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Background: Heat shock protein B8 (HSPB8) is expressed in various cancers. However,
the functional and clinicopathological significance of HSPB8 expression in bladder cancer
(BC) remains unclear. The present study sought to elucidate the clinicopathological
features and prognostic value of HSPB8 in BC.

Methods: A BC RNA-seq data set was obtained from The Cancer Genome Atlas Urothelial
Bladder Carcinoma (TCGA-BLCA) database, and the external validation dataset GSE130598
was downloaded from the GEO database. Samples in the TCGA-BLCA were categorized into
two groups based on HSPB8 expression. Differentially expressed genes (DEGs) between the
two groups were defined as HSPB8 co-expressed genes. Gene set enrichment analysis
(GSEA), protein-protein interaction networks, and mRNA-microRNA (miRNA) interaction
networks were generated to predict the function and interactions of genes that are co-
expressed with HSPB8. Finally, we examined immune cell infiltration and constructed a
survival prediction model for BC patients.

Results: The expression level of HSBP8 has a significant difference between cancer samples
and normal samples, and its diagnosis effect was validated by the ROC curve. 446 differential
expressed genes between HSBP8 high-expression and HSBP8 low expression groups were
identified. Gene enrichment analysis and GSEA analysis show that these differential gene
functions are closely related to the occurrence and development of BC and the metabolic
pathways of BC. The cancer-related pathways included Cytokine-cytokine receptor Interaction,
Focal adhesion, and Proteoglycans in cancer. PPI and protein-coding gene-miRNA network
visualized the landscape for these tightly bounded gene interactions. Immune cell infiltration
shows that B cells, CD4+T cells, and CD8+T cells have strongly different infiltration levels
between the HSBP8 high exp group and low exp group. The survival prediction model shows
that HSBP8 has strong prognosis power in the BLCA cohort.

Conclusion: Identifying DEGs may enhance understanding of BC development’s causes
and molecular mechanisms. HSPB8 may play an essential role in BC progression and
prognosis and serve as a potential biomarker for BC treatment.
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INTRODUCTION

Bladder cancer (BC) occurs in the bladder mucosa and is the most
common malignancy of the urinary system (Lenis et al., 2020). It
is the fifth most common type of cancer worldwide, with an
estimated 81,400 new cases and 17,000 related deaths in the
United States in 2020 (Siegel et al., 2020). The most common
histologic type of bladder cancer is uroepithelial cancer,
accounting for more than 90% of all bladder cancers
(Martinez Rodriguez., 2017). Based on the degree of muscle
invasion, BC can be classified as non-muscle-invasive bladder
cancer (NMIBC) and muscle-invasive bladder cancer (MIBC)
(Kang et al., 2020). Recurrence remains a major challenge in the
treatment of MIBC. Approximately 75% of patients initially
present as NMIBC. Though these patients typically undergo
aggressive treatments including, surgery, immunotherapy,
chemotherapy, and radiotherapy, the patient response remains
variable and unpredictable. About 10–30% of patients with
NMIBC may relapse and progress to MIBC (Witjes et al.,
2021), and the 5-years overall survival (OS) rate remains
unsatisfactory. In addition, the cost of BC treatment poses a
heavy burden on patients and society. The prognosis of BC
patients is difficult to predict because there are no clinical
biomarkers or parameters that can reliably reflect disease
progression. Additionally, individual differences play
important roles in determining the efficacy of thetreatment of
BC. Therefore, clarifying the potential molecular mechanisms
involved in BC carcinogenesis, proliferation, and recurrence and
identifying novel potential biomarkers is crucial for early
diagnosis, prognosis evaluation, and treatment.

Heat shock protein B8 (HSPB8, also known as small stress
protein-like protein [sHSP22], protein kinase H11, E2-induced
gene 1 protein [E2IG1], or alpha-crystallin C chain [CRYAC]), is
a member of the small heat shock protein superfamily and
contains a conserved α-crystallin domain at the C-terminal (F.
Li et al., 2018). Various cellular functions have been linked to
HSPB8, such as cytoskeleton stabilization, autophagy, oxidative
stress, apoptosis, differentiation, and proliferation (L. L. Yu et al.,
2021). In addition, studies have reported that HSPB8 exerts both
beneficial and detrimental effects on cancer proliferation,
invasion, and migration (Cristofani et al., 2021). For instance,
HSPB8 expression is upregulated in breast cancer (Piccolella
et al., 2017), multiple myeloma (Hamouda et al., 2014), lung
cancer (L. L. Yu et al., 2021), and ovarian cancer (Suzuki et al.,
2015). In these cancer types, HSPB8 promotes proliferation and
suppresses apoptosis. For other tumors, including glioblastoma
(Modem et al., 2011), prostate cancer (Hu et al., 2020), and
hepatocarcinoma (Wang et al., 2020), HSPB8 is aberrantly
methylated and expressed at low levels. Thus, the role of
HSPB8 in cancer has attracted increasing attention. However,
the expression and significance of HSPB8 in BC have not yet been
characterized.

In this study, we investigated the correlation between HSPB8
expression and BC characteristics and analyzed the prognostic
role of HSPB8 expression in BC based on RNA-seq data from
TCGA and GEO datasets. In addition, we analyzed the expression
levels of HSPB8 in BC and normal tissues and determined the

correlation between HSPB8 expression and patient prognosis in
terms of OS. Additionally, we examined the potential diagnostic
and prognostic value of HSPB8 using patient data from the
TGCA and GEO databases. Then, we elucidated its biological
significance by performing enrichment analysis, molecular
interaction network analysis, and immune infiltration
correlation analysis. Our study highlights that HSPB8 may be
a new predictor of BC diagnosis and prognosis and is a promising
therapeutic target.

MATERIALS AND METHODS

Data Download and Processing
We downloaded the gene expression data matrix of 433 samples
(19 normal samples and 414 bladder cancer samples) from The
Cancer Genome Atlas (TCGA) data portal (https://portal.gdc.
cancer.gov/) as the training set. The microarray dataset
GSE130598 analyzed using the GPL26612 platform was
extracted from the Gene Expression Omnibus (GEO) database
for the validation set. This dataset contains 24 normal samples
and 24 tumor samples (Chandrashekar et al., 2020). The
normalize between arrays function in the limma package
(Ritchie et al., 2015) was used for background correction and
data normalization.

Differential Target Gene Co-expression
Analysis
We grouped the target gene HSPB8 into high and low expression
groups based on the median expression value in the test set
derived from The Cancer Genome Atlas Urothelial Bladder
Carcinoma (TCGA-BLCA) database. The differentially
expressed genes (DEGs) between the high and low HSPB8
expression groups in the TCGA-BLCA and GSE130598
datasets were screened using the limma package. The DEG
heatmap and volcano map was plotted using the ggplot2
package (Ito and Murphy, 2013). The intersection of the two
groups of DEGs was examined using a Venn diagram. The
correction of multiple testing was applied. All the DEGs had
p < 0.05 and |log2FC|>1.

Target Gene Correlation Analysis
We analyzed differences in HSPB8 expression between normal
and tumor tissues. A ROC curve was generated to verify the
diagnostic efficiency of HSPB8. The results indicate that HSPB8 is
a significant diagnostic marker. The GEPIA platform (http://
gepia.cancer-pku.cn/) (Tang et al., 2017) was used to analyze the
body map of the median expression distribution of HSPB8 in
tumors and normal samples. Additionally, patient base line data
was shown (Table 1).

Friends/GO/KEGG Enrichment Analysis
To analyze the functional correlation between the key genes, we
used the R package GOSemSim (G. Yu, 2020) to calculate the
functional correlation of DEGs. The GO function annotation
analysis is commonly used for large-scale gene enrichment
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studies and identified involved biological process (BP), molecular
function (MF), and cellular component (CC) (Ashburner et al.,
2000). KEGG is a widely used database that stores information
about genomes, biological pathways, diseases, and drugs
(Kanehisa et al., 2017). We used the clusterProfiler package
(G. Yu et al., 2012) to perform the GO function analysis and
KEGG pathway enrichment analysis on the DEGs related to BC.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was used to evaluate the
distribution of the genes in a pre-defined gene set. The genes were
ranked by phenotype correlation to determine their contribution
to the phenotype (Subramanian et al., 2007). We obtained c2.
cp.v7.0. symbols.gmt from the MSigDB database and performed
GSEA using the R package ClusterProfiler between the high and
low HSPB8 expression groups in the TCGA-BLCA data set.

Protein-Protein Interaction (PPI) Network
Construction and Module Analysis
We constructed a molecular interaction network between high
and low HSPB8 expression groups for DEGs. First, we performed
protein-protein interaction (PPI) network analysis using the
STRING database (Szklarczyk et al., 2019). Cytoscape is an
open-source bioinformatics software program used to visualize
molecular interaction networks. MCODE, a Cytoscape plug-in,
was used to explore the PPI network hub genes. Then, hub genes
with clear clustering were used as the target genes. MicroRNAs
(miRNAs) that interact with the target genes were predicted using
the TarBase (Karagkouni et al., 2018), miRecords (F. Xiao et al.,
2009), and miRTarBase (H. Y. Huang et al., 2020) databases.

Immune Cell Composition Assessment
Analysis
Cell-type identification by estimating relative subsets of RNA
transcripts (CIBERSORT) is based on the principle of linear
support vector regression to deconvolve transcriptome
expression matrices and estimate the composition and
abundance of immune cells in a mixed cell population (B.
Chen et al., 2018). We uploaded the gene expression matrix
data to CIBERSORT and filtered the output for samples with p <
0.05 to derive the immune cell composition matrix. Heatmaps
were drawn using the pheatmap package to demonstrate the
composition distribution of the 22 immune cell types between the
high and low HSPB8 expression groups. The core plot package
was used to draw correlation heat maps to visualize the
correlation of the composition of 22 immune cell types.
ggplot2 was used to draw violin maps to visualize the
differences in the composition of 22 immune cell types.

Construction and Verification of Clinical
Prediction Models
To assess whether HSPB8 expression and clinicopathological
features can predict patient prognosis, we performed
univariate and multivariate Cox regression analysis to

understand whether the independent predictive power of risk
scores and clinicopathological features are related to OS.

Construction and Verification of
Immune-Related Risk Prediction Model
We obtained immune-related genes from the ImmPort database
(https://www.immport.org/) (Bhattacharya et al., 2018). This
database assembles raw data from clinical trials, mechanistic
studies, and cellular and molecular measurements. Templates
for data representation and standard operating procedures were
created to facilitate data transfer. We intersected the expressed
genes from the high and low HSPB8 expression groups with
immune-related genes. The TCGA-BLCA clinical data were also
combined to construct risk prediction models for the immune-
related genes. The least absolute shrinkage and selection operator
(LASSO) algorithmwas used to analyze the prognosis-related hub
genes for dimensionality reduction analysis and feature selection
(Tibshirani, 1996). The coefficients obtained by LASSO
regression were weighted to each normalized gene expression
value, and the following risk scoring formula was established:

We first examined the correlation between the expression of
immune-related gene hub genes in different tumors in the TCGA
database and the ability of the risk score to predict the prognosis
of patients with different tumors. Subsequently, whether the risk
scores combined with patient clinicopathological characteristics
can predict OS was analyzed using univariate and multivariate
Cox analysis, and a clinical prediction line graph (Nomogram)
was constructed. Kaplan-Meier survival curves were generated to
show survival differences. A log-rank test was performed to assess
the difference in survival duration between the two patient
groups. The correlation between clinical subgroup variables
was also explored based on the risk scores.

Statistical Analysis
All data were analyzed using R software (version 4.0.2). To
compare continuous variables in two groups, normally
distributed variables were analyzed using independent
Student’s t-tests. Mann-Whitney U tests were used to analyze
differences between non-normally distributed variables. The Chi-
square test or Fisher’s exact test analyzed categorical data. The
Wilcoxon test was used for two-group comparisons, and the
Kruskal–Wallis test was used for multi-group comparisons. ROC
curves and AUC values were obtained using the R package pROC.
All statistical tests were two-tailed, and results with p < 0.05 were
considered statistically significant.

RESULTS

Differential Expression of Target Genes and
Validation of Diagnostic Performance
We performed background correction, and data normalization
on the two data sets, and the gene expression before and after data
normalization is shown in Figure 1 (A-B: GSE130598; C-D:
TCGA-BLCA). We first compared the differences between
high and low HSPB8 expression groups in the TCGA-BLCA
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FIGURE 1 | Differentially expressed target genes and diagnostic validation in bladder cancer. (A) mRNA expression profile from the GSE130598 dataset before
normalization; (B) mRNA expression profile of the GSE130598 dataset after normalization; (C) mRNA expression profile from the TCGA-BLCA dataset before
normalization; (D)mRNA expression profile of the TCGA-BLCA dataset after normalization; (E) Box plot of the differences in HSPB8 expression between the tumor and
normal groups in theTCGA-BLCA dataset. Each point represents a sample. Blue represents normal tissue,and red represents tumor tissue; (F) Box plot of the
differences in HSPB8 expression between the tumor and normal groups in the GSE130598 dataset. Each point represents a sample.Blue indicates normal tissue and
red indicates tumor tissue. (G) Receiver operating characteristic(ROC) curve of HSPB8 in the TCGA-BLCA dataset; (H) HSPB8 distribution bodymap in tumor and
normal samples, red represents tumor tissue (left), green represents normal tissue (right).
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and GSE130598 data sets (Figures 1E,F). A ROC curve was
generated to verify the diagnostic efficiency of HSPB8 in the
TCGA-BLCA dataset (AUC = 0.905). The results indicate that
HSPB8 was a good predictive marker (Figure 1G). Next, the GEPIA
platform was used to analyze the median expression distribution of
HSPB8 in tumors and normal samples (Figure 1H). Additionally,
patient base line data was shown (Table 1).

Differential Expression of Target Gene
We conducted differential expression analysis of the mRNA
expression profile matrix derived from the TCGA-BLCA
(Figures 2A,B) and GSE130598 datasets (Figures 2C,D).
The differentially expressed genes between the high and

low HSPB8 expression groups in the TCGA-BLCA and
GSE130598 datasets are shown as heatmaps and
volcano plots.

Co-Expression Gene Friends Analysis and
GO/KEGG Enrichment Analysis
We took the intersection of DEGs between the high and low
HSPB8 expression groups in the TCGA-BLCA (training set)
and GSE130598 datasets (validation set) and displayed them
as Venn diagrams (Figure 3A). HSPB8 was differentially
expressed in both the training and validation sets. We
compared the DEGs between the high and low HSPB8

FIGURE 2 | Differentially expressed gene distribution in the TCGA-BLCA dataset. (A) Heatmap of the HSPB8 expression between the high and low expression
groups from the TCGA-BLCA dataset; (B) Volcano plot of gene expression in the high and lowHSPB8 expression groups from the TCGA-BLCA dataset; (C)Heatmap of
gene expression between the high and lowHSPB8 expression groups in the GSE130598 dataset; (D) Volcano plot of gene expression between the high and lowHSPB8
expression groups in the GSE130598 dataset.
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FIGURE 3 |Gene ontology and KEGG enrichment analysis. (A) Venn diagram showing the co-expressed DEGs in the TCGA-BLCA and GSE130598 datasets; (B)
Summary of functional similarities of the co-expressed genes; (C)GO enrichment analysis bar graph. The length of the bar represents the number of enriched genes, and
the color represents the significance level (increasing from blue to red); (D) GO enrichment analysis bubble chart. The bubble size represents the number of enriched
genes, and the color represents the significance level (increasing from blue to red); (E) KEGG enrichment analysis bar graph. The length of the bar represents the
number of enriched genes, and the color represents the significance level (p.adjust < 0.05, increasing from blue to red, p-value adjusted for multiple comparisons); (F)
KEGG enrichment analysis network diagram. Each point represents an enrichment term, and the color represents the significance level (p < 0.05, increasing from green
to blue, p-values adjusted for multiple comparisons).
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expression groups using genes co-expressed with HSPB8. We
identified co-expressed genes that are functionally related to
HSPB8 by analyzing the functional correlation between genes
co-expressed with HSPB8. The horizontal axis of the gene co-
expression analysis reflects the correlation size, and the
vertical axis shows the names of the co-expressed genes
associated with the HSPB8 function (Figure 3B). GO, and
KEGG enrichment analysis was performed using the
clusterProfiler package. The GO enrichment analysis
entries are presented as a bar chart (Figure 3C) and a
bubble chart (Figure 3D). The KEGG enrichment analysis
entries are shown as a bar graph (Figure 3E) and an
enrichment graph (Figure 3F). Table 2 and Table 3 show
the GO and KEGG enrichment entries that met the screening
threshold, respectively. GO enrichment analysis showed that
the genes co-expressed with HSPB8 were mostly associated
with humoral immune response, complement activation,
positive regulation of leukocyte migration, growth factor
binding, peptidase regulatory activity, cytokine binding,
and proteoglycan. The KEGG enrichment analysis showed
that co-expressed genes were mostly enriched in cytokine-
cytokine receptor interaction, protein digestion and
absorption, proteoglycans in cancer, complement and
coagulation cascade, viral protein-cytokine and cytokine
receptor interaction, and bladder cancer and other related
pathways. These results indicate that HSPB8 and its co-
expressed genes may be related to BLCA development.

KEGG Enrichment Analysis Pathway
Diagram
The pathways with >10 genes enriched by KEGG enrichment
analysis included cytokine-cytokine receptor interactions,
vascular smooth muscle contraction, adhesion, protein
digestion, absorption, and proteoglycan pathways in cancer

(Figure 4). Genes labeled in green in the pathway map
reflect DEGs.

Protein-Protein Interaction Network
Construction
We constructed molecular interaction networks between the
DEGs’ high and low HSPB8 expression groups. PPI network
analysis was performed using the STRING database and
visualized using Cytoscape (Figure 5A). Hub genes were
further analyzed using the MCODE plug-in (Figures 5B–E).
We used the most closely linked set of hub genes obtained
from the MCODE analysis as target genes and predicted the
miRNAs that interact with the target genes using the TarBase,
miRecords, and miRTarBase databases (Figure 5F).

Gene Set Enrichment Analysis
We performed GSEA on the TCGA-BLCA dataset using the
clusterProfiler package to analyze the gene expressionmatrix. The
file, c2. all.v7.0. entrez.gmt, was used as the reference gene set. The
enrichment analysis was performed using the gseGO and
gseKEGG functions. The top 30 entries with p. adjust <0.05
were visualized (Figures 6A–F; Table 4). The results were mostly
enriched in the response group signaling pathways in cancer, NF-
kB pathway, lymphocyte pathway, CD40 pathway, IL17, IL3, IL5,
P53, ERK5, NO2IL12, ALK2 pathway, and cytokine linkage
pathway.

Differential Analysis of Immune Cell
Composition
We used the CIBERSORT algorithm to deconvolute the gene
expression matrices and derive the immune cell composition
matrix (Figure 7, TCGA-BLCA dataset; Figure 8, GSE130598
dataset). The par function calculated the immune cell percentage,
and stacked histograms (Figure 7A, Figure 8A) and heatmaps

TABLE 1 | TCGA-BLCA data set patient baseline data table.

Characteristic Levels Low expression of HSPB8 High
expression of HSPB8

p

n 207 207
T stage, n (%) T1 5 (1.3%) 0 (0%) 0.013

T2 60 (15.8%) 59 (15.5%)
T3 100 (26.3%) 96 (25.3%)
T4 21 (5.5%) 39 (10.3%)

N stage, n (%) N0 134 (36.2%) 105 (28.4%) 0.005
N1 17 (4.6%) 29 (7.8%)
N2 28 (7.6%) 49 (13.2%)
N3 4 (1.1%) 4 (1.1%)

M stage, n (%) M0 110 (51.6%) 92 (43.2%) 1.000
M1 6 (2.8%) 5 (2.3%)

Pathologic stage, n (%) Stage I 4 (1%) 0 (0%) 0.003
Stage II 72 (17.5%) 58 (14.1%)
Stage III 77 (18.7%) 65 (15.8%)
Stage IV 53 (12.9%) 83 (20.1%)

Gender, n (%) Female 53 (12.8%) 56 (13.5%) 0.823
Male 154 (37.2%) 151 (36.5%)

Age, meidan (IQR) 69 (59, 75) 69 (61, 76.5) 0.280
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TABLE 2 | The GO enrichment analysis of DEGs results between HSPB8 high expression group and low expression group. The pathways with p.adjust< 0.05 and qvalue<
0.05 are considered to be significantly enriched, showing the Top20 enrichment items of each category.

Ontology ID Description adj.P q

BP GO:0030198 extracellular matrix organization 6.58E-23 5.24E-23
BP GO:0043062 extracellular structure organization 6.58E-23 5.24E-23
BP GO:0010810 regulation of cell-substrate adhesion 1.51E-11 1.20E-11
BP GO:0031589 cell-substrate adhesion 2.59E-11 2.06E-11
BP GO:0010811 positive regulation of cell-substrate adhesion 6.47E-11 5.15E-11
BP GO:0050900 leukocyte migration 2.42E-10 1.92E-10
BP GO:0030199 collagen fibril organization 2.11E-09 1.68E-09
BP GO:0006959 humoral immune response 5.39E-08 4.29E-08
BP GO:0002685 regulation of leukocyte migration 7.17E-08 5.71E-08
BP GO:0006956 complement activation 2.02E-06 1.61E-06
BP GO:0003012 muscle system process 2.12E-06 1.69E-06
BP GO:0001503 ossification 2.12E-06 1.69E-06
BP GO:0045785 positive regulation of cell adhesion 2.59E-06 2.06E-06
BP GO:0006936 muscle contraction 3.98E-06 3.17E-06
BP GO:0061448 connective tissue development 4.15E-06 3.31E-06
BP GO:0051216 cartilage development 4.15E-06 3.31E-06
BP GO:0001101 response to acid chemical 4.15E-06 3.31E-06
BP GO:0060326 cell chemotaxis 6.16E-06 4.91E-06
BP GO:0006958 complement activation, classical pathway 6.16E-06 4.91E-06
BP GO:0002687 positive regulation of leukocyte migration 1.51E-05 1.20E-05
CC GO:0062023 collagen-containing extracellular matrix 4.75E-45 3.83E-45
CC GO:0043292 contractile fiber 1.05E-11 8.48E-12
CC GO:0030016 Myofibril 1.16E-10 9.35E-11
CC GO:0030017 Sarcomere 4.96E-10 4.00E-10
CC GO:0005788 endoplasmic reticulum lumen 7.19E-10 5.79E-10
CC GO:0005581 collagen trimer 1.35E-09 1.09E-09
CC GO:0031674 I band 5.74E-09 4.63E-09
CC GO:0030018 Z disc 1.01E-08 8.14E-09
CC GO:0072562 blood microparticle 5.36E-08 4.32E-08
CC GO:0005604 basement membrane 2.98E-07 2.40E-07
CC GO:0034774 secretory granule lumen 1.81E-06 1.46E-06
CC GO:0060205 cytoplasmic vesicle lumen 2.09E-06 1.68E-06
CC GO:0031983 vesicle lumen 2.17E-06 1.75E-06
CC GO:0031093 platelet alpha granule lumen 2.61E-05 2.11E-05
CC GO:0005796 Golgi lumen 2.85E-05 2.30E-05
CC GO:0005583 fibrillar collagen trimer 3.07E-05 2.47E-05
CC GO:0098643 banded collagen fibril 3.07E-05 2.47E-05
CC GO:0098644 complex of collagen trimers 3.07E-05 2.47E-05
CC GO:0031091 platelet alpha granule 4.79E-05 3.86E-05
CC GO:0032432 actin filament bundle 5.29E-05 4.26E-05
MF GO:0005201 extracellular matrix structural constituent 3.31E-29 2.82E-29
MF GO:0019838 growth factor binding 6.23E-10 5.32E-10
MF GO:0005539 glycosaminoglycan binding 7.45E-09 6.36E-09
MF GO:0008201 heparin binding 1.86E-08 1.58E-08
MF GO:0030020 extracellular matrix structural constituent conferring tensile strength 8.94E-08 7.62E-08
MF GO:1901681 sulfur compound binding 1.30E-07 1.10E-07
MF GO:0005178 integrin binding 3.55E-07 3.03E-07
MF GO:0061134 Peptidase regulator activity 5.31E-06 4.53E-06
MF GO:0019955 cytokine binding 8.02E-06 6.84E-06
MF GO:0005518 collagen binding 1.09E-05 9.30E-06
MF GO:0030021 extracellular matrix structural constituent conferring compression resistance 1.41E-05 1.20E-05
MF GO:0050840 extracellular matrix binding 1.72E-05 1.46E-05
MF GO:0050839 cell adhesion molecule binding 2.60E-05 2.22E-05
MF GO:0043394 proteoglycan binding 3.28E-05 2.79E-05
MF GO:0001968 fibronectin binding 4.88E-05 4.17E-05
MF GO:0048407 platelet-derived growth factor binding 6.68E-05 5.70E-05
MF GO:0003823 antigen binding 7.62E-05 6.50E-05
MF GO:0008307 structural constituent of muscle 0.000181 0.000155
MF GO:0004857 enzyme inhibitor activity 0.000268 0.000228
MF GO:0030414 Peptidase inhibitor activity 0.000299 0.000255
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(Figure 7B, Figure 8B) were plotted. A correlation heat map was
plotted to visualize the correlation of composition by 22 immune
cell types (Figure 7C, Figure 8C), with red representing positive

correlations and blue representing negative correlations. The
differences in the composition by the 22 immune cell types
amounts were plotted in violin plots (Figure 7D, Figure 8D).

FIGURE 4 | KEGG enrichment analysis showing (A) cytokine-cytokine receptor interaction; (B) vascular smoothmuscle contraction; (C) focal adhesion; (D) protein
digestion and absorption; and (E) proteoglycans in cancer pathway diagram.
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The results showed significant differences between the groups in
the composition of various immune cells, including B cells, CD4+

T cells, and CD8+ T cells.

Construction of a Prognostic Risk Model of
Immune-Related Co-expressed Genes of
HSPB8
We examined whether HSPB8 expression affects the overall
survival of BLCA patients (Figure 9A). We first intersected

the genes co-expressed with HSPB8 and immune-related
genes (Figure 9B). Next, we combined clinical data from
the TCGA-BLCA dataset to construct a risk prediction model
for this set of immune-related genes (Figure 9C) and plotted
the risk curves (top), survival status (middle), and risk heat
map (bottom) (Figure 9D). To demonstrate the personalized
assessment of patient prognosis using risk scores combined
with clinicopathological features, we tested the immune-
related gene expression risk models in different tumors
from the TCGA database and the predictive power of risk

TABLE 3 | KEGG pathway enrichment analysis of DEGs between HSPB8 high expression and low expression groups.

ID Description p.adjust Qvalue Count

hsa04060 Cytokine-cytokine receptor interaction 0.045336 0.041118 15
hsa04270 Vascular smooth muscle contraction 0.000189 0.000171 14
hsa04510 Focal adhesion 0.009932 0.009008 14
hsa04974 Protein digestion and absorption 0.000111 0.000101 13
hsa05205 Proteoglycans in cancer 0.042693 0.038721 12
hsa04512 ECM-receptor interaction 0.009932 0.009008 9
hsa05150 Staphylococcus aureus infection 0.009932 0.009008 9
hsa05414 Dilated cardiomyopathy 0.009932 0.009008 9
hsa04610 Complement and coagulation cascades 0.018281 0.01658 8
hsa05410 Hypertrophic cardiomyopathy 0.023775 0.021563 8
hsa04061 Viral protein interaction with cytokine and cytokine receptor 0.042398 0.038453 8
hsa05146 Amoebiasis 0.042693 0.038721 8
hsa05219 Bladder cancer 0.009932 0.009008 6
hsa00590 Arachidonic acid metabolism 0.042693 0.038721 6

TABLE 4 | TCGA-BLCA data set HSPB8 high expression group and low expression group Top30 NES absolute value GSEA enrichment analysis results list.

ID Enrichment score NES p.adjust Qvalues

BIOCARTA_STEM_PATHWAY −0.9295 −2.5952 3.30E-09 1.25E-09
BIOCARTA_IL17_PATHWAY −0.9157 −2.5566 3.30E-09 1.25E-09
BIOCARTA_CLASSIC_PATHWAY −0.9850 −2.4411 3.30E-09 1.25E-09
BIOCARTA_LONGEVITY_PATHWAY −0.8684 −2.4246 3.30E-09 1.25E-09
BIOCARTA_IL3_PATHWAY −0.8655 −2.4164 3.30E-09 1.25E-09
BIOCARTA_ERYTH_PATHWAY −0.8596 −2.3998 3.30E-09 1.25E-09
REACTOME_ANCHORING_FIBRIL_FORMATION −0.8584 −2.3965 3.30E-09 1.25E-09
BIOCARTA_GRANULOCYTES_PATHWAY −0.8576 −2.3943 3.30E-09 1.25E-09
SA_MMP_CYTOKINE_CONNECTION −0.8574 −2.3937 3.30E-09 1.25E-09
BIOCARTA_NO2IL12_PATHWAY −0.8546 −2.3859 3.96E-09 1.50E-09
REACTOME_SEROTONIN_RECEPTORS −0.9333 −2.3830 3.30E-09 1.25E-09
REACTOME_ENDOSOMAL_VACUOLAR_PATHWAY −0.9206 −2.3566 3.77E-09 1.42E-09
PID_ALK2_PATHWAY −0.9189 −2.3523 4.17E-09 1.57E-09
REACTOME_WNT5A_DEPENDENT_INTERNALIZATION_OF_FZD4 −0.8415 −2.3494 7.93E-09 2.99E-09
BIOCARTA_ASBCELL_PATHWAY −0.9296 −2.3380 3.30E-09 1.25E-09
BIOCARTA_RELA_PATHWAY −0.8327 −2.3249 1.29E-08 4.87E-09
BIOCARTA_CD40_PATHWAY −0.8282 −2.3121 1.71E-08 6.45E-09
REACTOME_TYPE_I_HEMIDESMOSOME_ASSEMBLY −0.8964 −2.2947 3.51E-08 1.33E-08
BIOCARTA_FIBRINOLYSIS_PATHWAY −0.8964 −2.2889 5.58E-09 2.11E-09
BIOCARTA_AGPCR_PATHWAY −0.8914 −2.2818 5.16E-08 1.95E-08
BIOCARTA_D4GDI_PATHWAY −0.8920 −2.2777 6.62E-09 2.50E-09
REACTOME_REGULATION_OF_GLYCOLYSIS_BY_FRUCTOSE_2_6_BISPHOSPHATE_METABOLISM −0.8917 −2.2768 6.62E-09 2.50E-09
REACTOME_CREB1_PHOSPHORYLATION_THROUGH_THE_ACTIVATION_OF_ADENYLATE_CYCLASE −0.8905 −2.2737 7.02E-09 2.65E-09
PID_ARF6_DOWNSTREAM_PATHWAY −0.8128 −2.2693 6.79E-08 2.57E-08
BIOCARTA_BLYMPHOCYTE_PATHWAY −0.8867 −2.2642 8.53E-09 3.22E-09
BIOCARTA_CTL_PATHWAY −0.8920 −2.2437 3.30E-09 1.25E-09
BIOCARTA_IL5_PATHWAY −0.8751 −2.2401 1.84E-07 6.94E-08
BIOCARTA_MONOCYTE_PATHWAY −0.8741 −2.2376 1.98E-07 7.49E-08
BIOCARTA_P53_PATHWAY −0.8569 −2.2245 3.30E-09 1.25E-09
BIOCARTA_EPONFKB_PATHWAY −0.8684 −2.2229 2.59E-07 9.77E-08
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scores to determine patients’ prognosis with different
patients tumors. Then, the predictive ability of risk scores
combined with clinicopathological features to project BLCA
patient prognosis was analyzed using univariate and
multifactorial Cox analysis (Figures 9E,F; Table 5).

Decreased Expression of HSPB8 Predicts a
Poor Prognosis in Patients With BLCA
To further explore the impact of the risk model gene set on the
BLCA patient survival and prognosis, we analyzed the OS
between high and low-risk groups using it as a risk factor in
the clinical survival data from the TCGA database (Figure 10A).
The survROC package was used to predict whether the clinical
variables included in the analysis accurately predicted BLCA
patient survival and prognosis based on the AUC value of the
prognostic risk score (AUC = 0.659). The results indicated that
the gene set had some accuracy for the OS prognosis of BLCA. A
nomogram for clinical prediction was also constructed
(Figure 10C). Correlation analysis of the clinical subgroup
variables was explored based on risk scores to demonstrate
differences between clinical subgroups (Figure 10D).

DISCUSSION

BC is among the most prevalent malignancies of the
genitourinary system and has been identified as the fourth and
10th leading cause of cancer-related deaths in males and females,
respectively (Ma et al., 2018). The pathogenesis of BC is complex
and involves several factors, including intrinsic genetic factors
and extrinsic environmental factors, such as smoking, chemical
pollution, genetic mutation, and single nucleotide
polymorphisms (Cai et al., 2019; Turner et al., 2019; Xu

Chenyang et al., 2020). With the rapid advancements in
molecular biology techniques, BC research and treatment
have been greatly improved. However, the long-term
prognosis of BC remains unsatisfactory, and the
pathogenesis associated with BC progression remains
elusive. Microarray and bioinformatics analyses have
significantly enhanced our understanding of disease
occurrence and the development of molecular mechanisms.
These analyses are necessary to explore genetic alternations
and identify potential diagnostic biomarkers. However, when
using single microarray datasets, high false-positive rates and
biased results have been observed. Therefore, novel, highly
specific, sensitive, and effective biomarkers are urgently
required for BC diagnosis and treatment. This study
explored the gene expression profile and BC pathogenesis
using high-throughput transcriptome data obtained from
TCGA and GEO datasets. We show that the expression of
HSPB8, which is involved in the regulation of cell
proliferation, apoptosis, and carcinogenesis, is related to
BC progression and prognosis. We comprehensively
analyzed HSPB8 expression its clinical relevance and
explored its potential diagnostic and prognostic value in BC.

Analysis of hub genes using the MCODE plug-in identified
CCL21 as a gene related to HSPB8 expression in BC. Recent
studies have shown that chemokines such as IL-8 can enhance
chemoresistance and cancer stem cell-like properties (Lu et al.,
2016). The atypical ACKR4, which is expressed in epithelial cells
of the bladder, is a high-affinity receptor for CCL21. Further,
CCL21 perfusion in the rat bladder increases bladder excitability
and increases c-fos activity in spinal cord neurons (Offiah et al.,
2016). CXCL14 (also known as BRAK) is involved in
tumorigenesis. Pancreatic and prostate cancers show increased
CXCL14 expression, while other cancer types, including cancers
of breast, kidneys, and cervix, show downregulated CXCL14
expression (Nagarsheth et al., 2017). Furthermore, CXCL14

TABLE 5 | Univariate and multifactorial Cox regression analysis.

Characteristics Total(N) Univariate analysis Multivariate analysis

HR (95% CI) p Value HR (95% CI) p Value

T 379
T1 & T2 124
T3 & T4 256 2.199 (1.515–3.193) < 0.001 3.064 (0.904–10.391) 0.072
N 369
N0 239
N1 & N2 & N3 131 2.289 (1.678–3.122) < 0.001 2.005 (1.157–3.472) 0.013
M 213
M0 202
M1 11 3.136 (1.503–6.544) 0.002 1.204 (0.461–3.145) 0.705
Stage 411
Stage I & Stage II 134
Stage III & Stage IV 278 2.310 (1.596–3.342) < 0.001 0.567 (0.152–2.123) 0.4
Gender 413
Female 109
Male 305 0.849 (0.616–1.169) 0.316
Age 413
≤70 234
>70 180 1.421 (1.063–1.901) 0.018 1.197 (0.748–1.915) 0.453
HSPB8 413 1.082 (1.006–1.163) 0.033 1.049 (0.930–1.184) 0.438
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FIGURE 5 |Molecular interaction networks. (A) Protein-protein interaction network analysis was performed on DEGs between the high and low HSPB8 expression
groups using the STRING database. Cytoscape was used for visualization. (B–E) The MCODE plug-in was used to analyze hub genes, which include the four groups
with the largest number of clusters; (F) The most closely linked hub genes were used as target genes, and the miRNAs that interact with the target genes were predicted
by the TarBase, miRecords, and miRTarBase databases to construct a molecular interaction network.
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FIGURE 6 | Gene set enrichment analysis (GSEA). (A) Bubble chart showing the GO terms enriched between the high and low HSPB8 expression groups in the
TCGA-BLCA dataset; (B) Enrichment plots of the GO terms between the high and low HSPB8 expression groups in the TCGA-BLCA dataset; (C) Bubble chart of the
enriched KEGG terms between the high and low HSPB8 expression groups in the TCGA-BLCA data set; (D) Enrichment plot of the KEGG terms between the high and
low HSPB8 expression groups in the TCGA-BLCA dataset; (E) Bubble chart of the enriched GSEA entries between the high and low HSPB8 expression groups in
the TCGA-BLCA dataset; (F) Chordogram of GSEA term enrichment between the high and low HSPB8 expression groups in the TCGA-BLCA dataset.
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expression is inhibited by DNA methylation in lung cancer cells,
resulting in reduced tumor growth.

GO enrichment analysis of genes co-expressed with HSPB8
were enriched in humoral immune response, complement
activation, positive regulation of leukocyte migration, growth
factor binding, peptidase regulatory activity, cytokine binding,
proteoglycan binding, and peptidase inhibitor activity pathways.
Complement system activation is tightly regulated by a network
of proteins known as the complement activation regulator,
limiting host complement activation and thus preventing self-
injury (Amet et al., 2012). Excessive complement activation in the
tumor microenvironment is associated with inflammation and
tumor growth (Reis et al., 2019). Non-covalent interaction of

proteoglycans with HyA (an important non-proteoglycan) occurs
via hyaluronan binding motifs (Shih and Varghese, 2019). Tumor
cells express different membrane proteins such as endothelial
growth factor receptor (EGFR) and cell surface proteoglycans,
making it possible for molecules to bind specifically to these
proteins (Y. F. Xiao et al., 2015). KEGG enrichment analysis
showed gene enrichment in cytokine-cytokine receptor
interactions, vascular smooth muscle contraction, adhesion,
protein digestion and absorption, cancer smooth muscle
contraction, and proteoglycan pathway in cancer. Cytokine-
cytokine receptor activation leads to key immune signaling
pathways that regulate cancer development and progression
(X. Chen et al., 2020). Furthermore, apart from differentially

FIGURE 7 | The relationship between HSPB8 expression and immune cell composition in the TCGA-BLCA data set. (A) Immune cell composition in the high and
low HSPB8 expression groups. The proportion of composition by 22 immune cell types in tumor samples is shown in the stacked histogram; (B) The relationship
between immune cell composition and HSPB8 expression; (C) The correlation of immune cell composition in the 22 samples. Red represents positive correlations, and
blue represents negative correlations; (D) Immune cell composition in the high and low HSPB8 expression groups, as analyzed using the CIBERSORT algorithm.
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expressed genes in BC, miRNA expression affects cell cycle
progression, epithelial-mesenchymal transition, cytokine-
cytokine receptor interactions, and downstream cancer
pathways, including phosphatidylinositol 3-kinase (PI3K)-Akt
signaling and mitogen-activated protein kinase signaling
pathways (Lee et al., 2018).

In the present study, GSEA was performed to investigate the
potential signaling pathways in BC with high HSPB8 expression.
Our results suggested that BC patients with high HSPB8
expression have increased gene expression related to the
response group signaling pathway, NF-κB pathway,
lymphocyte pathway, CD40 pathway, IL17, IL3, IL5, P53,
ERK5, NO2IL12, ALK2 pathway, and cytokine linkage
pathway in cancer. Recent studies have shown that

inflammatory signaling pathways are involved in
carcinogenesis via activation of NF-κB signaling (Sun et al.,
2019), which may act as a downstream pathway regulating BC
proliferation and progression (Xu Jing et al., 2020). Immune
response pathways are involved in inflammatory bowel disease,
leukocyte transendothelial migration, complement system,
coagulation cascade, chemokine signaling pathways, toll-like
receptor signaling pathways, B-cell receptor signaling pathway,
systemic lupus erythematosus, platelet activation, and IL-17
signaling pathway (Du et al., 2019).

The tumor microenvironment affects the occurrence and
recurrence of tumors and plays an important role in tumor
immunotherapy outcomes. Tumor-infiltrating immune cells
are an indispensable component of the tumor

FIGURE 8 | The relationship between HSPB8 expression and immune cell composition in the GSE130598 data set. (A) Immune cell composition in the high and
low HSPB8 expression groups. The proportion of composition by 22 immune cell types in tumor samples is shown in the stacked histogram; (B) The relationship
between immune cell composition and HSPB8 expression; (C) The correlation of immune cell composition in the 22 samples. Red represents positive correlations, and
blue represents negative correlations; (D) Immune cell composition in the high and low HSPB8 expression groups, as analyzed using the CIBERSORT algorithm.
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FIGURE 9 | Construction of a prognostic risk model of immune-related genes co-expressed with HSPB8. (A) HSPB8 expression affects the overall survival of BC
patients; (B) The intersection of HSPB8 co-expressed genes with immune-related genes; (C) Combination of TCGA-BLCA clinical data, HSPB8 expression, and co-
expressed immune-related genes were used to construct the risk prediction model; (D) The risk curve of HSPB8 co-expressed, immune-related gene risk model (top),
survival status (middle), and risk heatmap (bottom); (E) Forest plot showing univariate Cox regression analysis of the predictive power of risk scores combined with
clinicopathological characteristics of patients for BC prognosis; (F) Forest diagram showingmultivariate Cox analysis of the predictive ability of risk scores combined with
clinicopathological characteristics of patients for BC prognosis.
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microenvironment, and their composition and distribution are
related to cancer prognosis (B. Li et al., 2016). Previous studies
have reported that the location, type, and density of inflammatory
infiltrating cells in colorectal cancer are better predictors of
survival than clinical and histopathological factors (Galon
et al., 2006). Given the critical role of the tumor
microenvironment in cancer progression, and because tumor-
infiltrating immune cells are an integral part of the tumor
microenvironment, we investigated the relationship between
HSPB8 expression status and immune infiltration in BC. Our
results showed significant differences between groups for various
immune cells such as B cells, CD4+ T cells, and CD8+ T cells.
Huang et al. (Y. Huang et al., 2015)observed that CD8+ T cells are

key factors influencing tumor immunotherapy. Their role
depends on the composition of the accompanying
inflammatory cells, including macrophages, B cells, and
CD4 TILs.

Similarly, Matsumoto et al. (Matsumoto et al., 2016) found
that increased CD4+ and CD8+ T cell infiltration is associated
with better clinical outcomes in triple-negative breast cancer.
In BC, CD8+ T cells and memory-activated CD4+ T cells
showed increased infiltration and abundance in a high-TMB
group that correlated with prolonged OS and a lower risk of
recurrence (Zhang et al., 2020). Therefore, we inferred that
HSPB8 impacts the immune microenvironment of BC
participates in the regulation of BC tumor immunity can

FIGURE 10 | Decreased expression of HSPB8 predicts a poor prognosis in patients with BLCA. (A)Overall survival between the high and low-risk groups from the
TCGA-BLCA database; (B) The BLCA prognostic value of each clinical variable and its accuracy ROC curve; (C) Construction of a clinical prediction nomogram; (D)
Correlation analysis of clinical subgroup variables based on the risk score and the differences between the clinical subgroups shown as a heatmap.
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be used as a prognostic indicator for BC and can reflect the
immune status of patients.

Despite performing a thorough computational analysis, the
present study has several limitations. First, the data were obtained
from public databases, so the quality of the raw data cannot be
appraised. Second, the sample size was relatively small, and the
study failed to cover patients from different ethnicities and
regions. In addition, the retrospective design may have caused
inevitable inherent bias. Therefore, further studies with larger
sample size and a prospective design are warranted to increase the
statistical power and achieve more meaningful outcomes
applicable to wider populations. Finally, although microarray-
based bioinformatic analysis is a powerful tool to understand the
molecular mechanisms and identify potential biomarkers, further
experimental evidence is required to fully elucidate the
underlying mechanisms related to HSPB8 expression in BC.

CONCLUSION

In summary, the current study suggests that HSPB8 may be a
promising diagnostic and prognostic molecular marker for BC.
However, extensive prospective studies are required to verify the
clinical application of HSPB8 in the personalized management of
BC. Thus, further experimental validation should be performed to
validate the biological role of HSPB8 in BC.
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