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Aims Targeting vascular inflammation represents a novel therapeutic approach to reduce complications of atherosclero-
sis. Neutralizing the pro-inflammatory cytokine interleukin-1b (IL-1b) using canakinumab, a monoclonal antibody,
reduces the incidence of cardiovascular events in patients after myocardial infarction (MI). The biological basis for
these beneficial effects remains incompletely understood. We sought to explore the mechanisms of IL-1b-targeted
therapies.

....................................................................................................................................................................................................
Methods
and results

In mice with early atherosclerosis (ApoE–/– mice on a high-cholesterol diet for 6 weeks), we found that 3 weeks of
NACHT, LRR, and PYD domains-containing protein 3 (NLRP3)-inflammasome inhibition or anti-IL-1b treatment
(using either MCC950, an NLRP3-inflammasome inhibitor which blocks production and release of active IL-1b, or a
murine analogue of canakinumab) dampened accumulation of leucocytes in atherosclerotic aortas, which
consequently resulted in slower progression of atherosclerosis. Causally, we found that endothelial cells from
atherosclerotic aortas lowered expression of leucocyte chemoattractants and adhesion molecules upon NLRP3-
inflammasome inhibition, indicating that NLRP3-inflammasome- and IL-1b-targeted therapies reduced blood
leucocyte recruitment to atherosclerotic aortas. In accord, adoptive transfer experiments revealed that anti-IL-1b
treatment mitigated blood myeloid cell uptake to atherosclerotic aortas. We further report that anti-IL-1b treat-
ment and NLRP3-inflammasome inhibition reduced inflammatory leucocyte supply by decreasing proliferation of
bone marrow haematopoietic stem and progenitor cells, demonstrating that suppression of IL-1b and the NLRP3-
inflammasome lowered production of disease-propagating leucocytes. Using bone marrow reconstitution
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experiments, we observed that haematopoietic cell-specific NLRP3-inflammasome activity contributed to both en-
hanced recruitment and increased supply of blood inflammatory leucocytes. Further experiments that queried
whether anti-IL-1b treatment reduced vascular inflammation also in post-MI accelerated atherosclerosis docu-
mented the operation of convergent mechanisms (reduced supply and uptake of inflammatory leucocytes). In line
with our pre-clinical findings, post-MI patients on canakinumab treatment showed reduced blood monocyte
numbers.

....................................................................................................................................................................................................
Conclusions Our murine and human data reveal that anti-IL-1b treatment and NLRP3-inflammasome inhibition dampened vascu-

lar inflammation and progression of atherosclerosis through reduced blood inflammatory leucocyte (i) supply and

(ii) uptake into atherosclerotic aortas providing additional mechanistic insights into links between haematopoiesis
and atherogenesis, and into the beneficial effects of NLRP3-inflammasome- and IL-1b-targeted therapies.
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1. Introduction

Atherosclerosis causes myocardial infarction (MI), many strokes, and
ischaemic cardiomyopathy. The initiation of this chronic inflammatory
disease of the arterial vessel wall involves augmented expression of leu-
cocyte adhesion molecules and release of leucocyte-attracting cytokines
and chemokines.1–3 Consequently, leucocytes—the effector cells of the
immune system—adhere to activated endothelial cells and then enter
the subintimal space. Once resident in the arterial wall, monocytes ma-
ture into tissue macrophages, the most abundant leucocyte subset in pla-
ques.4 Macrophages engulf lipoprotein particles, become foam cells, and

further fuel vascular inflammation. Cholesterol crystals in plaques can
co-activate the NACHT, LRR, and PYD domains-containing protein 3
(NLRP3) inflammasome in macrophages, resulting in the release of ma-
ture interleukin-1b (IL-1b).5,6

Interleukin (IL)-1, the prototypical pro-inflammatory cytokine, con-
tributes to the initiation and progression of atherosclerosis.7–11 Mature
IL-1b is produced by the inflammasome, a multimeric protein complex
that assembles in the cytosol after sensing pathogen-associated molecu-
lar patterns or danger-associated molecular patterns.12 The sensing
component of the inflammasome is an intracellular protein termed
NLRP3, which binds the adaptor protein apoptosis-associated speck-like

Translational perspective
Therapeutic targeting of vascular inflammation represents a promising avenue to reduce complications of atherosclerosis. Neutralizing the pro-
inflammatory cytokine interleukin-1b (IL-1b) reduces the incidence of cardiovascular events in patients with prior myocardial infarction. However,
the mechanisms underlying these beneficial effects remain incompletely understood. This study explored how IL-1b and NLRP3-inflammasome sup-
pression mitigated plaque progression. Our murine and human data reveal that pharmacological anti-IL-1b treatment and NLRP3-inflammasome in-
hibition dampened inflammatory leucocyte accumulation in atherosclerotic aortas through (i) decreased blood inflammatory leucocyte supply and
(ii) reduced blood inflammatory leucocyte uptake into in atherosclerotic aortas. These data provide additional mechanistic insights into links be-
tween haematopoiesis and atherogenesis, and inform future anti-inflammatory interventions in patients with atherosclerosis.

Graphical Abstract

Our data suggest that both anti-IL-1b treatment and NLRP3-inflammasome inhibition beneficially alter the course of atherosclerosis by (i) dampening inflammatory
leucocyte production in the bone marrow and consequently suppressing supply of these cells and (ii) de-activating plaque endothelial cells and hence reducing in-
flammatory leucocyte recruitment from blood to plaque.

2779Targeting interleukin-1b in atherosclerosis
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protein, and procaspase-1 resulting in the cleavage of procaspase-1 to
active caspase 1 (CASP1). CASP1 cleaves pro-IL-1b and pro-IL-18 and
allows the extracellular release of active IL-1b and IL-18.7,13 Of note,
there are also CASP1-independent mechanisms for pro-IL-1b cleavage
that involve intracellular CASP8 or extracellular proteases from neutro-
phils or mast cells.14,15

Although abundant evidence from preclinical and clinical studies
strongly supported the notion that inflammation contributes to the path-
ogenesis of atherosclerosis, randomized controlled trials only recently
confirmed its therapeutic relevance.16–20 The Canakinumab Anti-
inflammatory Thrombosis Outcomes Study (CANTOS), a multinational
double-blind phase III study, randomized more than 10 000 patients with
previous MI (>30 days before screening) and a heightened residual in-
flammatory state [defined by high-sensitivity C-reactive protein (hsCRP)
levels >2 mg/L] to three different doses of canakinumab or placebo.7,16,21

Canakinumab, a human monoclonal antibody that neutralizes IL-1b, sig-
nificantly lowered the risk for the primary (MI, stroke, cardiovascular
death) and secondary endpoints. Importantly, treatment did not impact
other risk factors, such as lipoprotein or blood pressure levels, but
rather was related to the inflammatory response, since patients who ex-
perienced the greatest reductions in C-reactive protein levels had prof-
ited most from treatment.22

Though these results are encouraging, the mechanisms underlying
these beneficial effects remain incompletely understood. This study ex-
plored how IL-1b suppression mitigated plaque progression. Our data
revealed that pharmacological anti-IL-1b treatment and NLRP3-
inflammasome inhibition dampen inflammatory leucocyte accumulation
in atherosclerotic aortas through (i) decreased blood inflammatory leu-
cocyte supply and (ii) reduced blood inflammatory leucocyte uptake into
in atherosclerotic aortas.

2. Methods

2.1 Mice
Male and female ApoE–/– mice (B6.129P2-Apoetm1Unc/J, JAX stock
#002052, backcrossed at least 10 generations to C57BL/6J inbred mice),
Ubc-GFP mice [C57BL/6-Tg(UBC-GFP)30Scha/J, JAX stock #004353],
and LDLR–/– mice (B6.129S7-Ldlrtm1Her/J, JAX stock #002207, back-
crossed to C57BL/6J mice for 10 generations) were purchased from the
Jackson Laboratory and were bred in-house. Wild-type (C57BL/6 J, JAX
stock #000664) and Casp1–/– mice (B6N.129S2-Casp1tm1Flv/J, JAX stock
#016621, on a mixed C57BL/6J; C57BL/6N genetic background) were
purchased from the Jackson Laboratory and used in experiments di-
rectly. For atherosclerosis experiments, 8- to 12-week-old ApoE–/– mice
were fed a high-cholesterol diet (HCD, 21.2% fat by weight and 0.2%
cholesterol, TD.88137, Envigo) for 6 weeks. ApoE–/– mice that under-
went MI were on HCD for a total of 10 weeks. LDLR–/– mice for bone
marrow chimera generation were put on HCD for 12 weeks starting 6
weeks after bone marrow irradiation.

Age- and sex-matched littermates that were randomly assigned to
groups were used in all experiments. At the end of the experiments,
mice were euthanized by cervical dislocation or exsanguination under
isoflurane anaesthesia (3%). All experiments were approved by the local
authorities (ROB-55.2-2532.Vet_02-16-92) and carried out in accor-
dance with the guidelines from Directive 2010/63/EU.

2.2 Anti-IL-1b treatment and NLRP3-
inflammasome inhibition
For IL-1b-targeted therapy, we used either (i) isotype-matched control
IgG2a [10 mg/kg bodyweight (BW), donated from Novartis, Basel,
Switzerland] or anti-IL-1b (01BSUR, a murine analogue of canakinumab,
10 mg/kg BW, donated from Novartis, Basel, Switzerland) injected sub-
cutaneously once a week for 3 weeks23 or (ii) vehicle (PBS) or MCC950
(10 mg/kg BW, AG-CR1-3615-M010, AdipoGen Life Sciences, USA, dis-
solved in PBS to generate a 2.5 mg/mL stock solution) injected intraperi-
toneally every 48 h for 3 weeks.24

2.3 Generation of bone marrow chimeras/
bone marrow reconstitution
Bone marrow chimeras were generated to analyse the effects of a hae-
matopoietic cell-specific caspase-1 (Casp1) knockout. Here, LDLR–/–

mice aged 8 weeks underwent lethal bone marrow irradiation by
exposure to a single dose of 9 Gy total body irradiation using a Faxitron
X-Ray 43855F device. Bone marrow from both wild-type and Casp1–/–

donor animals was extracted from femurs by flushing the bones and fil-
tering the cells through a 40mm cell strainer. Irradiated LDLR–/– mice
were injected intravenously with 3� 106 bone marrow cells from either
wild-type or Casp1–/– animals 6 h after irradiation.

2.4 MI surgery
For MI experiments, mice were intubated under MMF anaesthesia (mida-
zolam 5.0 mg/kg BW; medetomidine hydrochloride 1.0 mg/kg BW; fenta-
nyl citrate 0.05 mg/kg BW; intraperitoneally) and thoracotomy was
performed in the left intercostal space. The left anterior descending cor-
onary artery was identified and MI was induced by permanent ligation
with an 8-0 prolene suture. Atipamezole hydrochloride (5 mg/kg BW)
and flumazenil (0.1 mg/kg BW) (AF) injected subcutaneously was used to
antagonize MMF anaesthesia. Mice received subcutaneous buprenor-
phine (0.3 mg/kg BW) as an analgesic every 8 h for 3 days starting at the
end of the surgical procedure.

2.5 Tissue processing
Blood samples were obtained by cardiac puncture and subjected to red
blood cell lysis in RBC lysis buffer (420302, BioLegend). The reaction
was stopped with 1� PBS, centrifuged at 800 g for 10 min at 4�C and
resuspended in FACS buffer (PBS containing 0.5% bovine serum albumin,
A2153, Sigma). Bone marrow single-cell suspensions were obtained
from femurs by flushing the bones and filtering the cells through a 40mm
cell strainer. Atherosclerotic aortas were excised removing surrounding
tissue and minced in digestion buffer. For flow cytometric analysis of aor-
tic leucocytes, digestion buffer consisted of collagenase I (450 U/mL,
C0130), collagenase XI (125 U/mL, C7657), DNase I (60 U/mL, D5319-
500UG), and hyaluronidase (60 U/mL, H3506, all Sigma) in 1� PBS, and
aortas were digested at 750 rpm for 1 h at 37�C. For flow cytometric
analysis of aortic endothelial cells, aortas were digested in 1� PBS con-
taining DNase I (250 U/mL) and collagenase IV (10 mg/mL, LS004212,
Cell Systems) at 750 rpm for 40 min at 37�C. Following both digestion
protocols, aortas were processed through a 40mm cell strainer, centri-
fuged at 800 g for 10 min at 4�C, and resuspended in FACS buffer to gen-
erate single-cell suspensions.

After single-cell suspensions were generated, a 10ml aliquot of each
sample was taken and total numbers of leucocytes were manually deter-
mined using a haemocytometer. Aliquots for cell counting were diluted
in trypan blue to distinguish dead from viable leucocytes. Frequencies

2780 J. Hettwer et al.
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obtained from flow cytometry were applied to the number of total leu-
cocytes to assess the numbers of leucocyte subsets.

2.6 Flow cytometry
All samples were stained at 4�C in 300ml FACS buffer after generation
of single-cell suspensions as described above.

For myeloid cell subset analysis, cells were first incubated with anti-
bodies against murine haematopoietic lineage markers [all labelled with
phycoerythrin (PE)] including B220 (103208, clone RA3-6B2); CD90.2
(140308, clone 53-2.1, 1:300 dilution); CD49b (108908, clone DX5,
1:1200 dilution); NK1.1 (108708, clone PK136); Ter-119 (116208, clone
TER-119); and Ly6G (127608, clone 1A8). A second staining followed
using CD45.2-PerCP/Cy5.5 (109828, clone 104, 1:300 dilution); CD11b-
APC/Cy7 (101226, clone M1/70); CD115-BV711 or CD115-biotin
(135515 or 135508, clone AFS98); streptavidin-BV510 (405234, 1:300
dilution, used for secondary labelling of CD115-biotin); F4/80-PE/Cy7

(123114, clone BM8); and Ly6C-FITC or Ly6C-BV421 (128006 or
128032, clone HK1.4, 1:600 dilutions unless indicated otherwise, all
BioLegend).

For each analysis, cells were pre-gated on viable (FSC-A vs. SSC-A)
and single (FSC-A vs. FSC-W and SSC-A vs. SSC-W) cells. Myeloid cell
subsets were identified as indicated: neutrophils as lineagehighCD
45.2highCD11bhighCD115lowLy6Cintermediate, monocytes as lineagelowCD
45.2highCD11bhighF4/80lowLy6Chigh/low (in aortic cell suspensions) or
lineagelowCD45.2highCD11bhighCD115highLy6Chigh/low (in blood), and
macrophages as lineagelowCD45.2highCD11bhighLy6Clow/intermediateF4/
80high. We performed in vivo blood pool labelling using an antibody di-
rected against CD45-BV605 (103140, clone 30-F11, 1:10 dilution in
100mL PBS, BioLegend) that was intravenously injected 5 min before eu-
thanizing the animals. This technique was carried out in all flow cytome-
try experiments involving aortic samples and allowed us to exclude
contamination from blood cells.

Figure 1 Anti-IL-1b treatment and NLRP3-inflammasome inhibition reduce plaque inflammation. (A) Flow cytometric gating and quantification of myeloid
cells in atherosclerotic aortas in (B) IgG-treated (Ctrl IgG) vs. IL-1b neutralizing antibody-treated (IL-1b Ab) ApoE–/– mice (n = 11–12 per group, 67% female,
Student’s t-test) and (C) vehicle- vs. MCC950-treated (inflammasome inhibitor) ApoE–/– mice (n = 10–12 per group, 9–17% female, Student’s t-test).
Numbers next to gates indicate population frequencies (%). (D) Representative immunohistochemical staining for myeloid cells (CD11b) and quantification
of sectioned aortic roots from IgG- vs. IL-1b antibody-treated ApoE–/– mice (n = 11–13 per group, 46–55% female, Mann–Whitney U test). Bar graphs show
quantification of positive CD11b area. Scale bars represent 200mm. (E) Representative Masson Trichrome staining and quantification of total plaque area
(n = 11–13 per group, 46–55% female, Student’s t-test). Scale bars represent 200mm. Dotted lines exemplary show necrotic cores within atherosclerotic
plaques. (F) Quantitative real-time PCR for gene expression quantification of fibrotic and inflammatory genes in aortas of vehicle- vs. MCC950-treated
ApoE–/– mice (n = 9–12 per group, 58% female, Student’s t-test or Mann–Whitney U test as appropriate). IL-6, interleukin 6; IL-10, interleukin 10; MMP-3/
MMP-9/MMP-10, matrix metalloproteinase-3/-9/-10; TGFb1, transforming growth factor beta 1; TNF, tumour necrosis factor. Data are presented as mean
þ s.e.m., *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

2781Targeting interleukin-1b in atherosclerosis
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Aortic endothelial cell samples were stained with antibodies against

CD54-APC [intercellular adhesion molecule (ICAM)1] (116120, clone
YN1/1.7.4, 1:600 dilution); CD102-biotin (ICAM2) (105604, clone 3C4,
1:600 dilution); CD106-PE/Cy7 [vascular cell adhesion molecule
(VCAM)1] (105720, clone 429, 1:300 dilution); CD62E-PE (E-Selectin)
(553751, clone 10E9.6, 1:300 dilution, BD Bioscience); CD62P-FITC (P-
Selectin) (553744, clone RB40.34, 1:300 dilution, BD Bioscience); CD31-
BV421 (102424, clone 390, 1:600 dilution); CD107a-APC/Cy7 [lysoso-
mal associated membrane protein (LAMP)1] (121616, clone 1D4B,
1:300 dilution); and CD45.2-PerCP/Cy5.5 (109828, clone 104, 1:300 di-
lution, all BioLegend unless indicated otherwise). Streptavidin-BV510
(405234, 1:300 dilution, BioLegend) was used as secondary staining for
the biotinylated CD102 antibody. Endothelial cells were identified as
CD45.2lowCD31highCD107aintermediate/high and adhesion molecule ex-
pression was quantified using respective histograms. In vitro cultured pri-
mary murine aortic endothelial cells were stained identically except for
CD45.2.

To analyse proliferating Lin–Sca-1þc-Kitþ (LSKs) and haematopoietic
stem cells (HSCs) in the bone marrow, cells were first stained with anti-
bodies against murine haematopoietic lineage markers (all labelled with
biotin) including B220 (103204, clone RA3-6B2); CD4 (100404, GK1.5),
Gr-1 (108404, RB6-8C5), NK1.1 (108704, clone PK136), Ter119
(116204, clone TER-119), CD11b (101204, M1/70), CD11c (117304,
N418), IL-7R (135006, A7R34), and CD8 (100704, 53-6.7). This was fol-
lowed by a second staining for CD48-PE (103406, HM48-1), CD150-
PerCP-Cy5.5 (115922, TC15-12F12.2, 1:300 dilution), sca-1-PE-Cy7
(108114, D7), c-kit-APC (105812, 2B8), and Strepavidin-APC-Cy7
(405208, 1:600 dilutions unless indicated otherwise, all BioLegend) to la-
bel biotinylated lineage antibodies. We used the Foxp3/Transcription
Factor Staining Buffer Set (00-5523-00, eBioscience) according to the
manufacturer’s protocol to fix and permeabilize the samples and next
performed an intracellular staining with Ki67-FITC (11-5698-82, SolA15,
eBioscience, 1:100 dilution). Nuclear stain (‘DAPI’, FxCycleTM violet
stain, F10347, ThermoFisher) was added immediately before flow
cytometric analysis and resuspended thoroughly. LSKs were identified as
lineagenegc-kitpossca-1pos and HSCs were identified as lineagenegc-kit-
possca-1posCD48negCD150pos.

For compensation, antibodies from the above-mentioned staining
protocols were conjugated to OneComp eBeads (01-1111-42, Thermo
Fisher). GFPhigh and DAPIhigh control samples were used to compensate
for GFP and DAPI fluorescence, respectively. To acquire flow cytometry
data, an LSRFortessa instrument (BD Bioscience) was used, and files
were analysed using FlowJo software (version 9 or 10).

2.7 Blood monocyte counts in anti-IL-1b-
treated patients
Monocyte counts were assessed throughout trial follow-up in the
CANTOS, which evaluated IL-1b inhibition among stable post-MI
patients with residual inflammatory risk (hsCRP levels > 2 mg/L).16 The
CANTOS trial was conducted in accordance to the principles outlined
in the Declaration of Helsinki. The study protocol was approved by re-
spective institutional review boards or ethics’ committees at participating
centres. Repeat monocyte counts over time were available among 3065
trial participants randomly allocated to placebo and among 1974, 2103,
and 2094 trial participants randomly allocated to canakinumab at doses
of 50 mg, 150 mg, and 300 mg subcutaneously every 3 months, respec-
tively. Monocyte counts were obtained from differential white blood cell
counts, which were analysed by respective clinical pathology

laboratories. To address for potential dose-response effects over time,
the placebo-subtracted mean percent reduction in monocytes was cal-
culated for each dose at 1, 3, 6, 12, 18, 24, and 36 months of follow-up
with the statistical significance at each time-point, compared to placebo,
estimated by the Wilcoxon 2-sample test.

2.8 Statistical analysis
All statistical analysis was performed using GraphPad Prism version 8.
Normality distribution of mouse and cell culture data was checked using
the D’Agostino-Pearson omnibus normality test. Two-group compari-
sons were analysed using two-sided Student’s unpaired/paired t-test
(normally distributed data) or two-sided Mann–Whitney U test (non-
normally distributed data), as indicated in the figure legends together
with sample sizes. When comparing more groups, a one-way ANOVA
followed by a Tukey test for multiple comparisons was performed. A
two-sided ROUT’s test was used to determine statistical outliers. All
graphs display data as mean þ s.e.m. Statistical significance was assumed
if P-values were <0.05. Mouse experiments were performed at least
twice or with n >_ 10. If appropriate, inter-experimental variations were
adjusted by normalizing absolute values to one representative
experiment.

Detailed methods are provided in the Supplementary material online.

3. Results

3.1 Anti-IL-1b treatment and
NLRP3-inflammasome inhibition reduce
inflammatory leucocyte accumulation in
atherosclerotic aortas
To explore the mechanisms by which anti-IL-1b treatment beneficially
alters the course of atherosclerosis, we treated atherosclerosis-prone
mice (ApoE–/– mice on a high cholesterol diet for 6 weeks) with an IL-1b
neutralizing antibody, the murine version of canakinumab, for 3
weeks.11,23,25 We found that pharmacological IL-1b neutralization re-
duced inflammatory leucocyte numbers in atherosclerotic aortas (Figure
1A and B, Supplementary material online, Figure S1A). In a complemen-
tary approach, we inhibited upstream IL-1b production using MCC950,
a specific small-molecule inhibitor of the NLRP3 inflammasome.24,26–29

In accordance with IL-1b-neutralizing antibody treatment, 3 weeks of
MCC950 administration also lowered leucocyte numbers in atheroscle-
rotic aortas (Figure 1C, Supplementary material online, Figure S1B). We
corroborated our flow cytometry findings using immunohistochemistry
and observed 50% fewer myeloid cells (monocytes/macrophages and
neutrophils) in aortic root sections from anti-IL-1b-treated mice stained
for the myeloid marker CD11b (Figure 1D).

Next, we tested whether reduced plaque inflammation changed the
overall plaque character. Histology revealed a smaller total plaque size
and smaller necrotic cores in the anti-IL-1b group (Figure 1E,
Supplementary material online, Figure S1C). Furthermore, characteriza-
tion of plaques using quantitative polymerase chain reaction revealed
that MCC950 treatment reduced expression of mRNAs that encode the
pro-inflammatory cytokines IL-6 (a cytokine downstream of IL-1b) and
tumour necrosis factor (TNF) (Figure 1F). Moreover, levels of matrix
metalloproteinase (MMP)-3 and MMP-9 decreased in treated mice
(Figure 1F). MMPs support extracellular matrix degradation, a process
that may lead to atherosclerotic plaque destabilization.30 We also tested
whether the effect of murine canakinumab lasts after discontinuation
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..and found that its beneficial effect on plaque size may be transient and
may not be sustained long-term (Supplementary material online, Figure
S1D and E). However, further experiments including additional
time-points are needed to fully elucidate a durable, long-term effect
of anti-IL-1b therapy. Of note, anti-IL-1b treatment and NLRP3-
inflammasome inhibition did not alter body weight, spleen weight, or
cholesterol levels in treated vs. non-treated mice (Supplementary
material online, Figure S1F–K). Taken together, these data indicate that
anti-IL-1b treatment and NLRP3-inflammasome inhibition limited plaque
inflammation and hence progression of atherosclerosis.

3.2 Anti-IL-1b treatment and NLRP3-
inflammasome inhibition dampen leuco-
cyte recruitment
We next addressed how anti-IL-1b treatment reduced leucocyte accu-
mulation in atherosclerotic aortas. To explore whether anti-IL-1b treat-
ment dampened blood inflammatory leucocyte recruitment to
atherosclerotic aortas, we performed adoptive transfer experiments.
Here, we isolated GFPhigh myeloid cells (monocytes admixed with neu-
trophils) from naı̈ve transgenic Ubc-GFP mice (all leucocytes express
green fluorescent protein, GFP) and injected these cells intravenously
into ApoE–/– mice (all cells are GFPnegative), which were treated with ei-
ther control or anti-IL-1b for 3 weeks (Supplementary material online,
Figure S2A). Twenty-four hours after the transfer, we quantitated GFPhigh

myeloid cells inside atherosclerotic aortas using flow cytometry and
found that anti-IL-1b treatment lowered GFPhigh myeloid cell numbers
(Figure 2A). These data show that anti-IL-1b mitigates myeloid cell uptake
from blood to atherosclerotic aortas.

To investigate how anti-IL-1b treatment limited leucocyte recruit-
ment from blood to atherosclerotic aortas, we used flow cytometry to
assess levels of leucocyte adhesion molecules on endothelial cells from
atherosclerotic aortas. Our data revealed that NLRP3-inflammasome in-
hibition lowered protein levels of adhesion molecules ICAM-1, ICAM-2,
VCAM-1, E-Selectin, and P-Selectin (Figure 2B and C). In parallel, we also
found reduced gene expression of leucocyte-attracting chemokines C-
X-C motif chemokine ligand 1 (Cxcl1), C-X-C motif chemokine ligand 12
(Cxcl12), and C-C motif chemokine ligand 7 (Ccl7) in atherosclerotic aor-
tas of treated mice (Figure 2D). Incubation of cultured murine aortic en-
dothelial cells with recombinant IL-1b increased levels of leucocyte
adhesion molecules VCAM-1, E-Selectin, and P-Selectin (Supplementary
material online, Figure S2B and C). In sum, these data demonstrate that
IL-1b enhances blood leucocyte recruitment into atherosclerotic aortas
by activating aortic endothelial cells, an effect which was mitigated by
anti-IL-1b treatment and NLRP3-inflammasome inhibition.

3.3 Anti-IL-1b treatment and NLRP3-
inflammasome inhibition suppresses blood
leucocyte supply
The bone marrow continuously produces leucocytes derived from hae-
matopoietic stem and progenitor cells (HSPC).31 We next assessed
whether decreased supply of blood inflammatory leucocytes also con-
tributes to the observed reduction in leucocyte numbers in atheroscle-
rotic aortas after anti-IL-1b treatment and NLRP3-inflammasome
inhibition. IL-1b and NLRP3-inflammasome suppression indeed lowered
blood inflammatory leucocyte numbers (Figure 3A–C). Thus, we next
tested this mechanistic hypothesis. Upon anti-IL-1b treatment and
NLRP3-inflammasome inhibition, HSC and LSK progenitor cells—both

precursor cells of mature leucocytes—proliferated less and their num-
bers declined in the bone marrow (Figure 4A–C), indicating that anti-IL-
1b treatment and NLRP3-inflammasome inhibition lowered blood leu-
cocytes by suppressing leucocyte production in the bone marrow.

Parenchymal cells frame HSPCs in the bone marrow and regulate hae-
matopoiesis by secreting factors that signal to HSPCs to control their
proliferative capacity and motility.32 In that context, niche factors
angiopoietin-1, osteopontin, stem cell factor, and C-X-C motif chemo-
kine 12 control haematopoietic progenitor proliferation, while vascular
cell adhesion molecule 1 promotes HSPC retention in the haemato-
poietic niche.33 We next asked how NLRP3-inflammasome inhibition
suppresses HSPC proliferation: does NLRP3-inflammasome suppression
affect haematopoietic cells directly or act on niche cells regulating HSC
activity? To this end, we found no difference in niche cell factor expres-
sion levels in the bone marrow after NLRP3-inflammasome suppression,
indicating that IL-1b may elevate proliferation by directly interfering with
HSPCs (Figure 4D), although further experiments are needed to fully elu-
cidate that link.

3.4 Haematopoietic cell-specific NLRP3-
inflammasome activity contributes to vas-
cular inflammation
Since different cells inside plaques can produce IL-1b (e.g. leucocytes,
endothelial cells, and vascular smooth muscle cells),34 we next
determined the contribution of haematopoietic cell-specific NLRP3-
inflammasome activity to enhanced leucocyte accumulation in athero-
sclerotic aortas. Here, we performed bone marrow reconstitution
experiments in which we lethally irradiated Ldlr–/– mice that were
subsequently reconstituted with bone marrow from either wild-type
or Casp1–/– mice to generate bone marrow chimeras. This experi-
mental set-up enabled us to generate a scenario in which non-haema-
topoietic cells are able to produce mature IL-1b, while no
haematopoietic cells can activate IL-1b NLRP3-inflammasome-
dependent since they lack Casp1, an integral part of the inflamma-
some (Figure 5A). We first determined leucocyte numbers in athero-
sclerotic aortas and found fewer inflammatory leucocytes in
atherosclerotic aortas from mice with haematopoietic cell-specific
NLRP3-inflammasome depletion (Figure 5B and C).

We next addressed whether haematopoietic cell-specific NLRP3-
inflammasome activity contributes to blood inflammatory leucocyte re-
cruitment. To explore this, we adoptively transferred GFPhigh myeloid
cells retrieved from naı̈ve transgenic Ubc-GFP mice into the bone marrow
chimeric mice described above (Figure 5A). We found reduction of
GFPhigh myeloid cells in atherosclerotic aortas from mice with haemato-
poietic cell-specific Casp1 depletion (Figure 5D), indicating that haemato-
poietic cell-specific NLRP3-inflammasome activity substantially supports
leucocyte recruitment to atherosclerotic aortas. Furthermore, we ex-
plored whether haematopoietic cell-specific NLRP3-inflammasome ac-
tivity takes part in blood leucocyte supply and found reduced leucocyte
production in the bone marrow of mice with haematopoietic cell-
specific NLRP3-inflammasome depletion (Figure 5E). Consequently,
blood inflammatory leucocyte numbers were lower in these mice
(Figure 5F). These experiments indicate that haematopoietic cell-specific
NLRP3-inflammasome activity substantially contributed to both leuco-
cyte recruitment and leucocyte supply.
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Figure 2 Anti-IL-1b treatment and NLRP3-inflammasome inhibition dampen leucocyte recruitment to atherosclerotic aortas by reducing adhesion mole-
cule expression on aortic endothelial cells. (A) Flow cytometric gating and quantification of GFPhigh myeloid cells in atherosclerotic aortas 24 h after adoptive
transfer of GFPhigh monocytes and neutrophils into IgG- vs. IL-1b antibody (IL-1b Ab)-treated ApoE–/– mice (n = 12 per group, 67% female, Student’s t-test).
(B) Gating strategy and histograms of leucocyte adhesion molecules on aortic endothelial cells from vehicle- vs. MCC950-treated ApoE–/– mice. (C)
Quantification of mean fluorescent intensities (MFI, representing relative protein levels) of adhesion molecules expressed by aortic endothelial cells from ve-
hicle vs. MCC950-treated ApoE–/– mice (n = 8 per group, 38% female, Student’s t-test or Mann–Whitney U test as appropriate). Bar graphs indicate relative
change of MFI standardized to controls. FMO control, Fluorescence Minus One (respective antibody omitted). (D) Quantitative real-time PCR for gene ex-
pression quantification in aortas of vehicle- vs. MCC950-treated ApoE–/– mice (n = 10–12 per group, 58% female, Student’s t-test or Mann–Whitney U test as
appropriate). ICAM-1, intercellular adhesion molecule 1; ICAM-2, intercellular adhesion molecule 2; VCAM-1, vascular cell adhesion protein 1; Ccl2/Ccl7, C-
C motif chemokine ligand 2/7; Cxcl1/Cxcl12, C-X-C motif chemokine ligand 1/12; Cx3cl1, C-X3-C motif ligand 1. Data are presented as mean þ s.e.m.,
*P < 0.05, **P < 0.01, ***P < 0.001. Numbers next to gates indicate population frequencies (%).
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3.5 Anti-IL-1b treatment also curtails
leucocyte accumulation in atherosclerotic
aortas in post-MI accelerated atherosclero-
sis in mice and humans
The above experiments elucidated the benefit of anti-IL-1b treatment in
early atherosclerosis (atherogenesis), i.e. primary prevention. We next
asked whether these mechanisms also affect secondary prevention, i.e. in

the setting of previous MI as investigated in the CANTOS trial. We there-
fore started feeding ApoE–/– mice HCD and infarcted these mice 2 weeks
thereafter (permanent left anterior descending coronary artery ligation)
(Figure 6A). Four weeks after MI, we initiated treatment with either control
IgG or anti-IL-1b for 4 weeks. We assessed inflammatory leucocyte num-
bers in atherosclerotic aortas and found that treatment significantly re-
duced the leucocyte content (Figure 6B and C). In accord, histology
revealed smaller total plaque sizes in the anti-IL-1b group (Figure 6D).

Figure 3 Anti-IL-1b treatment and NLRP3-inflammasome inhibition reduce blood leucocyte numbers. (A) Flow cytometric gating and quantification of
blood leucocytes in (B) IgG (Ctrl IgG)- vs. IL-1b-neutralizing antibody (IL-1b Ab)-treated ApoE–/– mice (n = 11–12 per group, 67% female, Student’s t-test or
Mann–Whitney U test as appropriate) and (C) vehicle- vs. MCC950-treated ApoE–/– mice (n = 17–20 per group, 21–25% female, Student’s t-test or Mann–
Whitney U test as appropriate). Data are presented as meanþ s.e.m., *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Numbers inside/next to gates indi-
cate population frequencies (%).
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Using adoptive transfer, we tested whether treatment also lowered

blood leucocyte uptake (Figure 6A). As in regular atherosclerosis (Figure 2A),
we found fewer GFPhigh myeloid cells inside atherosclerotic aortas in the
treatment group in post-MI accelerated atherosclerosis (Figure 6E).

We next determined whether this treatment reduced leucocyte sup-
ply and indeed found lower numbers of leucocyte subsets in atheroscle-
rotic aortas post-MI (Figure 6F). These data indicate that anti-IL-1b
treatment limited inflammatory leucocyte uptake and supply in post-MI
accelerated (Figure 6) as well as primary atherosclerosis (Figures 1–5).

Finally, we addressed whether the phenotype of decreased blood leu-
cocyte numbers also occurred in canakinumab-treated patients after MI.
As shown in Figure 7, dose-dependent and statistically significant reduc-
tions in monocyte counts were observed among participants in the
CANTOS trial who were randomly allocated to IL-1b inhibition with

canakinumab at doses of 50 mg, 150 mg, and 300 mg subcutaneously
given once every 3 months.16 Effects were evident as early as 1 month
following trial initiation and were maintained over time, particularly for
the 150 mg and 300 mg doses. Of interest, these were also the two
doses of canakinumab that achieved statistically significant reductions in
major adverse cardiovascular events in the main CANTOS trial.

4. Discussion

The prototypic proinflammatory cytokine IL-1b and its blood levels
strongly associate with plaque progression and destabilization.7

Pharmacological depletion of IL-1b reduced recurrent events in patients
with previous MI and residual inflammation in a large phase III clinical

Figure 4 Anti-IL-1b treatment and NLRP3-inflammasome inhibition reduce bone marrow haematopoietic stem and progenitor cell proliferation. (A and
B) Flow cytometric gating (pre-gated on lineage– cells) and quantification of lineagenegsca-1posc-kitpos progenitor cells (LSKs) and haematopoietic stem cells
(HSCs) in the bone marrow of IgG (Ctrl IgG)- vs. IL-1b-neutralizing antibody (IL-1b Ab)-treated ApoE–/– mice (n = 6 per group, 83% female, Mann–Whitney
U Test). Bar graphs compare total numbers of LSKs and HSCs as well as percentages of LSKs and HSCs in the SþG2/M phase of the cell cycle (indicating pro-
liferating cells). (C) Quantification of lineagenegsca-1posc-kitpos progenitor cells (LSKs) and haematopoietic stem cells (HSCs) in the bone marrow of vehicle-
vs. MCC950-treated ApoE–/– mice (n = 11–12 per group, 36–42% female, Student’s t-test or Mann–Whitney U test as appropriate). Bar graphs compare total
numbers of LSKs and HSCs as well as percentages of LSKs and HSCs in the Sþ G2/M phase of the cell cycle (indicating proliferating cells). (D) Quantitative
real-time PCR for gene expression quantification of bone marrow niche factors Cxcl12 (C-X-C motif chemokine 12), Vcam1 (vascular cell adhesion molecule
1), Scf (stem cell factor), Angpt1 (angiopoietin-1), and Opn (osteopontin) in bone marrow of vehicle- vs. MCC950-treated ApoE–/– mice (n = 14 per group,
50% female, Student’s t-test or Mann–Whitney U Test as appropriate). Numbers next to gates indicate population frequencies (%). Data are presented as
meanþ s.e.m., *P < 0.05, **P < 0.01, ****P < 0.0001.
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trial.16 However, the mechanisms underlying this beneficial effect remain
incompletely understood.

This study explores the biological basis of IL-1b- and NLRP3-
inflammasome-targeted therapies and provides evidence that anti-IL-1b
treatment and NLRP3-inflammasome inhibition dampened vascular in-
flammation (i.e. more numerous plaque inflammatory leucocytes) and
hence progression of atherosclerosis. Our pharmacological treatment
strategies aimed at two different targets in the same signalling cascade:
MCC950 inhibits upstream NLRP3-inflammasome formation, while the

murine equivalent of canakinumab provides downstream IL-1b
neutralization.

Specifically, we found that aortic endothelial cells decreased the expres-
sion of leucocyte chemoattractants and adhesion molecules upon NLRP3-
inflammasome inhibition. These two molecule groups participate crucially
in leucocyte recruitment, a process that involves leucocyte capture, rolling,
adhesion, and intraluminal crawling and finally leads these cells to transmi-
grate across the endothelial layer to enter the subintimal space/plaque.35

Since a decrease in these molecules does not rigorously reflect reduced

Figure 5 Haematopoietic cell-specific NLRP3-inflammasome depletion attenuates inflammatory leucocyte accumulation in atherosclerotic aortas. (A)
Experimental scheme for Figure 5B–F. In brief, LDLR–/– mice were lethally irradiated and reconstituted with bone marrow (BM) from either wild-type (Casp1þ/þ)
or Casp1 knock-out (Casp1–/–) mice. After 6 weeks of regeneration, LDLR–/– mice were fed a high-cholesterol diet (HCD) for 12 weeks to induce plaque forma-
tion. (B and C) Flow cytometric gating and quantification of aortic myeloid cells in LDLR–/– mice reconstituted with either Casp1þ/þ or Casp1–/– BM (n = 13–14
per group, 50–62% female, Mann–Whitney U test). (D) Flow cytometric gating and quantification of GFPhigh myeloid cells in atherosclerotic aortas 24 h after
adoptive transfer of GFPhigh monocytes and neutrophils into LDLR–/– mice reconstituted with either Casp1þ/þ or Casp1–/– BM (n = 6–7 per group, 50–57% fe-
male, Mann–Whitney U test). (E) Quantification of proliferating lineagenegsca-1posc-kitpos progenitor cells (LSKs) and haematopoietic stem cells (HSCs) in the
bone marrow of LDLR–/– mice reconstituted with either Casp1þ/þ or Casp1–/– BM (n = 7 per group, 57% female, Mann–Whitney U test). (F) Flow cytometric gat-
ing and quantification of blood leucocytes in LDLR–/– mice reconstituted with either Casp1þ/þ or Casp1–/– BM (n = 14–15 per group, 50–60% female, Student’s t-
test). Data are presented as meanþ s.e.m., *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Numbers next to gates indicate population frequencies (%).
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adhesion/migration, we tested directly whether treatment mitigates leuco-
cyte uptake from blood to atherosclerotic aortas. To that end, we adop-
tively transferred GFPhigh inflammatory monocytes and neutrophils into
atherosclerotic mice, which received either a control or an IL-1b neutraliz-
ing antibody. We tracked the GFPhigh myeloid cells inside atherosclerotic
aortas using flow cytometry 24 h after the intravenous transfer and found
that IL-1b neutralization indeed lowered GFPhigh myeloid cell numbers in-
side atherosclerotic aortas, indicating that these cells were recruited less.

Apart from this reduced inflammatory leucocyte uptake into athero-
sclerotic lesions, we further report that anti-IL-1b treatment and
NLRP3-inflammasome inhibition also limited inflammatory leucocyte
supply. In that light, we found that anti-IL-1b treatment and NLRP3-
inflammasome inhibition lowered inflammatory leucocyte numbers in
the blood. When we investigated how blood cell numbers dropped, we
found that HSPCs—the precursor cells of leucocytes—proliferated less.
Myeloid cells are continuously produced in the bone marrow (and in

some cases also at extramedullary sites) in a process termed myelopoie-
sis and develop through a series of well-defined stages including HSCs
and multipotent progenitors, followed by common myeloid progenitors,
and granulocyte-macrophage progenitors that finally differentiate into
granulocytes and monocytes, which are released into the circulation.36,37

Our data indicate that anti-IL-1b treatment and NLRP3-inflammasome
inhibition modulate immune cell supply by decreasing output of disease-
propagating neutrophils and inflammatory monocytes.

Finally, we performed an experiment that resembled the CANTOS
trial set-up to probe whether anti-IL-1b treatment reduced vascular in-
flammation not only in early atherosclerosis (atherogenesis) but also in
post-MI accelerated atherosclerosis. Our data provide evidence that the
same mechanisms, i.e. reduced supply and uptake of inflammatory leuco-
cytes, occur in both primary (atherogenesis) and secondary prevention
(previous MI). In line with our pre-clinical findings, we also found reduced
blood monocytes numbers in individuals on canakinumab in the

Figure 6 Anti-IL-1b treatment also reduces vascular inflammation in post-myocardial infarction accelerated atherosclerosis. (A) Experimental scheme for
Figure 6B–E. In brief, ApoE–/– mice underwent permanent coronary artery ligation after being fed a high-cholesterol diet (HCD) for 2 weeks. HCD was con-
tinued for another 8 weeks with mice being treated with either IgG (Ctrl IgG) or IL-1b neutralizing antibody (IL-1b Ab) for the last 4 weeks of the experi-
ment. (B and C) Flow cytometric gating and quantification of aortic myeloid cells in infarcted ApoE–/– mice treated with IgG vs. IL-1b antibody (n = 8–10 per
group, 70–100% female, Student’s t-test or Mann–Whitney U test as appropriate). (D) Representative Masson Trichrome staining and quantification of pla-
que area of sectioned aortic roots from infarcted ApoE–/– mice treated with IgG vs. IL-1b antibody (n = 11–12 per group, Student’s t-test). Scale bars repre-
sent 200mm. (E) Flow cytometric gating and quantification of GFPhigh myeloid cells in atherosclerotic aortas 24 h after adoptive transfer of GFPhigh

monocytes and neutrophils into infarcted ApoE–/– mice treated with IgG vs. IL-1b antibody (n = 8–10 per group, 70–100% female, Mann–Whitney U test).
(F) Quantification of blood leucocytes in infarcted ApoE–/– mice treated with IgG vs. IL-1b antibody (n = 16 per group, 100% female, Mann–Whitney U test).
Data are presented as meanþ s.e.m., *P < 0.05, **P < 0.01. Numbers next to gates indicate population frequencies (%).
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..CANTOS trial indicating that the beneficial effect in these patients may be
partially mediated by reduced supply of disease-propagating monocytes.

In summary, these data demonstrate that targeting IL-1b- and NLRP3-
inflammasome-induced leucocyte supply and plaque leucocyte recruit-
ment reduced vascular inflammation in atherosclerosis. Our major
findings are summarized in the Graphical Abstract.

IL-1b, the prototypical proinflammatory cytokine, can be produced at
inflammatory sites (e.g. atherosclerotic lesions) and can derive from vari-
ous cell types. Within atherosclerotic plaques, lesional macrophages
likely comprise the major source of IL-1b production, while endothelial
cells and vascular smooth muscle cells may also release IL-1b to some
extent.34 Upon engulfment of cholesterol crystals, inflammasome forma-
tion occurs in macrophages, leading to the release of mature IL-1b and
IL-18 into the extracellular space.5 To distinguish better the cellular
source of IL-1b, we generated mice in which haematopoietic cells lacked
Casp1, the machinery proteinase of the inflammasome, using bone mar-
row reconstitution experiments. Our data showed that haematopoietic
cell-specific NLRP3-inflammasome activity contributes substantially to
activation of both plaque endothelial cells and bone marrow HSPCs.

The observation that IL-1b can directly activate endothelial cells
agrees with in vivo studies that showed better leucocyte adherence to en-
dothelial cells previously primed with IL-1.34 In line, other studies using
genetically and/or pharmacologically disrupted IL-1b signalling showed a
decrease in adhesion molecule and/or chemokine levels as surrogates of
dampened leucocyte recruitment.28,38,39

IL-1b is known to drive emergency haematopoiesis40–43: that IL-1b
impacts inflammatory cell output in the bone marrow concurs with an
observation that we made after induction of acute inflammation. Upon
experimental MI, active IL-1b rises in the ischaemic heart and enters the
circulation resulting in elevated haematopoietic stem and progenitor
proliferation in the bone marrow and consequently in increased leuco-
cyte production.23 These leucocytes in turn are deployed to the ischae-
mic wound where they remove necrotic debris.

Our findings have direct clinical relevance, as they provide insights into
the mechanisms whereby anti-IL-1b treatment and NLRP3-inflammasome
inhibition may reduce atherosclerotic complications. The notion that blood

monocyte numbers decreased upon canakinumab treatment may indicate
that anti-IL-1b therapy—similar to what we found in our pre-clinical experi-
ments—also reduces the production of disease-propagating monocytes.
Of note, CANTOS subgroups that benefitted most from treatment also
showed the most pronounced and sustained drop in blood monocyte
numbers. Furthermore, a recent analysis of the CANTOS trial showed a re-
duction also for blood neutrophils in the canakinumab treatment groups,44

which align with our blood neutrophil data in the anti-IL-1b group.
New mechanistic clues on IL-1b-targeting drugs’ actions provide novel

insight into CANTOS and might aid the identification of subgroups of
patients that respond best to anti-inflammatory treatment strategies. For
example, strong responders might exhibit reduced blood leucocyte
numbers upon initiation of treatment. In contrast to CRP, which repre-
sents a biomarker of inflammation without pathophysiological rele-
vance,45 a reduction in monocyte counts may directly mediate the
beneficial effects. Apart from its favourable effects in secondary preven-
tion, we provide data that therapeutically targeting IL-1b and NLRP3-
inflammasome may also induce beneficial changes in the setting of pri-
mary prevention with early-stage atherosclerosis (atherogenesis, i.e. de-
velopment of atherosclerosis). Moreover, our results provide further
experimental endorsement of the interruption of the inflammasome/IL-
1b pathway in the setting of recent acute coronary syndrome. Further
trials are warranted to also test these propositions in a clinical setting.

4.1 Study limitations
Our study has several limitations. First, the experiments in which the
inflammasome inhibitor MCC950 was used focused on NLRP3-
inflammasome-dependent mechanism of active IL-1b release. However,
pro-IL-1b can also be cleaved to active IL-1b, independent of the
NLRP3-inflammasome by, for instance, extracellular proteases.14,15 In
contrast, murine canakinumab depletes IL-1b regardless of its upstream
activation. Secondly, we used bone marrow from Casp1 knock-out
(Casp1–/–) mice in our bone marrow reconstitution experiments. Apart
from the Casp1 deficiency, these mice are known to also have an inci-
dental caspase 4 (Casp4, also known as caspase 11) deficiency. Hence,
we cannot rule out that Casp4 depletion may also have contributed to

Figure 7 Anti-IL-1b treatment reduces blood monocyte numbers in patients after MI. Placebo-subtracted mean percent change in monocyte counts over
time in the CANTOS trial among participants randomly allocated to IL-1b inhibition with canakinumab at doses of 50, 150, and 300 mg subcutaneously every
3 months. P-values refer to the percent change in monocyte count at each dose compared to placebo at that point in time. *P < 0.001, #P < 0.01.
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.
the phenotype that we observed in mice that were transplanted with
bone marrow from these double knock-out mice. Furthermore,
Casp1–/– mice are on a mixed C57BL/6J; C57BL/6N genetic background,
while wild-type mice are on a C57BL/6J background. We cannot exclude
that these differences in genetic backgrounds may have biased the results
from our bone marrow chimera experiments.

Thirdly, we found reduced blood monocytes numbers in individuals
on canakinumab in the CANTOS trial. Whether this reduction is caused
by decreased production of these cells in the bone marrow—as we ob-
served it in our pre-clinical experiments—remains to be investigated.
Moreover, whether canakinumab also reduced uptake of blood inflam-
matory leucocytes in patients enrolled in CANTOS is also yet unclear.

Finally, our data show a treatment-induced reduction in leucocyte re-
cruitment. Whether reduced leucocyte recruitment is mediated via
treatment-induced phenotypic changes of endothelial cells with reduc-
tion of adhesion molecules and/or chemokines—as our data suggest—
or other mechanisms remains to be fully investigated.

5. Conclusion

Taken together, our data indicate that pharmacological as well as genetic
suppression of IL-1b and the NLRP3-inflammasome reduced vascular in-
flammation in primary (pre-MI) and secondary (post-MI) prevention
through (i) reducing blood inflammatory leucocyte supply and (ii) damp-
ening blood inflammatory leucocyte recruitment. Our data shed new light
on the mechanisms through which anti-IL-1b treatment and NLRP3-
inflammasome inhibition reduce cardiovascular complications and inform
future anti-inflammatory interventions in patients with atherosclerosis.

Supplementary material

Supplementary material is available at Cardiovascular Research online.
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