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ABSTRACT
Coronaviruses are contagious pathogens primarily responsible for respiratory and intestinal infections.
Research efforts to develop antiviral agents against coronavirus demonstrated the main protease
(Mpro) protein may represent effective drug target. X-ray crystallographic structure of the SARS-CoV2
Mpro protein demonstrated the significance of Glu166, Cys141, and His41 residues involved in protein
dimerization and its catalytic function. We performed in silico screening of compounds from Curcuma
longa L. (Zingiberaceae family) against Mpro protein inhibition. Employing a combination of molecular
docking, scoring functions, and molecular dynamics simulations, 267 compounds were screened by
docking on Mpro crystallographic structure. Docking score and interaction profile analysis exhibited
strong binding on the Mpro catalytic domain with compounds C1 (1E,6E)-1,2,6,7-tetrahydroxy-1,7-
bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) and C2 (4Z,6E)-1,5-dihydroxy-1,7-bis(4-
hydroxyphenyl)hepta-4,6-dien-3-one as lead agents. Compound C1 and C2 showed minimum binding
score (–9.08 and –8.07 kcal/mole) against Mpro protein in comparison to shikonin and lopinavir (�
�5.4 kcal/mole) a standard Mpro inhibitor. Furthermore, principal component analysis, free energy
landscape and protein-ligand energy calculation studies revealed that these two compounds strongly
bind to the catalytic core of the Mpro protein with higher efficacy than lopinavir, a standard antiretro-
viral of the protease inhibitor class. Taken together, this structure based optimization has provided
lead on two natural Mpro inhibitors for further testing and development as therapeutics against
human coronavirus.
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Introduction

Coronaviruses belong to the family of Coronaviridae, a
diverse group of envelop-positive-strand RNA virus. In
December 2019, a new coronavirus (SARS-CoV2) caused an
outbreak in China has shown to cause a number of respira-
tory and enteric diseases. The illness caused by SARS-CoV2 is
known as COVID-19. SARS-CoV2 is highly contagious virus
responsible for the global outbreak of a life threatening
respiratory illness, intestinal infection, congestive heart and
renal failures. According to an estimate of May 21, 2020,
more than 5 million cases of COVID-19 have been reported
in 200 countries and territories, resulting in more than
323,256 deaths. Efforts such as drug repurposing and vaccine
development are underway for the treatment of COVID-19,
as such development of effective and targeted inhibitors is
exceedingly desirable.

Theþ ssRNA coronaviruses have genetic material that can
function both as a genome and as messenger RNA encode
nonstructural protein 5 (Nsp5). The Nsp5 protein has three
domains D1, D2 and a unique domain D3. D1 and D2
domain contributes to 3-chymotrypsin like protease activity
(3CLpro). 3CLpro of Nsp5 known as Mpro is one of the best
characterized drug targets. In SARS-CoV2, the special prote-
ase Mpro operates on eleven maturation cleavage sites at
the carboxy terminus of the large polyprotein 1ab (Stobart
et al., 2012). Auto cleavage of Nsp 5 protein results in a
mature product with the 3-chymotrypsin like 2 catalytic
activity (3CLpro) which further splits to form the eleven non-
structural mature products known as Nsp4-Nsp16 proteins
(Stobart et al., 2013). ORF 1ab gene of SARS-CoV2 encodes a
replicase PP1ab. Mpro cleaved products of PP1ab are essen-
tial for the transcription and replication of SARS-CoV2 viral
RNA (Wu et al., 2020). This proteolytic cleavage of PP1ab is
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crucial for the viral life cycle and is an attractive target for
anti-SARS-CoV2 drug discovery.

Mpro molecule comprise of three domains, domain I and
II (six-stranded antiparallel b barrels) and domain III (a globu-
lar cluster of five helices). Substrate binding site resides in a
cleft between domain I and II, while domain III is involved in
catalytic function. Dimerization of the protein is required for
its catalytic regulation. Glu166 residue is a key amino acid
involve in the dimerization of Mpro and creation of substrate
binding pocket. Further Cys141 and His41 residue forms a
catalytic dyad on the active site of the protein essential for
its catalytic function (Anand et al., 2003). Recently studies
have been reported on targeting SARS-CoV-2 Mpro protein
using computer based drug designing approach (Das et al.,
2020; Islam et al., 2020; Mittal et al., 2020; Umesh
et al., 2020).

High-throughput in silico based screening of compounds
against biological targets has recently gained much atten-
tion. As such, in silico screening tools have gained consider-
able importance in meeting the special challenges of
antiviral drug discovery. In this process, natural or synthetic
compound libraries are filtered by different screening meth-
ods such as docking and ligand-based similar searches, com-
puter-aided prediction of properties limiting to a smaller set
of promising candidates for their biologic testing. This
rational approach makes the drug discovery process highly
efficient, goal-oriented and cost-effective. Screening of nat-
ural compound libraries have led to few lead molecules
which are safe drug candidates against several diseases. In
the present study, we screened a small library of 267 phyto-
chemicals from Curcuma longa L. (Zingiberaceae family)
against Mpro protein inhibition.

Materials and methods

Curcuma longa phytochemical retrieval and preparation

A total of 267 compounds present in Curcuma longa were
obtained from the various literature and search engine plat-
forms such as PubMed, Google Scholar, Web of Science,
Science Direct, Scopus, Semantic Scholar, Medline and
PubMed Central (Lu, 2011). The structures of phytochemicals
were prepared using Marvin Sketch software (https://chem-
axon.com/products/marvin). The 3D or 2D structures of
other reference compounds against targeted protein was
retrieved from the NCBI PubChem in .sdf format (Xie, 2010).
Open label molecule format converter (O’Boyle et al., 2011)
performed conversion of 2D to 3D conformation, conversion
from .sdf to .mol file. Ligands energy was minimized by
applying mmff94 force field and conjugate gradients opti-
mization algorithm using PyRx-Python prescription 0.8 for
200 steps (Chitrala & Yeguvapalli, 2014).

Protein retrieval and preparation

Three dimensional structure of SARS-CoV2 main protease
(Mpro, 3CLpro) (PDB ID: 5RFS) protein was obtained from
Protein Data Bank (https://www.rcsb.org/) (Berman et al.,

2000). The resolution of the retrieved structure was 1.70 Å.
The 3D structure of Mpro protein was loaded into UCSF
Chimera for molecular docking preparation (Pettersen et al.,
2004). Protein model was cleaned and optimized by remov-
ing the ligands as well other heteroatoms including water.
After that energy minimization of protein structures was per-
formed by steepest descent method has 100 steps (step size
0.02 Å), and conjugate gradient method has ten steps (step
size0.02 Å) by using UCSF Chimera.

Molecular docking studies

For docking experiments, the protein and the ligands were
loaded into Auto Dock Tools 1.5.6 (ADT) (Trott & Olson,
2010). Gestgeiger partial charges assigned after merging non
polar hydrogen and torsions applied to the ligands by rotat-
ing all rotatable bonds. Docking calculations were performed
on the protein model. Polar hydrogen atoms, Kollman
charges, and solvation parameters were added with the aid
of Auto Dock tools. Auto Dock 4.2 offers the option of three
search algorithms to explore the space of active binding
with different efficacy. We used the Lamarckian Genetic
Algorithm in this study. The grid box includes the entire
binding site of the particular proteins and provides enough
space for the ligands translational and rotational walk. For
each of the 30 independent runs, a maximum number of
27,000 GA operations generated on a single population of
150 individuals. Operator weights for the rate of crossover,
rate of gene mutation, and elitism was defaulting parameters
(0.80, 0.02, and 1, respectively). Thereafter, LigPlotþ (v.1.4.5)
and UCSF Chimera (v.1.10.2) used for visualization of the
interaction pattern in the protein-ligand complex (Laskowski
& Swindells, 2011).

MM-GBSA analysis

Prime MM-GBSA (Molecular Mechanics/Generalized Born
Model and Solvent Accessibility) was used to evaluate the
protein and protein-ligand binding energies, which includes
the VSGB solvent model, OPLS_2005 force field, and rotamer
search algorithms. The Prime MM-GBSA simulation was per-
formed by using the Glide pose viewer file to compute the
total free energy of binding. The MM/GBSA calculations were
attained to evaluate the relative binding affinity of protein
and protein-ligand complex (reported in kcal/mol). As the
MM/GBSA binding energies are approximate free energies of
binding, a more negative value indicates stronger binding
(Kalirajan et al., 2019).

Prediction of inhibitory concentration

The prediction of IC50 concentration of lead compounds
were performed having binding affinity below –6.00 kcal/mol.
Standard inhibitors IC50 including shikonin (15.75 mM), tide-
glusib (1.55 mM), carmofur (1.82 mM), PX-12 (21.39 mM) and
disulfiram (9.35 mM) were retrieved from in vitro experiments
performed elsewhere (Jin et al., 2020). Linear regression
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analysis was performed through GraphPad Prism software to
generate the pIC50.

Molecular dynamics simulation

Lead Curcuma longa compounds as predictors of Mpro pro-
tease inhibitor of SARS CoV2 were identified from docking
study subjected to molecular dynamics simulation and evalu-
ate their conformational space and inhibitory potential.
Molecular dynamics simulation was performed using
GROningen MAchine for Chemical Simulations (GROMACS)
version 5.1.1. Protein parameters were generated using gro-
mos43a1 force field. Ligand parameters for same force field
were generated using PRODRG server (Sch€uttelkopf & van
Aalten, 2004). Gmxeditconf tool was used to generate
dodecahedron simulation box. Solvation was performed with
SPC water model using gmx solvate tool. Gmxgenion tool
was utilized to electro-neutralize the system. Following neu-
tralization, energy minimization was performed to remove
steric clashes and optimize of structure. After energy mini-
mization, system was equilibrated in two steps. In first step
of 100 picoseconds of NVT equilibration, system was heated
up to 300 K to stabilize the temperature of the system. In
second step of 100 picoseconds of NPT ensemble, pressure
and density of system was stabilized. Barostat was main-
tained using Parrinello-Rahman barostat (Parrinello &
Rahman, 1981). Bonds length were kept conserved using lin-
ear constraint solver (LINCS) algorithm (Hess et al., 1997).
Long range interaction were handled using particle mesh
Ewald (PME) summation method (Darden et al., 1993). This
well equilibrated system with desired temperature and pres-
sure was used to compute trajectory of 30 nanoseconds on a
Linux machine with Intel core i-7 processor (32GB RAM).

Trajectory analysis and protein-ligand interaction
energy analysis

Trajectory analysis was performed using various GROMACS
analysis tools. The root mean square deviation (RMSD) and
root mean square fluctuations (RMSF) of protein were calcu-
lated using gmx rms, and gmxrmsf tools respectively. Solvent
accessible surface area and radius of gyration were com-
puted by gmxsasa and gmx gyrate tools respectively. Various
energy related parameters were estimated using gmx energy
tool. Secondary structure estimation was done by
gmxdodssp tool. Hydrogen bonds were analyzed using
gmxhbond tool. VMD (Humphrey et al., 1996) and PyMol
(DeLano, 2002) was used for the visualization and plots were
prepared using Grace Software.

Quantification of interaction energy between lopinavir, C1
and C2 was performed by calculating strength of the inter-
action between ligands and protease active site amino acid
residue; it is also useful to estimate the non-bonded inter-
action energy between target protein and ligand. Tools like
gmx grompp and gmx energy were used to calculate the
interaction energy between the target protein and ligand.
Interaction energy between two interacting species consti-
tutes two interactions, interactions between charged

components and non-charged charged components called as
Coulombic short range (SR) interactions and Lennard-Jones-
SR interaction energies.

Principal component analysis and free energy landscape

Principal component analysis (PCA) is a widely used analyt-
ical technique to illustrate the slow and functional motions
for bio-molecules (Bahar et al., 1998). The principal compo-
nents of the protein were obtained by diagonalizing and
solving the eigenvalue and eigenvectors for the covariance
matrix. The eigenvectors are a representation of the direction
of the motion whereas eigenvalues represent the magnitude
of motion along with the direction. The covariance matrix for
illustration of PCA was calculated using GROMACS analysis
tool gmx cover. gmx cover builds and also diagonalizes the
covariance matrix. Another GROMACS analysis tool gmxa-
naeig was utilized to calculate the overlap between principal
components and coordinates of the trajectory.

Free energy landscape (FEL) is a representation of possible
conformations taken by a protein in molecular dynamics
simulation along with the Gibbs free energy. FEL represents
two variables that reflect specific properties of the system
and measure conformational variability. FEL was calculated
using probability distribution from the essential plane com-
posed of first two eigenvectors. gmx sham tool was used for
construction of FEL.

Results and discussion

Docking screening of 267 Curcuma longa phytochemicals
against Mpro protein revealed six lead compounds exhibiting
better binding potential than standard/reference compounds.
These phytochemicals showed tight binding energy ranging
from –9.08 to –7.04 kcal/mole to Mpro protein, compared to
the standard inhibitors viz. shikonin, lopinavir, alpha keto-
mide, tideglusib, 1,3-Bis(p-anilinophenoxy)-2-propanol (N3),
carmofur, 2-(Secbutyldisulfanyl)-1h-imidazole (PX-12), and
disulfiram ranging from –5.41 to –2.55 kcal/mole (Figure
1(A)). The nomenclature, structure, and molecular weight of
these six compounds (cutoff less than –5.00 kcal/mole bind-
ing energy) are described in the Supplementary Table 1.
Compound C1 (1E,6E)-1,2,6,7-tetrahydroxy-1,7-bis(4-hydroxy-
3-methoxyphenyl)hepta-1,6-diene-3,5-dione) and C2 (4Z,6E)-
1,5-dihydroxy-1,7-bis(4-hydroxyphenyl)hepta-4,6-dien-3-one
showed minimum binding score of –9.08 and –8.07 kcal/mole
against Mpro protein, compared to shikonin (–5.41 kcal/mole)
a standard Mpro inhibitor. Type of amino acid residue
involved in the protein-ligand interaction such as hydrogen
bonding, and hydrophobic interaction are summarized in
Supplementary Table 2. In addition, on the basis of reported
50% inhibitory concentration (IC50) of standard/reference
compounds against Mpro protein, we attempted to predict
the IC50 of the lead phytochemicals. The predicted IC50 val-
ues for the lead compounds were in the range of 40.6 to
24.4 mM which were comparatively higher from the IC50 of
standard compounds that range between 15.7 to 21.3mM
(Figure 1(B)). A relatively weak positive correlation

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 3

https://doi.org/10.1080/07391102.2020.1776157
https://doi.org/10.1080/07391102.2020.1776157


Figure 1. Docking score of lead Curcuma longa phytochemicals against SARS-CoV2 main protease Mpro and predicted IC50 concentration. (A) Docking score of lead
phytochemicals (–7.04 kcal/mol �) against SARS-CoV2 main protease Mpro. (B) Predicted IC50 concentrations of the lead molecules. (C) and (D) Structure of lead
Curcuma longa phytochemicals C1 (1E,6E)-1,2,6,7-tetrahydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) and C2 (4Z,6E)-1,5-dihydroxy-1,7-
bis(4-hydroxyphenyl)hepta-4,6-dien-3-one. Abbreviations: a¼ Shikonin; b¼ Lopinavir; c¼Alpha ketomide; d¼ Tideglusib; e¼ 1,3-Bis(p-anilinophenoxy)-2-propanol
(N3); f¼ Carmofur; g¼ 2-(Secbutyldisulfanyl)-1h-imidazole (PX-12); h¼Disulfiram.

Figure 2. Curcuma longa lead phytochemical interaction with SARS-CoV2 Mpro protein. (A) Surface structure of Mpro protein interacted with lead compound C1
(1E,6E)-1,2,6,7-tetrahydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione). Green color represents the mentioned amino acid involved in hydrogen
bonding. (B) Ligplot representation of lead compound C1 and Mpro protein (C) Curcuma longa lead phytochemical C2 (4Z,6E)-1,5-dihydroxy-1,7-bis(4-hydroxyphe-
nyl)hepta-4,6-dien-3-one) bound with SARS-CoV2 main protease Mpro. Green color represents the mentioned amino acid involved in hydrogen bonding. (D) Ligplot
representation of compound C2 and Mpro protein. (E) Surface structure with superimposed Curcuma longa phytochemicals C1 (red color) and C2 (magenta color)
and standard inhibitor lopinavir (cyan color). (F) Ligplot representation of standard inhibitor lopinavir with SARS-CoV2 main protease Mpro.
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(R2¼ 0.2761) was noted among the binding energy and
pIC50 of the test compounds (Figure 1(B)). MM-GBSA analysis
of the lead (C1 and C2) and standard inhibitor (lopinavir)
bound Mpro protein and unbound protein was performed
and the results are shown in Supplementary Table 3. Free
energy of unbound protein; lead inhibitor, C1, and C2 bound
Mpro protein complex was –12755.75, –2831.23, –12663.69,
and –12903.46 respectively in MM-GBSA analysis.

Next we determined the surface structure of two lead
phytochemicals (C1 and C2), their binding with Mpro protein
and the type of interaction of amino acid residues. The bind-
ing pocket of Mpro protein docked with the standard inhibi-
tor, lopinavir and compounds C1 and C2 are shown in
docking pose (Figure 2(A)). Amino acid Thr190, Thr25, and
Glu166 residues were involved in hydrogen bonding with
compounds C1 and C2. Glu166 interacted with O5, Thr190
and Thr25 interacted with O1 and O2 of the C1 and C2 with
3.02, 3.01 and 2.91 Å bond length. Thr45, Cys44, Ser46,
Cys145, Pro168 and Met165 amino acid residues interacted
with the Mpro protein by hydrophobic interaction (Figure 2).
Importantly, C1 and C2 utilized virtually all amino acid resi-
dues (Thr45, Cys44, Met165, Glu166, Cys145, and Ser46) in
their interaction with the Mpro protein, compared to the

standard inhibitors and Mpro protein interaction
(Supplementary Table 2). Compounds C1 and C2 showed
interaction with amino acids Glu166, Cys145, and Pro168
whose involvement is recently reported with compound13b-
Mpro interaction (Zhang et al., 2020). Compound C1 demon-
strated unique interaction with Pro168 and Thr190 residue in
comparison to lopinavir that might be responsible for its
minimum binding energy against Mpro protein.

The enzyme SARS-CoV-2 Mpro along with other proteases
is involved in the generation of various nonstructural pro-
teins by cleaving the polyproteins (translated from viral RNA)
at specific sites. It has been reported that Cys-His dyad along
with Ala, Gly, Gln, Leu and Ser amino acid residues marks
the Mpro cleavage site (Zhang et al., 2020). Similarly, our in
silico docking studies revealed that phytochemicals C1 and
C2 binds with Ser46 and Cys44 residues which might disrupt
the Cys-His dyad formation crucial for Mpro protease activity.
Compound 1, 2, 6, and 7 formed hydrogen bond with Mpro
amino acid residues His41, Glu166, Cys44, Thr25 Thr26 and
Thr190 using oxygen atoms on carbon 3, 7, and 18; carbon
3, 7, 18; carbon 3 and 18; and carbon 3, 7, 18, respectively.
Oxygen atom at C12 and C14 of compound 4 and 7; and at
C10 and 18 of compound 8 were involved in hydrogen

Figure 3. Plot of molecular dynamic simulation trajectories of COVID-19 Mpro protein and protein-ligand complex during 30 ns simulation. (A) The root mean
square deviation (RMSD) of solvated SARS-CoV2 Mpro protein backbone and in complex with Curcuma longa compounds C1, C2 and standard protease inhibitor
lopinavir during 30 ns molecular dynamics simulation. (B) The root mean square deviation (RMSD) of solvated SARS-CoV2 Mpro whole protein and in complex with
compounds C1, C2 and lopinavir during 30 ns molecular dynamics simulation. (C) The root mean square fluctuation (RMSF) values of solvated SARS-CoV2 Mpro pro-
tein and in complex with compounds C1, C2 and lopinavir plotted against residue numbers. (D) Plot of radius of gyration (Rg) during 30 ns molecular dynamics
simulation of SARS-CoV2 Mpro protein and in complex with compounds C1, C2 and lopinavir. Unbound protein parameters are depicted in black color. Protein-lig-
and complex C1, C2 parameters are shown in green and blue color respectively. Protein-lopinavir complex is shown in red color.
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bonding with Asn119 and Asn142 amino acid residues. Other
lead compounds 3, 4, 5, and 6 showed better tight binding
to Mpro active site in comparison to standard inhibitors
(Figure 1(A)). Besides hydrogen bond interaction, compound
3, 4, 5, 6 and 7 showed hydrophobic interaction with His41
and Met49 (Supplementary Table 2). Zhang et al. (2020)
showed the involvement of His41 catalytic and Met49 other
than catalytic site residues in the interaction with potential
Mpro inhibitor site (Zhang et al., 2020). Our results indicate
that the oxygen atoms in the lead structure play an import-
ant role in Mpro active site binding and stabilizing the com-
plex through hydrogen bond interaction. Moreover we also
superimposed the Mpro free and Mpro ligand bound protein
structure to determine the effect of ligand binding on the
3D conformational change in the protein structure. Minor
deviation in RMSD value (0.341 Å) among the superimposed
structure showed that the ligand binding did not affect the
overall 3 D structure of the protein (Figure 3(B)).

We utilized the X-ray crystal structure of recently pub-
lished COVID-19 Mpro protein (PDB ID: XYZ) to dock the
Curcuma longa phytochemicals and the standard inhibitor
lopinavir. These virtual structures were subjected to 30 ns
MD simulations to study the comparative conformation
dynamics of the unbound and bound ligand forms. Energy,
temperature, pressure and density of the unbound protein of

compounds C1, C2 and standard inhibitor lopinavir were sta-
bilized during the 30 ns simulation (Supplementary Figure 1).
Further potential energy of the protein and protein ligand
complexes are provided in Supplementary Figure 2. Root-
mean-square deviation (RMSD) analysis computes the aver-
age distance between the atoms of test protein during simu-
lation. The analysis provides insights into protein
conformation, stability and equilibrium of the system during
simulation (Gohlke et al., 2003).The average backbone RMSD
for unbound and compounds C1, C2 and standard lopinavir
bound Mpro protein were found to vary between 0.23 to
0.27 nm and remained stable throughout the entire MD
simulation period (Figure 3(A,B)). Unbound and compound
C1 bound Mpro protein backbone simulation was stable for
last 6 ns of the simulation (Figure 3(A)). It should be noted
that compound C2 and Mpro protein complex backbone
showed stable RMSD (between 0.2 and 0.25 Å) till the termin-
ation of the simulation (Figure 3(A)). The whole protein and
protein-ligand complex RMSD showed comparative more sta-
bility than the protein backbone RMSD during 30 ns simula-
tion. RMSD of compound C2 bound Mpro protein complex
was more stable (�0.3 Å) than Mpro-lopinavir complex
throughout the 30 ns simulation (Figure 3(B)). These results
endorsed that simulations are perfect for further computa-
tional analysis.

Figure 4. Short range energy evaluation between the protein and the hit molecules. (A) The short range Coulombic and Lennard-Jones interaction energy of C1
interacting with amino acid residue at Mpro active site. (B) The short range Coulombic and Lennard-Jones interaction energy of C2 interacting with amino acid resi-
due at Mpro active site. (C) The short range Coulombic and Lennard-Jones interaction energy of lopinavir interacting with amino acid residue at Mpro active site.
Coulombic and Lennard-Jones short range (SR) interaction energy are shown in orange and green color.
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Next we analyzed the effect of Curcuma longa phyto-
chemicals compound C1 and C2 binding on internal dynam-
ics in comparison to lopinavir binding by calculating the root
mean square fluctuation (RMSF) of the Ca atoms (Figure 3).
Average RMSF value for protein, protein-lead compound C1
and C2 were 0.20, 0.21, and 0.20 nm respectively. Result
showed that binding of C1 and C2 to Mpro protein mostly
decreased the RMSF values. It should be noted that com-
pound C1 and C2 binding generated substantial decrease of
RMSF values in some regions which involve residue 40–55
and 80–115 (Figure 3(C)). Moreover the result showed that
the binding of compound C2 did not exhibit fluctuation at
150–200 amino acid residues in comparison to unbound pro-
tein. Amino acid residue of this region plays an important
role in binding of the standard inhibitor and phytochemicals
from Curcuma longa (Supplementary Table 2). These results
indicate that the key amino acid residues in 40–55; 80–115;
and 150–200 regions may generate strong interaction with
the phytochemicals.

Radius of gyration (Rg) is a parameter to assess the fold-
ing of regular secondary structures into 3-dimensional pro-
tein structure. Rg indicates change in protein structure
compactness and its overall dimension. The effect of

compounds C1 and C2 binding on Rg value of the protein
was computed and compared with lopinavir binding to Mpro

(Figure 3(D)). Binding of C1 and C2 initially (�5–10 ns)
decreased the Rg value, however, after that up to 30 ns the
values was relatively in the range of 2.1 to 2.15 nm for both
unbound and ligand bound protein. Average Rg value for
unbound protein, protein-lead compound C1 and C2 were
2.14, 2.12 and 2.13, respectively during 30 ns simulation.
Secondary structures in the unbound protein were not much
affected due to the binding of these compounds to the
Mpro protein during the 30 ns simulation (Supplementary
Figure 3). The result suggested tight packing of the protein
after ligand binding thus making a stable complex.

Non bonded interaction involved in lead compound (C1
and C2) and lopinavir bound Mpro protein active site was
computed in terms of short range (SR) Coulomb and
Lennard-Jones energies during 30 ns MD simulation (Figure
4(A–C)). The total interaction energy of protein-ligand com-
plex was also calculated. The average Coulomb-SR energy for
C. longa lead phytochemical C1, C2 and lopinavir interacting
with amino acid at active site of Mpro protein was
–87.0000 ± 15, –85.1703± 6.7, and –51.266 ± 12 kJ/mole
respectively. The average Lennard-Jones-SR energy for C1,

Figure 5. Plot of solvent accessible surface (SASA) region and hydrogen bond formation during 30 ns MD simulation. (A) Plot of solvent accessible surface area
(SASA) during 30 ns molecular dynamics simulation of SARS-CoV2 Mpro protein and in complex with Curcuma longa compounds C1, C2 and standard protease
inhibitor lopinavir. (B) Plot of number of hydrogen bond formation with in the SARS-CoV2 Mpro protein, SARS-CoV2 Mpro protein complex with compound C1, C2
and lopinavir. (C) Plot of number of hydrogen bond formation between water and SARS-CoV2 Mpro protein, SARS-CoV2 Mpro protein complex with compound C1,
C2 and lopinavir. (D) Plot of number of hydrogen bond formation between SARS-CoV2 Mpro protein and compound C1, C2 and lopinavir. Unbound protein parame-
ters are depicted in black color. Protein-ligand complex C1 and C2 parameters are shown in green and blue color. Protein-lopinavir complex is shown in red color.
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C2 and lopinavir interacting with the Mpro amino acid resi-
due was –130.396 ± 9.7, –166.697 ± 4.5, and –130.529 ± 15 kJ/
mole respectively. The result showed that lead C2-Mpro inter-
action at active site possesses significantly lower Lennard-
Jones-SR energy than lopinavir. Moreover, the total inter-
action energy of C2-Mpro interaction (–251.8673± 5.6 kJ/
mole) at active was significantly lower than, C1-Mpro, and
lopinavir-Mpro interactions (–217.396 ± 12.35 and
–181.795 ± 13.5 kJ/mole respectively). Over all, the result
showed that due to significantly lower total interaction
energy, C2 might act as potent Mpro inhibitor in comparison
to lopinavir.

Solvent accessibility surface area (SASA) determines the
bimolecular surface area assessable to surrounding solvent
molecules. The change in SASA for unbound protein and
protein-lead compound C1 and C2 complex were analyzed
and compared with protein-lopinavir complex (Figure 5(A)).
A significant change in SASA was observed due to binding
of C1 and C2 at the active site of the protein. Average SASA
value of unbound protein and protein-lead compound C1
and C2 complex during the 30 ns simulation were 135, 133,
and 137 nm2, respectively. Hydrogen bond formation plays
an important role in the stabilization of protein and protein–-
ligand complex structures by minimizing the energy of the

Figure 6. Projection of protein atoms in phase space along the first two principal eigenvectors. (A) COVID-19 Mpro protein (B) COVID-19 Mpro protein complexed
with standard protease inhibitor lopinavir. (C) COVID-19 Mpro protein complexed with Curcuma longa compound C1. (D) COVID-19 Mpro protein complexed with
Curcuma longa compound C2. (E) Superimposed plot showing COVID-19 Mpro unbound protein and protein complexed with compound C1, C2 and lopinavir.
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system. Intra molecular, protein-water and protein-ligand
hydrogen bonding pattern were studied in unbound and lig-
and bound Mpro protein (Figure 5(B,C)). Average value of
intra molecular and protein-water hydrogen bonding in
unbound protein C1 and C2 bound protein complex were
215, 214 and 211; and 489, 483 and 486 during simulation.
Moreover the average H-bonding in protein-lead compound
1 and 2 complex was 3.11 and 3.51 during the 30 ns simula-
tion (Figure 5(D)). Overall, the H-bonding pattern in protein-
lead compound C1 and C2 interaction showed the energetic-
ally favorable and stable complex formation.

Next we studied the collective motion of the unbound
and bound compounds C1 and C2 with Mpro protein from
the molecular dynamics trajectories using principal compo-
nent analysis (PCA). The analysis is based on the strenuous
motion of Ca atom of the protein through eigenvectors
(overall direction of motion of the atoms) and eigenvalues
(atomic contribution of motion) (David & Jacobs, 2014). MD
trajectories of unbound, lead compound as well as lopinavir
bound protein were examined with the PC for better under-
standing of the structural and conformational changes in
Mpro protein due to ligand binding. PCA analysis indicated
that lead compound 2 bound Mpro protein complex
depicted lesser collective motion of the protein in compari-
son to unbound and lead compound 1 bound protein
(Figure 6(A–D)). As a result of lesser flexibility, conformational
space covered by lead 2-protein complex was narrower than
he unbound protein. These results conclude that compound
C2 bound Mpro protein was more stable than the unbound
and lopinavir bound protein.

To visualize the energy minima landscape of unbound,
C1, C2 and lopinavir bound Mpro protein, we studied the
free energy landscape (FEL) against first two principal com-
ponents PC1 (radius of gyration-Rg) and PC2 (root-mean-
square deviation-RMSD) which revealed DG value 0 to 10 kJ/
mol (Figure 7(A–C)). The shape and size of the minimal
energy area (shown in blue) indicate the stability of the pro-
tein and protein-lead compound complex. Smaller and more
centralized blue areas suggest the stability of the protein
and their corresponding complex. Figure 7 indicates that
compound C2 is more stable than unbound protein as well
as lead compound C1 and lopinavir bound Mpro protein.
Thus these compounds have the potential to induce Mpro
protein to enter the local energy minimal state.

The predictions on drug-likeness and toxicity were per-
formed. Compound C1 is predicted as not absorbed and
not brain penetrant as it located outside the Egg (white
circle) whereas compound C2 and lopinavir were predicted
as well-absorbed based on their position inside the Egg
(Figure 8(A–D)). The lead compound C2 exhibited inaccess-
ibility (out of Egg yolk) to blood brain barrier. It is note-
worthy that compound C2 showed high probability of
passive absorption by the gastrointestinal tract. Our results
further showed that standard inhibitor lopinavir is pre-
dicted to be actively effluxed by P-glycoprotein (blue dot)
while compound C1 and C2 are predicted as non-substrate
of P-gp (red dot) (Daina et al., 2017). Bioavailability radar
analysis showed that lopinavir and C1 are too flexible and
polar predicting that these compounds may not be orally
bioavailable. Compound C2 in contrast, showed flexibility

Figure 7. Free energy landscape of the first two principal components for (A) COVID-19 Mpro protein. (B) COVID-19 Mpro protein-C1 complex. (C) COVID-19 Mpro

protein-C2 complex. (D) COVID-19 Mpro protein-lopinavir complex.
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and polarity in the optimal region (pink color) of drug-like-
ness (Figure 8(D)).

Physiochemical properties such as fraction Csp3 (FCsp3), H-
bond acceptor count (NH-BA), H-bond donor count (NH-BD),
molar refractivity (MR), molecular weight (MW), number of
heavy atoms (NHA), number of aromatic heavy atoms (NAHA)
and topological polar surface area (TPSA) of lopinavir and com-
pounds C1 and C2 are depicted in Figure 9(A,B). Compound C1
and C2 possess most of the physiochemical properties in the
range of drug-likeness properties. Toxicological profile of lopi-
navir and C1 and C2 are shown in Figure 9(C). The predicted
LD50 of compound C2 was less than half of the standard
inhibitor. Hepatotoxicity, carcinogenicity, immunotoxicity,
mutagenicity and cytotoxicity prediction depicted inactive
scores for all the test compounds. It should be noted that all
test compounds were designated to the category of toxicity

class (Figure 9(C)). Overall toxicity prediction showed C2 to
possess low toxicity profile than compound C1.

Conclusions

The present investigation identified some lead compounds
obtained from Curcuma longa in the inhibition of COVID-19
Mpro. Molecular docking study confirmed the binding poten-
tial of compounds C1 and C2 at the active site of the
enzyme. The 30 ns simulation revealed that the protein-lead
compound complex possess stable conformation and lower
protein-ligand interaction energy. Compound C2 exhibited
decent oral bioavailability and lower predicted LD50 value
than the standard Mpro inhibitor lopinavir in computational
investigation. Other physiochemical and toxicological prop-
erty prediction of the compound C1 and C2 necessitates

Figure 8. Boiled egg diagram and bioavailability radar map of Curcuma longa compounds C1, C2 and standard protease inhibitor lopinavir. (A) Boiled egg diagram
of lopinavir and compound C1 and C2. Bioavailability radar map of (B) Lopinavir (C) compound C1 and (D) compound C2 depicting the LIPO (lipophilicity), SIZE
(molecular weight), POLAR (polarity), INSOLU (insolubility) INSATU (insaturation) and FLEX (rotatable bond flexibility) parameters.
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further in vitro and in vivo validation of COVID-19 antiviral
activity. Approximately five Curcuma longa compounds
showed tight binding at Mpro active site demonstrating the
presence of more than one inhibitor in a single natural prod-
uct indicates its potential against COVID-19 virulence.
Overall, the study concludes that Curcuma longa possess
COVID-19 Mpro inhibitory potential for further testing and
development as therapeutics against human coronavirus.
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