pathology laboratories 
that are now considering investing in WSI, and the digital 
pathology market has since witnessed a sizeable increase in 
pathology AI companies.

vEndor‑nEutral archIvEs

Despite its common use in conversations related to health 
and other images, the term vendor‑neutral archive (VNA) has 

Figure 4: Overview of a whole‑slide imaging system comprised of 
integrated scanner and workstation components (Image reproduced 
with permission)

Figure 5: Various hybrid whole slide imaging/live robotic instruments showing the number and magnification of objectives for each device

Table 1: Published results of whole‑slide imaging validation 
studies for primary diagnosis in different subspecialties

Pathology subspecialty Accuracy (concordance) (%)
Surgical pathology 75‑98
Breast pathology 90‑99
Dermatopathology 94‑100
Genitourinary pathology 88‑90
Gastrointestinal pathology 95
Gynecological pathology 96
Pediatric pathology 90‑93
Pulmonary pathology 85‑100
Renal pathology 84
Cytopathology 89‑97
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multiple definitions, none of which are widely accepted.[33‑35] 
As such, it is important that health‑care systems use a greater 
degree of caution when purchasing a VNA to ensure that the 
purchased product has the desired functionality. While an 
ideal VNA in theory is one that provides a single software and 
hardware solution for all image viewing, storage, and retrieval, 
regardless of data type or source, the reality is that no VNA 
can currently work with all image types or acquisition sources. 
While in some circles a VNA is synonymous with a Picture 
Archiving and Communications System (PACS), VNAs are 
intended to be agnostic repositories of images and may not 
offer the worklist, annotation, or other functions often found 
with a PACS.[34]

An enterprise VNA, composed of hardware and software, 
is used to accumulate images directly from various image 
acquisition sources including PACS and single‑imaging 
devices. An enterprise VNA also has viewer capability for 
the collected images, and these viewers may be accessed via 
third-party end-user applications such as electronic health 
records (EHRs), laboratory information systems, and other 
health‑related information systems and databases. Such 
viewing capability can also be extended to health information 
exchanges. Figure 6 provides an example of an archetypal 
VNA configuration.

VNAs can be classified by how they are purchased, the 
functionalities of the viewer, and the type of image storage 
associated with them.[36] A so‑called true VNA is one that 
includes both storage and an integrated viewer. The viewer 
may come from the same or a different vendor, but this type 
of VNA is sold including both components, and the viewer is 
intended to be completely compatible with the associated image 
storage. A hybrid VNA is one in which the viewer and the image 
storage components must be purchased separately, in which 
the compatibility between the viewer and storage may have to 
be validated by the purchaser. Viewer functionalities are split 
into two general categories: those compatible with DICOM 
standards, also known as DICOM‑compliant viewers, and 
viewers that are not DICOM compliant.[37] DICOM‑compliant 
viewers are also known as PACS‑neutral archives and should be 
able to present images for viewing from any DICOM‑compliant 
acquisition system. DICOM‑compliant viewers may or may not 
be able to present non‑DICOM images for viewing.

With regard to image storage, VNAs can have a central repository 
of images on hardware reserved for the VNA (central VNA), 
or the VNA may provide linking capability to images acquired 

and stored by third‑party systems (federated VNA). Central 
VNAs facilitate processes for image backup, disaster recovery, 
and business continuity as well as interoperability with other 
systems such as outside organizations and health information 
exchanges. Central VNAs may additionally reduce the need 
for image data migration when new imaging systems, such 
as a radiology PACS, are implemented. While the cost of a 
central VNA can be quite steep, especially at the enterprise 
level, the cost of maintenance may be relatively low given its 
other advantages. While federated VNAs may be cheaper and 
faster to install because of their lower requirement for hardware 
infrastructure, establishing and maintaining image connectivity 
with a variety of image sources can be difficult, and many of 
the advantages of a central VNA will not be realized.

As VNAs have become more robust, some PACS have been 
deconstructed, meaning that some of the functions of the 
PACS have been offset to another application such as a VNA. 
Delegated functions can include image acquisition, workflow, 
interpretation, study management, and study access.[38,39] 
One such function for which a VNA might be particularly 
well suited is image prefetch. Image prefetch is a workflow 
automation mechanism by which relevant prior studies of the 
patient are retrieved from image archives such as a VNA or 
PACS.[40]

There are many potential advantages to VNAs.[41,42] Centralizing 
all patient-related medical images into a single-viewing 
location creates enormous work efficiencies for end users. This 
not only creates increased provider satisfaction, but also has the 
potential to improve patient safety by making historical images 
easier to access and compare to current images. Access to 

Table 2: Regulatory milestones of whole‑slide imaging in the United States

Date Event Consequence
2000 Introduction of commercial WSI devices Interest in digital pathology peaked. Validation of diagnostic applications
2009 FDA advisory panel assembled WSI scanners designated high‑risk Class III devices. Nonclinical use 

cases expand. DPA and FDA discussions ensue
2015 TPA guidelines released Assures manufacturers follow the same standards
2017 FDA approval of WSI Approval for primary diagnosis of surgical pathology only
WSI: Whole‑slide imaging, FDA: Food and Drug Administration, TPA: Technical performance assessment, DPA:  Digital pathology association

Figure 6: An example of how a vendor‑neutral archive might be integrated 
in a health system
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historical images also reduces the risk of performing duplicate 
procedures or examinations, thereby reducing the potential for 
unnecessary radiation exposure, improving patient satisfaction, 
and decreasing overall health‑care costs.[43] The ability to view 
images across various departments would also improve patient 
care. Currently, many radiology and pathology departments 
have to go to extraordinary lengths to see corresponding images 
from the presurgical patient to the postsurgical specimen. 
Reducing the barriers to these images not only improves 
turnaround time for diagnoses where such comparisons are 
required for the diagnosis (e.g., orthopedic oncology), but it 
can also improve the chances of catching samples that have 
been mislabeled before they reach patients. Other patient care 
advantages have also been reported.[44‑46]

Creating a central repository of health images also presents 
new opportunities for patient engagement via patient portals, 
particularly for images that are not currently easily accessible 
in an EHR (e.g., pathology gross images). VNAs also provide 
new prospects for researchers as well as medical educators. 
Image acquisition in many areas of health care would also 
benefit from the improved security that some VNAs offer. This 
includes more robust authorization, authentication, and audit 
trailing of user activity. Better image security, backup, and 
redundancy procedures also prevent end users from moving or 
manipulating images such that other users are no longer able 
to access the original unmodified image.

However, like WSI applications, enterprise‑level VNAs often 
do not get implemented because the hardware and software 
components are expensive, and its implementation can be 
difficult and/or time‑consuming, especially if there are many 
systems required to integrate with the VNA. Similarly, if 
the imaging acquisition systems intended to integrate with 
the VNA lack adherence to standards such as DICOM or to 
image file format standards, many of which are de facto rather 
than governed by the International Standards Organization, 
then interoperability may be difficult or impossible. Lack 
of interoperability with the EHR was reported as a major 
hindrance to implementation in a recent survey of chief 
information officers.[47,48] Workflow changes may also be 
large for some end users, and creating a sound business 
case may take a lot of time and resources. Data storage and 
memory usage are also areas of concern given the high rate 
of information acquisition.[49]

Implementations of VNAs are expected to rise with 
enterprise‑federated viewers. VNAs have been installed 
in about 40% of institutions surveyed.[47,50] Independent of 
medical specialty, drivers of these installations have included, 
in decreasing order, improving care coordination (86%), 
reducing redundant testing (71%), and improving physician 
satisfaction (55%). In radiology centers, reducing radiation 
exposure for patients was also cited as beneficial (42%). The 
primary service lines connected to VNAs in this survey were 
radiology (91%) and cardiology (71%). Significantly lower 
connections were seen to service lines in dermatology (16%), 

gastroenterology (15%), and ophthalmology (10%). Pathology, 
despite its heavy use of both gross and photomicrographic 
images, was connected to VNAs in only 6% of institutions 
surveyed. Pathology departments utilize a wide range of 
image sources and types, and this is likely a contributing 
factor to pathology’s low rate of connectivity to VNAs. While 
WSIs are becoming DICOM‑compliant as newer equipment 
emerges, the vast majority of other types of images used in 
pathology are not DICOM compliant, thereby raising the bar 
for interoperability.[51,52] Interoperability will require vendors 
to develop DICOM‑compliant devices and software as well 
as capital expenditure on the part of laboratories to purchase 
interoperable components. Recent Connectathons conducted 
by the DICOM WG 26 held at Pathology Visions meetings 
and the European Digital Pathology Congress have shown 
that interoperability can be achieved, at least among the major 
vendors. Despite these demonstrations of interoperability, they 
have not yet translated into the pathology laboratory.

An enterprise approach to the selection and installation of a VNA 
is critical to its success.[53] Most VNAs tend to get implemented 
when the radiology PACS is due to be replaced. Enterprise 
governance, strategic planning, stakeholder engagement, 
and paying attention to security issues (e.g., protected 
health information present in image metadata) are necessary 
components to successful implementation.[42,54,55] A series of 
highly recommended articles about VNAs were produced 
by a collaborative effort between the Health Information 
Management and Systems Society and Society for Imaging 
Informatics in Medicine.[54,56‑61] Physician specialty groups 
who are less well known for imaging, including but not limited 
to pathologists, should not wait to approach their health-care 
systems about participating in enterprise VNA projects 
because, if properly implemented, these areas may greatly 
benefit from the use of a VNA. A sample list of information 
that institutions should consider gathering about each image 
category and device type acquired prior to selection of a VNA 
is shown in Table 3.

coMputatIonal pathology

Researchers have worked in the area of pathology image 
analysis algorithm development for many years. Some 
algorithms focus on segmentation and/or classification of 
microanatomic objects such as cell nuclei, whereas others 
focus on generating automated or semi-automated image 
classifications. In many cases, analysis software produces 
collections of features corresponding to microanatomic 
objects (e.g., nuclei). Features describing each nucleus might 
consist of a polygon along with metrics quantifying size, 
shape, and texture. A detailed exposition of pathology image 
analysis algorithms is beyond the scope of this article, but 
excellent surveys of algorithmic work have been previously 
published.[62‑70]

The traditional approach to WSI characterization is to employ 
algorithms to extract imaging features. Features can be 
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classified as being pixel‑level, object‑level, or semantic‑level 
based. Pixel‑level features are lowest in the information 
hierarchy, and examples of pixel-level features include 
mathematical characterizations of color, texture, and spatial 
patterns. Gray‑level intensity profiles, Haralick Gray‑level 
co-occurrence matrix features, wavelets, Gabor filter 
responses, and statistics and frequencies of color histograms 
are a small subset of pixel‑level features. Object‑level 
features are higher in the information hierarchy as they 
describe the characteristics of microanatomic objects such 
as nuclei, nucleoli, and mitoses, as well as more complex 
aggregates of multicellular microanatomic structures such 
as crypts, ducts, and blood vessels. Detailed characterization 
of object‑level features typically requires segmenting the 

structure or structures in question. There is an extensive 
literature dedicated to documentation of methods employed 
to identify and segment nuclei along with substantial bodies 
of work dedicated to segmenting more complex aggregate 
structures. There is also extensive literature dedicated to 
object detection, where the location and relative position 
of structures are identified, but the detailed morphology of 
each object is not captured. Semantic‑level features capture 
biological classification of microanatomic structures or 
regions. These features describe high‑level concepts such as 
type of cell (e.g., epithelial or endothelial), presence or degree 
of dysplasia, presence of lymphocytes, and necrosis. Kothari 
et al. describe semantic‑level features as being microanatomic 
objects with descriptive labels;[62] one can also classify WSI 
regions in a semantic manner (e.g., a region might be classified 
as being a tumor region with lymphocyte infiltration).

Deep learning methods are rapidly making a major impact in 
digital pathology. These methods can be employed to identify 
and label objects,[71] WSI regions,[72] or to assign classifications 
to entire WSIs.[73] Many researchers, including some of the 
authors of this article, have noted that deep learning methods 
tend to be more robust with less need to fine tune algorithm 
parameters and provide results that are relatively insensitive 
to variations in tissue staining and processing. However, 
systematic studies are needed to characterize the apparent 
robustness of many deep learning pathology methods. Feature 
extraction from WSIs often ensues in conjunction with clinical, 
molecular, and radiology data to predict cancer outcome and 
response to treatment. This work began in the early 2010s.[74‑77] 
The Cancer Genome Atlas provides an extraordinarily useful 
source of correlative data linking pathology WSIs with a rich 
set of molecular data, outcome and, in some cases, imaging 
data for varieties of cancer.[78]

Computational pathology is increasingly seen as a key enabler 
for precision medicine. Major goals in the development of 
computational pathology-based biomarkers are to predict 
outcome and steer treatment. The notion is to integrate radiology 
and genomic biomarkers with computational pathology-based 
biomarkers in patient decision support. One example of the 
potential value of computational pathology lies in quantitative 
characterization of tumor‑infiltrating lymphocytes (TILs). With 
the growth in cancer immunotherapy, quantitative and spatial 
characterization of the tumor microenvironment are likely to 
be of increasing clinical significance. While computational 
pathology is an extremely active research area, penetration 
of these methods into the clinical arena has been limited. The 
adoption of WSI for primary diagnosis will hopefully lead 
to subsequent clinical adoption of computational pathology 
methods over the coming decade.

largE‑scalE data ManagEMEnt, analysIs, and 
vIsualIzatIon

Digital pathology has shown tremendous promise in helping 
advance our characterization of cancer, predict outcomes, and 

Table 3: Information to gather about each image category 
acquired or expected in the near future prior to engaging 
in a vendor‑neutral archive implementation
Make and model number of each device type that captures images
Describe how images are accessioned, identified, and associated with 
the patient, specimen, case, etc., including each information system that 
either contains or links to the images
Image details

File formats (e.g., .jpg, .tif, .svs)
Color versus black-and-white
Image resolution
Average image memory size (e.g., megabytes)

For all previously acquired images of this type
Date span during which images have been acquired (e.g., from 2010 to 
present, 2009‑2011)
Total number of these images
Overall memory size of these images
Monthly number of these images acquired over the last 6 months
Monthly total memory size of these images acquired over the last 6 
months

Describe any identifying information that might be contained within any 
of the images (e.g., case number, face, unique tattoo)
Compression

Type of compression used (e.g., lossy, lossless)
Compression method (e.g., jpg, tiff)

List the specific data elements included in image metadata
Types of interfaces over which images are transmitted (e.g., HL7, flat file)
Image transmission vehicle (e.g., pdf, S/MIME, DICOM)
Document whether the images are DICOM compliant
If image conversion or manipulation will be required in order for the 
image to be viewed in the enterprise viewer and/or EHR, describe what 
conversion/manipulation will be needed and the proposed mechanism for 
doing this
Describe the workflow that drives the capture of these images
Describe any tasks or workflows that the presence of the images trigger
Is postprocessing of any kind performed on the image (e.g., image 
analysis)?
If the images are imported into any reports or other documents, describe 
each report and/or document in which the image is imported as well as 
the reasons for this
If the images are moved into the VNA, describe the expected impact to 
workflows
VNA: Vendor‑neutral archive, DICOM: Digital Imaging and 
Communications in Medicine, EHR: Electronic health records
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help steer treatment decisions. This has been aided by advances 
in image processing and machine learning coupled with an 
immense increase in available computational power. However, 
a major barrier to clinical adoption still involves technical 
challenges. These technical challenges can be broadly broken 
down into (1) data management, (2) systems and algorithms 
for analysis and visualization, and (3) visual analytics to aid 
in interpretation.

Data management of large WSI datasets is a key challenge. 
A single compressed WSI, scanned at ×40 magnification for 
a single focal plane, is typically 1–4 GB or even larger in 
size. Considering the volume of pathology slides produced 
at a typical institution, it is easy to see how the storage needs 
of digital pathology dwarf those of radiology. This requires 
novel storage systems that can rapidly access and retrieve 
large volumes of data. In addition to managing large volumes 
of images, another issue is the absence of a common image 
format. While a DICOM extension for digital pathology has 
been adopted in the DICOM specification, its adoption is only 
beginning to get traction. Currently, most WSI scanners are not 
DICOM compliant. The hope is that in the coming years, like 
in radiology, the community will converge around a common 
open image file format.

While image management is challenging, the management 
of imaging features is an equally daunting big data problem. 
Quantitatively extracted imaging features, better known as 
pathomic features, can range from a few dozen to up to half 
a million objects per image. Pathomic feature management 
requires supporting fast spatial queries that allow a user to 
pose a question like “extract nuclear features within areas of 

necrosis.” It is easy to see that feature management requires 
systems that can operate at large scales. Additionally, and 
more importantly, since computational pathology is such a 
rapidly evolving field, it requires a feature management system 
that is agile and can be easily adapted to the needs of the 
underlying biological problem. Thus, in place of standardized 
mechanisms for feature representation, a standardized 
application programming interface (API) is preferred. 
This approach has been adopted in the research genomics 
community – GA4GH – where the community collaborated 
and converged on a common API specification, and now 
competes on the underlying implementations. FeatureDB is an 
example of one such scalable and agile feature management 
system [Figure 7] that has been successfully used to manage 
features such as those that characterize nuclear material to 
region‑based features such as TILs.

Image processing, machine learning, and, in recent years, 
deep learning algorithms have contributed immensely 
toward advancing the potential of digital pathology. These 
algorithms all rely on access to large volumes of high-quality 
labeled data. Given the large volume of data, it becomes 
cumbersome to move the data to algorithms for feature 
computation. Instead, systems must be designed to enable 
the movement of algorithms to the data and where possible 
collocate the algorithms and data. Containerization and the 
increasing popularity of systems like Docker have made it 
possible to encapsulate algorithms, deploy them at scale on 
a public/private cloud, and compute with minimal image 
movement. This is an area of active research, where the 
imaging community can learn and adopt many tools from the 
genomics community.

Figure 7: An outline of FeatureDB for managing pathomic features and helping fuse clinical data and pathomic feature data for various analytical and 
visual data exploration and processing systems
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Visualization and visual analytics are a key component of 
digital pathology. Image visualization, or the ability to rapidly 
view and explore a digitized WSI via pan-and-zoom tool, is 
essential. One requirement is the ability to overlay images 
with features to aid in the interpretability of pathomic feature 
sets. In addition to overlaying features on images, users need 
visual analytic tools for population-wide exploration of the 
feature space. This would allow, for example, examining 
the correlations among the imaging features for a particular 
cohort or one could employ such tools to examine the interplay 
between imaging features and corresponding mutation 
information and/or survival outcomes [Figure 8]. Quantitative 
imaging informatics for pathology is a comprehensive 
technological stack that supports such rich visualization and 
visual analytic tools.

conclusIon

The last 20 years have had significant triumphs related 
to WSI. Users today have a plethora of commercial WSI 
scanners to select from both clinical and nonclinical uses. 
Major advances in technology have been witnessed related 
to hardware (e.g., z‑scanning ability, hybrid WSI/robotic 

instruments) and software tools (e.g., image analysis). While 
FDA approval of the WSI system for primary diagnosis in 
surgical pathology is anticipated to promote greater adoption 
of WSI for clinical use in the United States, there are still a 
number of questions that need to be addressed.[79]

Pathology, like many other medical specialties, stands to 
benefit from a successfully implemented VNA. Although an 
enterprise VNA will benefit from the inclusion of pathology 
images, the lack of standardization and universal DICOM 
compliance of WSIs is expected to delay the integration of 
these images into these emerging applications. Such integration 
will be made easier with appropriate planning, thorough 
inventory assessment, and appropriate selection of VNA and 
image acquisition products.

The next 20 years promises to see much greater use of 
digital pathology, thereby enhancing the pathologists’ ability 
to deliver patient care. The implementation of meaningful 
ways to validate, classify, and explore pathology imaging 
biomarkers integrated into the clinical decision-making 
process will be a key pathology informatics contribution to 
precision medicine. Understanding the interplay between 
morphology and molecular mechanisms is central to the 

Figure 8: Scientific mashups and visual analytics for interactive exploration of fused rad/path/clinical data. Such visual explorations help researchers 
examine the scope and extent of data, create specific cohorts, and formulate hypotheses
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success of research targeting practically every major disease. 
Digital pathology enables many of these studies. Indeed, a 
number of research groups have developed and demonstrated 
a rich set of methods including deep learning for carrying 
out quantitative microscopy analyses. However, to bring this 
vision to reality, it will be necessary to develop and deploy 
infrastructure to scan, catalog, and store extremely large 
collections of WSI, both for clinical work and research. In 
conclusion, although the concept of the virtual microscope 
is two decades old, the adoption of digital pathology 
informatics tools in clinical practice is clearly still a work 
in progress.
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