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Abstract. The ability of protein 4.1 to stimulate the 
binding of spectrin to F-actin has been compared by 
cosedimentation analysis for three avian (erythrocyte, 
brain, and brush border) and two mammalian (eryth- 
rocyte and brain) spectrin isoforms. Human erythroid 
protein 4.1 stimulated actin binding of all spectrins ex- 
cept the brush border isoform (TW 260/240). These 
results suggested that the beta subunit determined the 
protein 4.1 sensitivity of the heterodimer, since all 
avian alpha subunits are encoded by a single gene. 
Tissue-specific posttranslational modification of the al- 
pha subunit was excluded by examining the properties 
of hybrid spectrins composed of the purified alpha 
subunit from avian erythrocyte or brush border spec- 
trin and the beta subunit of human erythrocyte spec- 
trin. A hybrid composed of avian brush border alpha 

and human erythroid beta spectrin ran on nondenatur- 
ing gels as a discrete band, migrating near human 
erythroid spectrin tetramers. The actin-binding activity 
of this hybrid was stimulated by protein 4.1, while ei- 
ther chain alone was devoid of activity. Therefore, al- 
though both subunits were required for actin binding, 
the sensitivity of the spectrin-actin interaction to pro- 
tein 4.1 is a property uniquely bestowed on the hetero- 
dimer by the beta subunit. The singular insensitivity 
of brush border spectrin to stimulation by erythroid 
protein 4.1 was also consistent with the absence of 
proteins in avian intestinal epithelial cells which were 
immunoreactive with polyclonal antisera sensitive to 
all of the known avian and human erythroid 4.1 
isoforms. 

I 
N the erythrocyte, protein 4.1 promotes spectrin-actin 
interactions and provides a secondary membrane anchor 
for the cytoskeleton (Goodman and Zagon, 1984; Ben- 

nett, 1985; Lazarides and Nelson, 1985). Proteins immu- 
noreactive with 4.1 have been identified in a diverse range 
of tissues, including fibroblasts and endothelial cells where 
they appear to be in association with membranes and actin 
filaments (Cohen et al., 1982; Goodman et al., 1984; Spiegel 
et al., 1984). One such immunoreactive analog in brain is 
synapsin I (Baines and Bennett, 1985), a multiphosphory- 
lated protein associated with synaptic vesicles (Navone et al., 
1984). Multiple 4.1 isoforms also exist in embryonic tissue, 
as demonstrated by the unique 4.1s that appear in a sequen- 
tial, developmentally regulated fashion in chicken erythroid 
cells (Granger and Lazarides, 1985). 

Corresponding to the protein 4.1 variability is a similar 
diversity of spectrin isoforms (Goodman and Zagon, 1984; 
Bennett, 1985; Lazarides and Nelson, 1985). In avians, at 
least three spectrin isoforms exist: a 240/220-kD or 240/230- 
kD heterodimer found in erythrocytes, brain, and skeletal 
muscle; a 240/235-kD heterodimer present in brain and most 
other tissues; and a 240/260-kD found exclusively in intesti- 
nal brush borders (Lazarides and Nelson, 1983; Nelson and 
Lazarides, 1983; Glenney and Glenney, 1983a; Lazarides 
and Nelson, 1985). All of these spectrins share a common 
alpha (240 kD) subunit (Glenney et al., 1982c) encoded by 
a single gene (Curtis et al., 1985; Birkenmeier et al., 1985). 

In mammalian tissue, the relationship of the spectrin iso- 
forms to each other is more complex, as both subunits of the 
different isoforms vary. Mammalian spectrins are composed 
of at least five immunologically distinct subunits: two (240 
kD) alphas and three (235, 235E, 220 kD) betas. The pre- 
dominant form in brain is a 240/235-kD heterodimer, al- 
though a different isoform (240/235E) is also present which 
is immunologically more similar to mammalian erythroid 
spectrin (240/220 kD; Riederer et al., 1986). Multiple iso- 
forms also exist in mammalian skeletal muscle, including a 
240/235-kD form, a 240/235E form (potentially identical to 
the brain 240/235E), and a 240/220-kD variant which may 
be very similar to mammalian erythroid spectrin (Shile et 
al., 1985; Riederer et al., 1986; Bloch and Morrow, manu- 
script submitted for publication). Despite their diversity, a 
common property of all spectrins is their ability to bind 
F-actin, an interaction often simulated by protein 4.1 (Good- 
man and Zagon, 1984; Bennett, 1985; Lazarides and Nelson, 
1985). 

The molecular nature of the spectrin/protein 4.1/actin ter- 
nary complex remains enigmatic. Ultrastructural studies have 
detected actin and protein 4.1 binding to the end of the spec- 
trin molecule opposite the oligomerization site (Tyler et 
al., 1980). In vitro, individual spectrin subunits bind protein 
4.1 with low affinity, but the intact heterodimer is required 
for actin binding (Cohen and Langley, 1984). An 8-kD frag- 
ment of protein 4.1 has been identified which promotes spec- 
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trin-actin interactions with an activity and stoichiometry 
comparable to that of the entire molecule (Correas et al., 
1986). Whether direct associations between protein 4.1 and 
actin occur and to which spectrin subunit(s) protein 4.1 binds 
remains unclear. 

One approach to identify the spectrin subunit most criti- 
cal for 4.1 regulation is to compare the effects of subunit re- 
placement within the heterodimer on its ability to undergo 
4.1-enhanced actin binding. By selecting spectrins which 
share a common alpha subunit, such as those found in the 
chicken, we made use of a spectrin family in which "subunit 
replacement" naturally occurred. Erythrocyte and brain 
spectrins from chicken and human tissue co-sedimented with 
actin in a 4.1-dependent manner, whereas chicken intestinal 
brush border spectrin (TW 260/240) did not. Furthermore, 
a chicken brush border alpha/human erythroid beta hybrid 
spectrin demonstrated both potent protein 4.1-dependent ac- 
tin binding and ran as discrete bands on nondenaturing gels 
with migration rates similar to erythroid spectrin tetramer 
and hexamer. Thus using both avian and hybrid spectrins we 
have demonstrated that the beta spectrin subunit determined 
the ability of the heterodimer to interact with protein 4.1. 
Consistent with the lack of protein 4.1 sensitivity in brush 
border spectrin, no immunoreactive 4.1 analogs were de- 
tected in avian intestinal epithelial cells. 

Materials and Methods 

Isolation of Chicken Brush Borders and TW 260/240 
Brush borders were isolated from chicken small intestines according to the 
method of Keller and Mooseker (1982). Leupeptin (2.5 I~g/ml), chymostatin 
(0.5 gg/ml), pepstatin (0.5 Ixg/ml), soybean trypsin inhibitor (30 Ixg/mi), di- 
isopropylfluorophosphate (1.5 mM), aprotinln (80-120 trypsin inhibitor 
units [TIU]l/liter) and phenylmethylsulfonyl fluoride (PMSF) (0.2 mM) 
were used to control proteolysis during the initial homogenization steps. 

TW 260/240 was purified by a modification of the methods of Glenney 
et al. (1982a) as described by Pearl et al. (1984). Fractions enriched in TW 
260/240 (containing primarily TW 260/240 with small amounts of brush 
border myosin) from the gel filtration column were concentrated by dialysis 
against 20 mM Tris, pH 8.0, 2 mM MgC12, 0.2 mM EGTA, 1 mM dithio- 
threitol (DTT), 0.02 % NAN3, and 20 TIU aprotinin per liter containing 
ammonium sulfate to 65% saturation. The precipitated protein was dis- 
solved in a minimal volume of 150 mM KCI, 10 mM Tris, pH 7.5, 1 mM 
DTT, with 0.2 mM PMSF and 20 TIU aprotinin per liter, and dialyzed 
against the same buffer. Precipitated brush border myosin was removed by 
centrifugation (12,000 g, 15 rain) leaving purified TW 260/240 at '~1 mg/ml. 

Purification of Chicken Erythrocyte Spectrin 
Chicken erythrocytes were harvested according to established procedures 
(Granger and Lazarides, 1984). All steps were performed at 4°C and moni- 
tored by phase-contrast light microscopy. Blood was collected and pro- 
cessed according to the methods of Howe et al. (1985). Lysis was accom- 
plished by repeated (7-8 times) resuspension and centrifugation in 30-40 
vol of buffer containing 5 mM MgC12, 5 mM NAN3, 1 mM EGTA, 1 mM 
DTT, 5 mM Tris, pH 7.5, with 0.2 mM PMSF and 20 TIU aprotinin per 
liter. The lysed cells were enucleated by homogenization in either a tight- 
fitting dounce homogenizer or an Omni mixer (model 17105, Dupont Instru- 
ments, Newtown, CT). Rehomogenization of the intact cell layer remaining 
after centrifugation was repeated 4-5 times. Avian red cell ghosts were 
stored overnight on ice in lysis buffer. Before spectrin extraction, the mem- 
branes were washed twice in 2 mM EDTA, 10 mM Tris, pH 7.4, to remove 
any residual Mg 2+. Spectrin was extracted according to the methods of 

1. Abbreviations used in this paper: Rf, relative mobility. TIU, trypsin in- 
hibitor unit. 

Howe et al. (1985). The extracted protein was freed from actin and other 
contaminants by gel filtration and concentrated by ammonium sulfate dialy- 
sis exactly as described for TW 260/240. 

Preparation of Human Erythrocyte Spectrin 
and Protein 4.1 
Hemoglobin-free human erythrocyte ghosts were prepared according to es- 
tablished procedures (Morrow et al., 1980; Bennett, 1983). Spectrin was 
extracted at 4°C for 36 h in 0.1 mM EDTA, 0.05 mM sodium phosphate, 
pH 9.0, and purified by gel filtration on Sepharose CL-4B (Pharmacia Fine 
Chemicals, Piscataway, NJ) in 130 mM KC1, 20 mM NaCI, 0.1 mM EDTA, 
0.5 mM 2-mercaptoethanol, 0.05 mM PMSF, pH 7.4. Protein 4.1 was ex- 
tracted and purified from human red cell ghosts according to the methods 
of Tyler et al. (1979, 1980). 

Isolation of Fodrin, Calmodulin, and Actin 
Human fodrin was prepared from cadaver brains removed at autopsy 2-4 h 
postmortem with permission of the family. The brain tissue was cleaned of 
extraneous membranes and blood vessels and the cerebral cortex diced and 
quick-frozen in 2-methylbutane cooled in liquid nitrogen and stored until 
use. Brain spectrin was extracted by either low salt or high salt procedures, 
and purified by gel filtration and ion exchange chromatography (Glenney et 
al., 1982b; Davis and Bennett, 1984; Harris et al., 1985). Calmodnlin was 
prepared from bovine testes and purified by ion exchange and gel filtration 
chromatography (Burgess et al., 1980). Chicken breast muscle actin was 
prepared from acetone powders according to the methods of Spudich and 
Watt (1971). Protein concentrations were determined either by the method 

1%. of Lowry et al. (1951) or by using the following values for A280. TW 260/ 
240, 12.0 cm-l; G-actin, 10.9 cm -1. 

Spectrin Subunit Separation and Reconstruction 
Human erythrocyte beta chain was purified by the method of Yoshini and 
Marchesi (1984). The subunits of TW 260/240 were separated by the 
method of Glenney and Weber (1985). This procedure made use of the fact 
that the avian alpha (240 kD) subnnit binds calmodnlin in a Ca++-depen- 
dent manner (Glenney et al., 1982a). Purified TW 260/240 was dialyzed 
against 2 M KI, 10 mM Tris, pH 7.5, 2 mM DTT, 1 mM CaCI2, and 0.02% 
NaN3 with 0.2 mM PMSF and 20 TIU aprotinin per liter. After dialysis, 
the solution was sonicated (Cell Disruptor 200; Branson Sonic Power Co., 
Danbury, CT) and incubated 1 h at room temperature. TW 260/240 was 
loaded onto a 1.5-ml calmodulin affinity column (10 nag calmodulin/ml set- 
tied gel; CNBr-activated Sepharose 4B, Pharmacia Fine Chemicals). After 
washing with ,~15 column volumes, the 240-kD alpha-subunlt was eluted 
using the same buffer in which 5 mM EGTA was substituted for 1 mM 
CaCI2. 

Spectrin subunit reconstitution was accomplished by combining the 
chains of interest and dialyzing out of KI into 65 % glycerol, 20 mM Tris, 
pH 7.5, 20 mM 2-mercaptoethanol. Reconstituted spectrin was dialyzed out 
of glycerol into binding buffer (see below). This glycerol dialysis step 
minimized aggregation, especially of the beta-subunit. 

Cosedimentation Assay 
Unless otherwise indicated, cosedimentation studies were conducted in 
binding buffer containing 150 mM KCI, 10 mM imidazole, pH 7.5, 2 mM 
MgCI2, 0.2 mM DTT, with 0.2 mM PMSF and 20 TIU aprotinln per liter. 
G-actin was added to spectrin- and/or protein 4.1-containing solutions and 
allowed to polymerize 45 min at room temperature. The samples (200-250 
~tl) were gently sheared by pipetting several times during the incubation 
period. Care was taken to maintain the same order of addition and compar- 
able mixing for all assays. Cosedimentation was performed at 100,000 g for 
1 h at 15°C. Superuates were removed and the pellets resuspended in an 
identical volume. Both supernate and pellet fractions were analyzed by 
PAGE in the presence of SDS (Laemmli, 1970). Gels were stained with 
Coomassie Brilliant Blue R by the method of Fairbanks et al. (1971). Stained 
gels were scanned with a model 1650 Scanning Densitometer (BioRad 
Laboratories, Richmond, CA). The areas under the peaks were measured 
using an electronic planimeter (model 1224 Electronic Digitizer; Numonics 
Corp., Lansdale, PA). Using this staining technique, known spectrin stan- 
dards bound Coomassie Blue in a linear manner over a 12.5-500 I~g/ml 
range (these experiments were performed at 200 gg/ml total spectrin). For 
each condition, the percent spectrin pelleted was determined by dividing the 
area of the spectrin in the pellet by the total spectrin area (supernate plus 
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Figure 1. Protein 4.1 stimu- 
lated the cosedimentation of 
all spectrins with actin except 
the brush border isoform. 
Chicken spectrin isoforms 
from erythrocyte (a), brain 
(b), and brush border (c) were 
examined. Controls included 
human erythrocyte (d), hu- 
man brain (e), and no added 
spectrin (f).  Pellet (P, or left 
side of unmarked lanes) and 
supernate (S, or right side 
of unmarked lanes) fractions 
after 100,000 g spin were 
analyzed on 5-15% SDS 
polyacrylamide gels. Sedimen- 
tation was performed with 
spectrin alone (groups 1), plus 
protein 4.1 (groups 2), plus 
actin (groups 3), and plus pro- 
tein 4.1 and actin (groups 4). 
The relative mobilities (Rf's) 
of the chicken and human al- 
pha spectrin subunits (240), 
and the beta subunits of chick- 
en and human erythrocyte 
(220), brain (235), and brush 
border (260) spectrins along 
with band 4.1 (4.1) and actin 
(A) are indicated. When puri- 
fied in the presence of many 
protease inhibitors TW 260 
was resolved into several sub- 
bands (Fig. 1 c; Pearl et al., 
1984; Howe et al., 1985). The 
minor components, between 
240,000 and 150,000 Mr (150) 
represent spectrin proteolytic 
fragments frequently ob- 

served in these preparations. Protein 4.1 enhanced the cosedimentation of all spectrins with actin except TW 260/240 (Fig. 1 c, lanes 4). 
Before starting the assays spectrins were prespun at 100,000 g for 1 h. Final protein concentrations were as follows: spectrins, 0.2 mg/ml 
(except 0.1 mg/ml for chicken fodrin, Fig. 1 b); protein 4.1, 0.09 mg/ml; and actin 0.25 mg/ml. 

pellet) and multiplying by 100. Nondenaturing PAGE was performed in un- 
stabilized 2--4% polyacrylamide gels at 4°C as described by Morrow and 
Haigh (1983). 

Immunoblotting 

Polypeptides were transferred (TE Series Transphor Electrophoresis Unit; 
Hoefer Scientific Instruments, San Francisco, CA) from SDS polyacryl- 
amide 5-16% minigels (Matsudaira and Burgess, 1979) to 0.2-~tm pore 
nitrocellulose paper (Schleicher and Schuell, Inc., Keene, NH) in 25 mM 
Tris, pH 7.0, 192 mM glycine, 0.1% SDS, 20% methanol at 40 V, stained 
for total protein with 0.2% ponceau S in 3% TCA, destained with dHzO, 
marked, and trimmed. Incubations were performed with gentle shaking. 
Nonspecific protein binding was blocked with Tris-buffered saline (TBS)/ 
BLOTTO (Johnson et al., 1984; 50 mM Tris, pH 8.0, 150 mM NaCI, 5% 
nonfat dry milk, Carnation Co., Los Angeles, CA) at 37°C for 1 h. Sheets 
were then incubated overnight with rabbit sera (anti-avian protein 4.1, 
Granger and Lazarides, 1984; anti-human brain spectrin alpha chain, 
Harris et al., 1985; or anti-human protein 4.1, Croall et al., 1986; 1:500 
dilution in TBS/BLOTTO) at room temperature and treated sequentially 
with TBS, peroxidase-conjugated goat anti-rabbit immunoglobulin (Cooper- 
Biomedical Inc., Malvern, PA; 1:1,000 dilution in TBS/BLOTTO), TBS, 
and TBS made 0.01% in Tween 20. Blots were developed with 0.05% 3,3' 
diaminobenzidine, 0.01% H~O2 in PBS (10 mM Na phosphate, pH 7.2, 
150 mM NaCI). 

Results 

Protein 4.1 Does Not Stimulate Actin Binding 
of  Chicken Brush Border Spectrin (TW260/240) 

Using avian spectrins, with their common alpha subunit as 
an internal control, we investigated the spectrin/protein 4.1/ 
actin ternary complex (Fig. 1). Control experiments demon- 
strated small and variable sedimentation of the pure spectrin 
isoforms alone (0-25 %; Fig. 1, groups 1). This aggregation 
occurred despite clarifying (100,000 g, 1 h) the spectrin im- 
mediately before the assay. Aggregation was most pro- 
nounced for the avian spectrins and may be attributed to the 
greater tendency of these proteins to self associate (Pearl et 
al., 1984; Howe et al., 1985). The addition of protein 4.1 had 
variable effects on spectrin sedimentation, causing a slight 
decrease for that of the fodrins and an increase for the brush 
border and erythroid isoforms (Fig. 1, groups 2). The addi- 
tion of actin increased the sedimentation (17-58%; Fig. 1, 
groups 3) of all spectrins over that seen in its absence. The 
addition of both protein 4.1 and actin dramatically increased 
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Figure 2. (Top) Quantitation of the gels presented in Fig. 1. Histo- 
grams are plotted as percent spectrin pelleted as determined by den- 
sitometric scanning of the spectrin bands (for details see Materials 
and Methods). The different spectrins (a-e) are as indicated in Fig. 
1. Protein 4.1 enhanced the spectrin-actin interaction for all spec- 
trins except the brush border isoform (group c). (Bottom) Protein 
4.1 weakly inhibited the TW 260/240-actin interaction at pH 6.9. 
Concentration of TW 260/240 was 0.2 mg/ml; buffer conditions 
were as indicated in Materials and Methods, but at pH 6.9 to max- 
imize the TW 260/240-actin interaction (Pearl et al., 1984; Fish- 
kind et al., 1985). The percent TW 260/240 pelleted in the presence 
of the various protein 4.1 concentrations (0-17-fold molar excess, 
relative to TW 260/240; based on a dimer 500,000 Mr) was deter- 
mined exactly as in the top panel. The plotted data has been cor- 
rected for nonspecific TW 260/240 pelleting. 

the sedimentation (80-100%; Fig. 1, groups 4) of all spec- 
trins except the brush border isoform (TW 260/240). Con- 
trol experiments done in the absence of added spectrin 
demonstrated a weak direct interaction between protein 4.1 
and F-actin (Fig. 1 f ) .  

Quantitation of this 4.1-dependent spectrin-actin sedi- 
mentation is presented in Fig. 2 (top). Clearly, protein 4.1 
enhanced this spectrin-actin interaction for all spectrins ex- 
cept the brush border isoform (Fig. 2 (top, group c). In fact, 
in many TW 260/240 cosedimentation assays, protein 4.1 
slightly inhibited the TW 240/260-actin interaction over that 
in its absence (data not shown). Erythroid protein 4.1 stimu- 
lated brain and erythrocyte spectrins to bind actin to varying 
degrees: the spectrins of erythroid origin (Fig. 2, top, groups 

a and d) were maximally stimulated; both fodrins (Fig. 2, 
top, groups b and e) showed significant but lower activity, as 
noted previously (Burns et al., 1983; Lin et al., 1983). 

Additional cosedimentation experiments were performed 
using conditions known to favor the TW 260/240-actin inter- 
action (reduced ionic strength and lower pH; Pearl et al., 
1984; Fishkind et al., 1985). Reducing the KC1 concentration 
to 100 mM (pH 7.5) enhanced the amount of T W  260/240 
pelleted by actin, but also revealed a slight inhibitory effect 
of  protein 4.1 on the TW 260/240-actin binding (data not 
shown). Since lowering the ionic strength interferes with 
spectrin-protein 4.1 binding (Ohanian et al., 1984), we ex- 
amined the concentration dependence of protein 4.1 on TW 

Figure 3. (Top) Protein 4.1 enhanced the cosedimentation of hy- 
brid (chicken intestinal TW 260/240 alpha/human erythrocyte beta) 
spectrin-actin interactions. Sedimentation was performed with hy- 
brid spectrin alone (group 1 ), plus protein 4.1 (group 2), plus actin 
(group 3), and plus protein 4.1 and actin (group 4). Controls in- 
clude human erythrocyte beta subunit plus protein 4.1 and actin 
(group 5) and chicken intestinal TW 240 (alpha) subunit plus pro- 
tein 4.1 and actin (group 6). Pellet (P) and supernate (S) fractions 
after 100,000 g spin were analyzed on a 5-15 % SDS polyacrylamide 
gel. The Rf's of the chicken alpha (240) and human beta (220) 
spectrins along with protein 4.1 (4,1) and actin (A) are indicated. 
Final protein concentrations were as follows: chicken alpha and hu- 
man beta spectrin subunits, 0.03 mg/ml; protein 4.1, 0.04 mg/ml; 
actin, 0.25 mg/ml. (Bottom) Quantitation of the gel presented in the 
top panel. Hybrid (chicken intestinal alpha/human erythroid beta) 
spectrin (a) and controls (chicken intestinal alpha [b] and human 
erythroid beta [c]) are shown under the two conditions indicated 
(plus actin and plus protein 4.1 and actin). Protein 4.1 enhanced the 
cosedimentation of only viable alpha/beta complexes (a) and had 
little, if any, effect on the individual subunits (b and c). Histograms 
are plotted as percent spectrin pelleted as determined by densito- 
metric gel scanning (see Fig. 2 for details). 
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260/240-actin interaction at 150 mM KC1 and a somewhat 
lower pH (6.9), conditions which also favor the binding of 
TW 260/240 to actin (Pearl et al., 1984; Fishkind et al., 
1985). Under these conditions, protein 4.1 is maximally ac- 
tive (Ohanian et al., 1984). Increasing amounts of protein 
4.1, up to a 17-fold molar excess, weakly inhibited the inter- 
action between TW 260/240 and actin (Fig. 2, bottom). 

Human Beta Spectrin Hybridizes with Chicken Brush 
Border Alpha and Bestows the Ability To Undergo 
Protein 4.1-stimulated Actin Binding 

Although the avian alpha spectrins have identical iodopep- 
tide maps (Glenney and Glenney, 1984) regardless of tissue 
origin and are encoded by a single gene (Birkenmeier et al., 
1985; Curtis et al., 1985), it is conceivable that minor post- 
translational modifications might alter the sensitivity of the 
brush-border alpha (TW 240) subunit to protein 4.1. To ex- 
clude this possibility, we formed hybrid spectrin molecules. 
The avian beta subunits showed a remarkable propensity to 
self-associate (data not shown; in agreement with other 
work: Davis and Bennett, 1984b; Glenney and Weber, 1985), 
making sedimentation analysis of avian intestinal alpha/avian 

Figure 4. Analysis of spectrin subunits and avian intestinal alpha 
(TW 240)/human erythrocyte beta hybrid spectrin by nondenatur- 
ing gel electrophoresis. Lanes 1 and 2 show migration patterns of 
isolated subunits alone: chicken intestinal alpha (60 Ixg: * indicates 
diffuse band of that which entered the gel) and human erythroid beta 
(60 gg), respectively. Chicken brush border alpha/human erythroid 
beta hybrid spectrin (120 Ixg) ran as discrete bands (lane 3), migrat- 
ing near the native human erythrocyte tetramer and hexamer bands 
(lane 4). Native TW 260/240 migrated as several bands above hu- 
man erythrocyte tetramer and as an aggregate which failed to enter 
the gel (lane 5). The Rf's of the native human erythrocyte spectrin 
dimers (D) and tetramers (T) are indicated. 

erythroid beta hybrid spectrins difficult to interpret. Human 
erythroid beta, however, did not aggregate in the presence 
of sufficient sulfhydryl reductants, and despite species dif- 
ferences, complexed with avian intestinal alpha. Like the 
erythroid spectrin, this hybrid cosedimented with actin in a 
protein 4.1-dependent fashion (Fig. 3, top). Control experi- 
ments demonstrated minimal sedimentation of hybrid spec- 
trin alone (3-10 %; Fig. 3, top, group 1 ) or in the presence 
of either protein 4.1 (3-11%; Fig. 3, top, group 2) or actin 
(7-15 %; Fig. 3, top, group 3). The addition of both protein 
4.1 and actin dramatically increased the sedimentation 
(82-88 %, group 4) of hybrid spectrin. Control experiments 
using the isolated subunits themselves showed no significant 
sedimentation in the presence of both protein 4.1 and actin 
(6 and 12 %, groups 5 and 6, respectively). Nearly identical 
results to those presented in Fig. 3 were obtained using an 
avian erythroid alpha/human erythroid beta hybrid spectrin 
(data not shown), underscoring the similarities between 
avian alpha subunits. Quantitative analysis of the gels pre- 
sented in Fig. 3 confirmed that only the hybrid spectrin 
bound actin in a 4.1-dependent manner (Fig. 3, bottom); the 
individual subunits remained in the supernate under all con- 
ditions (Fig. 3, bottom, groups b and c). 

The fidelity of reassociation of the hybrid spectrin was ex- 
amined using nondenaturing PAGE (Fig. 4; Morrow and 
Haigh, 1983). In these gels, isolated spectrin subunits ran as 
diffuse bands. Most of the isolated chicken brush border al- 
pha (TW 240) remained as a very large aggregate at the top 
of the gel; that which entered the gel migrated just ahead of 
human erythroid spectrin tetramer (Fig. 4, lane 1 ). Isolated 
human erythroid beta ran just behind human erythroid spec- 
trin dimer (Fig. 4, lane 2; in agreement with earlier work, 
Yoshino and Marchesi, 1984). The chicken brush border al- 
pha/human erythroid beta hybrid spectrin ran as two sharply 
focused bands near the human erythroid spectrin tetramer 
and hexamer bands (Fig. 4, lane 3). Control lanes included 
human erythrocyte spectrin which migrated as discrete dimer, 
tetramer, and oligomer bands (Fig. 4, lane 4) and TW 260/ 
240 which migrated primarily as a diffuse band just above 
human erythroid spectrin hexamer, presumably representing 
tetrameric TW 260/240 and as a very large aggregate which 
failed to enter the gel (Fig. 4, lane 5). In addition, several 
less abundant bands were observed in the TW 260/240 prep- 
arations which presumably represent a dimeric form and 
proteolytic fragments (Howe et al., 1985). 

An Immunoreactive Avian Protein 4.1 Isoform 
Is Not Present in Chicken Intestinal Epithelial Cells 

The results presented above have demonstrated differences in 
the interactions of various chicken spectrins with human 
erythrocyte protein 4.1 and indicated that these interactions 
were mediated through the beta spectrin subunit. To examine 
the possibility that, unlike avian erythroid and brain spec- 
trins, TW 260/240 requires an avian protein 4.1 isoform to 
interact with actin, we searched for protein 4.1 isoforms in 
chicken intestinal cells by immunoanalysis (Fig. 5). We used 
a polyclonal antiserum (kindly provided by E. Lazarides) 
specific for the six avian protein 4.1 isoforms (for character- 
ization of this sera see Granger and Lazarides, 1984), all of 
which are derived from a single primary transcript (Ngai, J., 
R. T. Moon, and E. Lazarides, manuscript in preparation). 
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Figure 5. Immunoblot analysis showed no avian protein 4.1 is pres- 
ent in whole epithelial cells. Identical samples were run on identical 
SDS polyacrylamide gels; one was stained with Coomassie Blue (a) 
and the other two were electrophoretically transferred to nitrocellu- 
lose and probed with either an avian protein 4.1 polyclonal antibody 
and peroxidase-conjugated goat anti-rabbit immunoglobulin (b) 
or an anti-human brain alpha spectrin polyclonal antibody and 
peroxidase-conjugated goat anti-rabbit immunoglobulin (c). Lanes 
1-6 are serial dilutions of a one-tenth suspension of chicken red cell 
ghosts (lane 1 has 3.2 gg total protein); each lane is an order of mag- 
nitude less protein than the one preceeding it. Lanes 5-8 are a simi- 
lar serial dilution of whole intestinal epithelial cells (lane 5 has 40 
gg total protein). Protein 4.1 was detected in a 1:1,000 (lane 4) dilu- 
tion of avian ghosts (3.2 ng total protein), but was not present in 
intestinal epithelial tissue (lanes 5-8). The R;s of the major bands 
erythroid spectrin alpha (240) and beta (220), myosin (M), actin 
(A), and the six major protein 4.1 bands (175, 160, 150, 115, 100, 
87) are indicated. 

To standardize the amount of protein 4.1 one would expect 
to detect if it was present in a ratio to spectrin similar to that 
found in the red blood cell, we have also probed these blots 
with an anti-alpha spectrin antibody. Gels were deliberately 
overloaded with whole epithelial cell sample (Fig. 5, lanes 
5) and a serial dilution thereof (Fig. 5, lanes 6-8) to max- 
imize the chance of detecting immunoreactive protein 4.1 
isoforms. As a positive control, similar serial dilutions of 
chicken erythrocyte membranes were run and blotted in par- 
allel (Fig. 5, lanes 1-4). Even in the extremely overloaded 
lane, no immunoreactive protein 4.1 was detected in whole 
epithelial cells (Fig. 5 b, lane 5) where there is at least one 
half as much TW 240 (and its proteolytic fragments) as 
erythroid alpha spectrin (Fig. 5 c). Conversely, immuno- 
reactive protein 4.1 was detected in all dilutions of erythro- 
cyte membranes (Fig. 5 b, lanes 1-4). Similar studies using 
a mammalian erythrocyte protein 4.1 polyclonal antisera 
reactive with chicken protein 4.1 also showed no reactivity 
with intestinal epithelial cells. 

Discussion 

Spectrin, an extended molecule composed of two parallel 
chains, contains multiple linearly aligned structural domains 
(Morrow et al., 1980). This study focuses on those domains 
(presumably alpha-V and beta-IV) which contain the actin- 
and protein 4.1-binding site(s). Although both subunits 
weakly bind protein 4.1, only the intact heterodimer binds 
actin (Cohen and Langley, 1984). The results presented here 
clearly demonstrate that the beta subunit is the critical deter- 
minant of protein 4.1 specificity and sensitivity in this spec- 
trin-actin interaction. Protein 4.1 does not stimulate actin 
binding of brush border spectrin (Figs. 1 and 2) but does 
stimulate actin binding of brush border alpha/human eryth- 
roid beta hybrid spectrin (Fig. 3). Furthermore, protein 4.1 
only enhances the cosedimentation of viable alpha/beta hy- 
brid complexes and has no effect on the individual subunits. 

Several mechanisms may account for the ability of the beta 
subunit to alter the interaction of spectrin with protein 4.1 
and/or actin. The simplest mechanism would postulate that 
erythrocyte (220 kD) and brain (235 kD) beta spectrins con- 
tain a specific protein 4.1-binding site, which although of low 
affinity in the absence of actin, is nevertheless important for 
initiating the formation of the tertiary complex. Independent 
cross-linking experiments using radiolabeled protein 4.1 sup- 
port this hypothesis (Becker and Lux, 1984). Presumably, 
neither the brush border (TW 260) beta nor the alpha subunit 
from any spectrin contain such a regulatory protein 4.1 bind- 
ing site. An alternative mechanism would involve the alpha 
subunit more directly in the protein 4.1 interaction, but still 
require the participation of the beta subunit for its expres- 
sion, in a fashion analogous to the stimulation of spectrin 
oligomerization by ankyrin and band 3 (Morrow and Giorgi, 
manuscript submitted for publication). 

Although a distinction cannot at present be made between 
these mechanisms, it is clear that the beta subunit is the criti- 
cal subunit determining spectrin-protein 4.1 interactions. It 
is also clear that the ability of erythrocyte protein 4.1 to 
stimulate spectrin-actin binding varies quantitatively with 
the tissue of origin. For example, the strongest stimulation 
was observed in the erythroid spectrins; intermediate stimu- 
lation was detected for the brain spectrins, and no stimula- 
tion occurred for the brush border spectrin. This result is 
analogous to that seen with the interaction between the vari- 
ous beta spectrins and ankyrin. Although most spectrins 
bind ankyrin (Bennett et al., 1982; Burridge et al., 1982), 
the strength of the interaction varies widely depending on the 
tissue of origin of both the spectrin and the ankyrin (Davis 
and Bennett, 1984a; Howe et al., 1985; Harris et al., 1986), 
and in fact such binding is not detected in avian brush border 
spectrin. These results lend quantitative support to the notion 
that specific spectrin isoforms may be matched to unique iso- 
forms of protein 4.1 or ankyrin, and that it is through such 
matched interactions that distinct membrane skeletal do- 
mains are established (Glenney and Glenney, 1983a; Laza- 
rides and Nelson, 1985). 

Our search for chicken intestinal protein 4.1 isoforms 
(potentially specific TW 260/240-actin stimulators) revealed 
no immunoreactive analogs (Fig. 5). This result is in agree- 
ment with the lack of specific binding of this antibody on fro- 
zen sections of chicken small intestines (Granger and Laza- 
rides, 1984). While this finding is consistent with the 
insensitivity of TW 260/240 to stimulation by erythroid pro- 
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tein 4.1, it does not exclude the existence of other TW 
260/240-actin cofactors. For example, mammalian synapsin 
I has many structural properties in common with erythroid 
protein 4.1, including binding spectrin at potentially identi- 
cal sites (Baines and Bennett, 1985). In chicken, synapsin I 
has recently been purified from brain homogenates (Bixby 
and Reichardt, 1985). Chicken synapsin I does not cross- 
react with the anti-avian protein 4.1 antiserum (Lazarides, 
E., personal communication) and, consequently, it is a 
potential candidate for a TW 260/240-actin effector. 

It is also noteworthy that the avian alpha subunits can form 
active hybrid complexes with human erythroid beta subunits 
(Figs. 3 and 4). Most of the chicken alpha subunit (TW 240) 
failed to enter nondenaturing gels (Fig. 4, lane 1 ). In con- 
trast, the human erythrocyte beta subunit migrated as a sin- 
gle diffuse band near that of native erythrocyte spectrin 
dimers (Fig. 4, lane 2). When combined, the human beta 
spectrin induces a spontaneous disaggregation of chicken al- 
pha spectrin, causing it to not only enter the gel but also to 
form discrete bands aligned with those of human erythrocyte 
spectrin tetramers and hexamers (Fig. 4, lane 3). Such an 
interspecies, cross-tissue hybrid demonstrates a remarkable 
conservation of spectrin chain-chain binding sites. Newly 
synthesized avian alpha spectrin adopts one of two confor- 
mations, heterodimer or homo-oligomer (Woods and Laza- 
rides, 1986), suggesting that chain-chain interactions are im- 
portant even among identical subunits. Although it has been 
postulated that subunit-subunit associations may involve in- 
teractions along a hydrophobic face of the 106-residue spec- 
trin repetitive unit (Speicher and Marchesi, 1984; Woods and 
Lazarides, 1986), it seems likely that these interactions oc- 
cur at discrete sites (Morrow et al., 1980; Sears et al., 1986) 
since some, but not all, spectrin peptide fragments are com- 
petent for reassembly. Although other functions have yet to 
be identified specifically for the avian alpha subunit, one fac- 
tor acting to preserve its structure through evolution may be 
the requirement that it combine faithfully with several di- 
verse beta subunits. 
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