Ortho Effects of Tricarboxylate Linkers in Regulating Topologies of Rare-Earth Metal-Organic Frameworks

Fugang Li," Kun-Yu Wang," Zhengyang Liu, Zongsu Han, Dacheng Kuai, Weidong Fan,* Liang Feng, Yutong Wang, Xiaokang Wang, Yue Li, Zhentao Yang, Rongming Wang, Daofeng Sun,* and Hong-Cai Zhou*

Cite This: JACS Au 2023, 3, 1337-1347

Read Online

ACCESS \| Illl Metrics \& More	国 Article Recommendations	sil Supporting Information

Abstract

A linker design strategy is developed to attain novel polynuclear rare-earth (RE) metal-organic frameworks (MOFs) with unprecedented topologies. We uncover the critical role of ortho-functionalized tricarboxylate ligands in directing the construction of highly connected RE MOFs. The acidity and conformation of the tricarboxylate linkers were altered by substituting with diverse functional groups at the ortho position of the carboxyl groups. For instance, the acidity difference between carboxylate moieties resulted in forming three hexanuclear RE MOFs with novel (3,3,3,10,10)-c wxl, (3,12)-c gmx and (3,3,3,12)-c joe topologies, respectively. In addition, when a bulky methyl group was introduced, the incompatibility between the net topology and ligand conformation guided the co-appearance of hexanuclear and tetranuclear clusters, generating a novel 3-periodic MOF with a ($3,3,8,10$)-c kyw net. Interestingly, a fluoro-functionalized linker prompted the formation of two unusual trinuclear clusters and produced a MOF with a fascinating ($3,8,10$)-c lfg topology, which could be gradually replaced by a more stable tetranuclear MOF with a new (3,12)-c lee topology with extended reaction time. This work enriches the polynuclear clusters library of RE MOFs and unveils new opportunities to construct MOFs with unprecedented structural complexity and vast application potential.

KEYWORDS: metal-organic framework, topology, rare earth, ortho effect, high connectivity

INTRODUCTION

Metal-organic frameworks (MOFs) have fueled considerable interest from researchers due to their remarkable potential for advanced applications, such as gas separation, ${ }^{1-4}$ energy storage, ${ }^{5-10}$ water harvesting, ${ }^{11-13}$ and carbon capture. ${ }^{14-18}$ As a supramolecular assembly, MOFs consist of periodically interlinked metal-containing nodes and organic linkers to give exceptional porosity and tunable topologies. ${ }^{19-25}$ Therefore, rational linker design is an effective approach to regulate MOF topologies, which can be altered by tuning the substituents, sizes, geometries, and symmetry of the organic linkers. ${ }^{26}$ For instance, the combination of a linear terephthalate (BDC) and a square paddlewheel cluster usually leads to MOF-2 as a twodimensional (2D) sql net. Yaghi and co-workers successfully assembled the paddlewheel clusters into a three-dimensional (3D) nbo net by employing a sterically hindered o-Br-BDC linker. ${ }^{27}$ Later, Yaghi and Furukawa et al., systematically adjusted the substituent locations and linker symmetry in the 4, 4^{\prime}-biphenyldicarboxylate (BPDC) and attained a series of paddlewheel-based frameworks ranging from zero-dimensional (0D) to 3D. ${ }^{28}$ This design strategy was further introduced into the Zr -MOFs by our group, in which a methyl-functionalized BPDC linker was designed to construct a bcu MOF named PCN-700 with unsaturated Zr_{6} clusters, rather than the fcu net observed in UiO-67 (PCN = porous coordination network;
$\mathrm{UiO}=$ University of Oslo). ${ }^{29-33}$ These practices in exploring MOF topologies significantly enriched the structural library of MOFs, empowering the functional materials with huge application potential.

Recently, rare-earth (RE) MOFs have drawn wide attention owing to their diverse structures and versatility. The highly adaptable coordination modes of RE elements allow for multiple coordination directionality of carboxylate ligands, facilitating the occurrence of polynuclear clusters with various connectivity and geometries. Yet, the observation of polynuclear RE clusters was usually viewed as synthetic serendipity at the early stage of MOF research. ${ }^{34,35}$ Beyond aforementioned, the varieties of reported RE polynuclear clusters are relatively limited in MOFs, given the fact that most reported RE MOFs are based on mono-/di-nuclear clusters or rodshaped RE-chains. ${ }^{34,36,37}$ The scarcity of RE polynuclear clusters can be attributed to their dynamic nature, making

[^0]
(b)

$(3,12)$-c lee

Tetranuclear Cluster

8-c $\mathrm{RE}_{4} \quad 10-\mathrm{cRE} 6$

(d)

(3,3,3,10,10)-c wxI

$10-\mathrm{cRE}_{6}$

Hexanuclear Cluster

Figure 1. Illustration of diverse topologies in highly connected RE MOFs based on ortho-substituted tricarboxylate ligands. (a) Employment of a fluoro-functionalized linker $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$ induced the formation of $\mathrm{PCN}-992(\mathrm{Eu})$ featuring a novel $(3,8,10)$-c lfg net based on $8-\mathrm{c}$ and $10-\mathrm{c} \mathrm{RE}_{3}$ clusters. (b) PCN-992(Eu) was replaced by PCN-993(Eu) by elongated reaction time, which adopts a (3,12)-c lee net with 12-c RE_{4} clusters. (c) Methylfunctionalized linker $\mathrm{H}_{3} \mathrm{~L}-\mathrm{CH}_{3}$ resulted in the co-appearance of $10-\mathrm{c}_{6}$ clusters and 8-c RE_{4} clusters, which were assembled into $\mathrm{PCN}-991$ (Eu) with a new (3,3,8,10)-c kyw net. (d) Chloro-functionalized linker $\mathrm{H}_{3} \mathrm{~L}-\mathrm{Cl}$ led to the discovery of a $(3,3,3,10,10)$-c wxl net with the $10-\mathrm{c} \mathrm{RE}_{6}$ clusters. (e) Amino-functionalized linker $\mathrm{H}_{3} \mathrm{~L}-\mathrm{NH}_{2}$ formed $\mathrm{PCN}-995(\mathrm{Eu})$ with a two-nodal (3,12)-c gmx net. (f) Combination of a methoxylfunctionalized linker $\mathrm{H}_{3} \mathrm{~L}-\mathrm{OCH}_{3}$ and $12-\mathrm{ce}_{6}$ clusters generated a highly connected (3,3,3,12)-c joe net. The metal clusters, C atoms, and O atoms are represented in turquoise, dark gray, and red, respectively. H atoms are omitted for clarity.
them unattainable during MOF synthesis. Herein, compatible coordination spheres are required to stabilize the RE clusters. For instance, Rosi and co-workers constructed a series of RE_{4} based MOFs with an amino group-functionalized carboxylic acid. ${ }^{38}$ Notably, the ortho-amino group structurally directs the formation of the octahedral 6-c RE_{4} cluster. ${ }^{39-47}$ Similarly, Eddaoudi and co-workers employed ortho-fluorinated ditopic linkers to prepare fcu MOFs with fully coordinated 12-c RE_{6} clusters. ${ }^{48}$ They concurrently observed the occurrence of 8-c RE_{6} and 12 -c RE_{9} clusters in a $(3,8,12)$-c pek MOF with tritopic ligands, in which the formation of RE_{9} clusters was attributed to the incompatibility between the net and ligand geometry. ${ }^{49} \mathrm{We}$ also intentionally decreased the symmetry of a series of tri-/tetracarboxylate linkers and attained RE_{9}-based MOFs with cluster connectivity numbers of 12,14 , or $18 .{ }^{50}$ Nevertheless, it remains a challenge to construct highly connected RE MOFs bearing unprecedented polynuclear clusters and new topologies through rational linker design despite recent progress.

Ortho effect is a fundamental phenomenon widely observed in organic chemistry, which significantly affects the acidity and reactivity of aromatic compounds, especially aromatic carboxylic acid ${ }^{51,52}$ (Figure S1). Although most reported MOFs are based on aromatic carboxylate linkers, the significance of ortho effect in regulating topologies of RE MOFs is grossly underestimated. Herein, we chose a tritopic linker as the prototype and deliberately introduced ortho-substituents into the central or the peripheral phenyl rings (Figure 1). The
ortho-substituents will force adjacent carboxylates into a specific dihedral angle with the phenyl rings and affect the carboxylate acidity, forming unusual polynuclear RE clusters. For instance, the fluoro-functionalized linker $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$ will prompt the formation of two unusual trigonal trinuclear clusters, 8-connected RE_{3} and 10 -connected RE_{3}, and produce another layered mixed-cluster MOF with a new ($3,8,10$)-c $\mathbf{l f g}$ topology (Figure 1a). More interestingly, while extending the reaction time, the RE_{3}-based MOF can be gradually replaced by a more stable MOF with a new (3,12)-c lee topology, consisting of unusual 12 -connected RE_{4} clusters (Figure 1b). This transformation is unprecedented in RE MOFs, attributed to the incompatibility in the linker geometry and coordination requirements of the clusters in the initial MOF. Besides, the $\mathrm{H}_{3} \mathrm{~L}-\mathrm{CH}_{3}$ linker with bulky methyl groups guides the coappearance of octahedral hexanuclear RE_{6} clusters and rare diamondoid tetranuclear RE_{4} clusters (Figure 1c), generating a highly porous mixed-cluster MOF with an engaging ($3,3,8,10$)c kyw topology. In addition, some other layered MOFs are discovered by using hexanuclear RE_{6} clusters and linkers functionalized with chloro, amino, or methoxy, demonstrating new $(3,3,3,10,10)-c,(3,12)-c$, or ($3,3,3,12$)-c topologies (Figure 1d-f).

RESULTS AND DISCUSSION

Design of Ortho-Functionalized Tricarboxylic Linkers

A tricarboxylate linker $\left[1,1^{\prime}: 3^{\prime}, 1^{\prime \prime}\right.$-terphenyl $]-4,4^{\prime \prime}, 5^{\prime}$-tricarboxylic acid $\left(\mathrm{H}_{3} \mathrm{~L}-\mathrm{H}\right)$ was selected as the prototype, consisting of two peripheral phenyl rings and one central phenyl ring. The two peripheral phenyl rings represent an angle of 120°. Previous studies indicate that the $\mathrm{H}_{3} \mathrm{~L}-\mathrm{H}$ could afford MOFs with $(3,3,18)$-c ytw topology, in which a rare 18 -connected nonanuclear RE cluster was discovered. ${ }^{50,53}$ In this work, ortho positions to $\mathrm{H}_{3} \mathrm{~L}-\mathrm{H}$'s carboxyl were substituted with various functional groups to investigate the role of ortho effects in the MOF topology regulation. Given that there are three variables in the linker design, namely, substitution position, steric hindrance, and electronic effect, fluoro, chloro, and methyl were deliberately introduced to the 3 and $3^{\prime \prime}$ positions of $\mathrm{H}_{3} \mathrm{~L}-$ H , leading to $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}, \mathrm{H}_{3} \mathrm{~L}-\mathrm{Cl}$, and $\mathrm{H}_{3} \mathrm{~L}-\mathrm{CH}_{3}$. Moreover, the 4^{\prime} position of $\mathrm{H}_{3} \mathrm{~L}-\mathrm{H}$ can be functionalized with amino and methoxyl groups, resulting in the linkers $\mathrm{H}_{3} \mathrm{~L}-\mathrm{NH}_{2}$ and $\mathrm{H}_{3} \mathrm{~L}-$ OCH_{3} (Figure 1).
Synthesis and Structural Description of a Mixed-Cluster MOF

A solvothermal reaction between $\mathrm{H}_{3} \mathrm{~L}-\mathrm{CH}_{3}$ and $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}$. $6 \mathrm{H}_{2} \mathrm{O}$ produced colorless crystals, named as PCN-991(Eu), in the presence of 2-fluorobenzoic acid (2-FBA). The utilization of 2-FBA can facilitate the in-situ formation of hexanuclear RE_{6} clusters, ${ }^{48,54-58}$ which can be interlinked and extended to afford 3-periodic networks. Interestingly, according to singlecrystal X-ray diffraction (SCXRD) studies, PCN-991(Eu) consists of both $10-\mathrm{c}$ hexanuclear clusters $\left[\mathrm{RE}_{6}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{OH})_{8}(\mathrm{COO})_{10}\right]$ and 8 -c tetranuclear clusters $\left[\mathrm{RE}_{4}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{O})_{2}(\mathrm{COO})_{8}\right]$ (Figure 1c, Table S1). Note that the $10-\mathrm{c} \mathrm{RE}_{6}$ cluster can be regarded as an elongated square bipyramid, a Johnson solid labeled as J_{15}, while the 8-c RE_{4} cluster can be simplified into a cube (Figure S2d,e). The two kinds of nodes are interlinked by tritopic ligands to attain a new 3-periodic $(3,3,8,10)$-c kyw net with a point symbol of $\left\{4^{2} \cdot 6\right\}_{4}\left\{4^{3}\right\}_{2}\left\{4^{6} \cdot 6^{6}\right.$. $\left.8^{14} \cdot 10^{2}\right\}\left\{4^{8} \cdot 6^{20} \cdot 8^{13} \cdot 10^{4}\right\}$ as determined by ToposPro.

Further structural analysis revealed that the mixed-cluster PCN-991(Eu) was constructed via a supramolecular building layer approach. ${ }^{49,61}$ The tritopic ligand can form a 2-c moiety, [$1,1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl]-4,4"-dicarboxylate ($\mathrm{H}_{2} \mathrm{TDC}$), after eliminating the carboxyl on the central phenyl ring. The RE_{6} clusters were bridged by the TDC, thus leading to a 2D double cross-linked sql net (Figure 2a). Specifically, the PCN991(Eu) features an AAA stacking of sql layers, when merely considering the TDC moieties, consisting of RE_{6} clusters bridged with four adjacent clusters through eight TDC moieties. The central phenyl rings of TDC moieties point the rectangular pores of sql nets inward, inducing the RE_{4} cluster to intercalate the adjacent two sql layers, in virtue of the incompatibility between the sql net and the RE_{6} clusters (Figure 2b). Herein, the ($3,3,8,10$)-c kyw net consists of two layers, namely, a double cross-linked sql layer and a periodic array of $8-\mathrm{CE}_{4}$ clusters (Figure 2c). In 2015, Eddaoudi and co-workers reported pek MOFs featuring 12-c RE_{9}, 8-c RE_{6} clusters, and 3-c ligands. ${ }^{49}$ Herein, PCN-991(Eu) represents a rare MOF composed of two polynuclear clusters, which can be regarded as a complementary case for the pek net.
The powder X-ray diffraction (PXRD) patterns show that the crystallinity of PCN-991(Eu) can be maintained at a broad pH range from 4 to 10 , demonstrating the framework's chemical stability (Figures S8 and S9). The thermal stability of

Figure 2. Schematic of PCN-991(Eu) with the new (3,3,8,10)-c kyw topology. (a) Elongated square bipyramid, representing the $10-\mathrm{c} \mathrm{RE}_{6}$ cluster, can be interconnected by $\mathrm{H}_{3} \mathrm{~L}-\mathrm{CH}_{3}$ to generate a double cross-linked sql net. (b) Network incompatibility prompted the formation of the C_{4}-symmteric 8-c RE_{4} cluster. (c) RE_{4} clusters served as pillars for the kyw net.

PCN-991(Eu) was tested through thermal gravimetric analysis (TGA) (Figure S15). Additionally, nitrogen sorption tests demonstrated that PCN-991(Eu) features a high Brunauer-Emmett-Teller (BET) surface area of $1179 \mathrm{~m}^{2} / \mathrm{g}$ and micropores at 6, 8, and $11 \AA$ (Figures S20-S22). The application potential of $\mathrm{PCN}-991(\mathrm{Eu})$ was evaluated, which featured moderate $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ selectivity (Figure S26).
Synthesis and Structural Description of RE_{6}-Based MOFs
Functionalizing the peripheral phenyl rings of the tritopic linker with chloride groups can produce the linker $\mathrm{H}_{3} \mathrm{~L}-\mathrm{Cl}$. The combination of deprotonated $\mathrm{L}-\mathrm{Cl}$ and $\left[\mathrm{RE}_{6}\left(\mu_{3}-\right.\right.$ $\mathrm{OH})_{8}(\mathrm{COO})_{10}$] leads to the formation of PCN-994(Eu) with a new (3,3,3,10,10)-c wxl net (Table S2). The RE_{6} clusters can be viewed as an elongated square bipyramid $\left(\mathrm{J}_{15}\right)$, identical to the $10-\mathrm{c} \mathrm{RE}_{6}$ observed in PCN-991(Eu) (Figure S1e). One RE_{6} cluster is bridged with six neighboring clusters through the 3-c L-Cl (Figure 3a). Furthermore, an ABAB stacking of two layers is observed in PCN-994(Eu) (Figure 3b). Specifically, the wxl net can be separated into stacked onedimensional (1D) supramolecular ribbons when considering

Figure 3. Structural illustration of PCN-994(Eu) with (3,3,3,10,10)-c wxl topology. (a) Elongated square bipyramids, representing 10-c RE_{6} clusters, were interlinked through the tritopic ligands to form a wxl net. (b) Layered packing of RE_{6} clusters was observed in PCN-994(Eu). (c) ($3,3,3,10,10$) -c wxl net can be viewed as a close stack of 1D supramolecular ribbons when cleaving one carboxylate of the tritopic ligand.
the $\mathrm{L}-\mathrm{Cl}$ as a TDC moiety. The supramolecular ribbon is a one-periodic array of three RE_{6} clusters (Figure 3c). Ribbons are closely packed along the z axis, and the matched symmetry between adjacent ribbons ensures the formation of the $A B A B$ stacking wxl net (Figure S7).
When the $\mathrm{H}_{3} \mathrm{~L}-\mathrm{NH}_{2}$ with amino group at the 4^{\prime}-position serves as the ligand, a MOF named PCN-995(Eu) featuring a $(3,12)$-c gmx net can be attained. According to crystallographic studies, PCN-995(Eu) consists of RE_{6} clusters connecting with 12 neighboring clusters (Figure 4a). A disorder of ligands is observed in the crystal structure, which is originated from the $\mathrm{C} 2 / c$ space group. In addition, the RE_{6} clusters are interlinked through doubly cross-linked ligands to afford a sql net (Figure $4 \mathrm{~b}, \mathrm{c}$). Note that the sql nets are packed through $A B A B$ mode, leading to the 2 -nodal gmx net with a point symbol of $\left\{4^{12} \cdot 6^{38} \cdot 8^{16}\right\}\left\{4^{3}\right\}_{4}$.
The utilization of 4^{\prime}-substituted $\mathrm{H}_{3} \mathrm{~L}-\mathrm{OCH}_{3}$ induced the formation of PCN-996(Eu) with $\left[\mathrm{RE}_{6}\left(\mu_{3}-\mathrm{OH}\right)_{8}(\mathrm{COO})_{12}\right]^{2-}$ clusters, crystallized in the monoclinic space group $P 21 / n$ (Figure 5a, Table S2). PCN-996(Eu) demonstrates a BET surface area of $891 \mathrm{~m}^{2} / \mathrm{g}$ with a pore size of $7.6 \AA$ (Figures S23-S25). When viewing the carboxylates as the vertices, the $12-\mathrm{c} \mathrm{RE}_{6}$ cluster can be represented as a cuboctahedron, an Archimedean solid (Figure S1f). Overall, PCN-996(Eu) features a (3,3,3,12)-c joe topology with a point symbol of $\left\{4^{16} \cdot 6^{34} \cdot 8^{16}\right\}\left\{4^{2} \cdot 6\right\}_{2}\left\{4^{3}\right\}_{2}$. Specifically, the joe net can be converted into AAA stacking layers after removing one peripheral carboxylate group of $\mathrm{H}_{3} \mathrm{~L}-\mathrm{OCH}_{3}$, in which the RE_{6} clusters are double cross-linked to afford a sql net (Figure $5 b)$. Compared with the (3,12)-c gmx net, one RE_{6} cluster connects nine adjacent clusters through one or three $\mathrm{H}_{3} \mathrm{~L}-$ OCH_{3}.

Figure 4. Structural illustration of PCN-995(Eu) with (3,12)-c gmx topology. (a) Cuboctahedron represents the $12-\mathrm{c} \mathrm{RE}_{6}$ cluster, and the triangle represents the $3-\mathrm{c} \mathrm{H}_{3} \mathrm{~L}-\mathrm{NH}_{2}$ ligand. (b) $12-\mathrm{c} \mathrm{RE}_{6}$ cluster, labeled in yellow, is bridged with 12 adjacent clusters, leading to a layered structure. (c) gmx net can be simplified into stacked double cross-linked sql nets.

Phase Transformation between $\mathrm{RE}_{3^{-}}$and RE_{4}-Based MOFs A unique phase transformation was observed in the solvothermal reaction between $3,3^{\prime \prime}$ functionalized 3-c $\mathrm{H}_{3} \mathrm{~L}-$

Figure 5. Structural illustration of PCN-996(Eu) with (3,3,3,12)-c joe topology. (a) Cuboctahedron represents the $12-\mathrm{c} \mathrm{RE}_{6}$ cluster, and the triangle represents the $3-\mathrm{c} \mathrm{H}_{3} \mathrm{~L}-\mathrm{OCH}_{3}$ ligand. (b) Double crosslinked RE_{6} sql nets are closely packed with each other to give the (3,3,3,12)-c joe topology.

F and $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ by varying the reaction time. Colorless rod-shaped crystals were observed after 36 h , named PCN$992(\mathrm{Eu})$. Interestingly, PCN-992(Eu) was replaced by some yellowish crystals, PCN-993(Eu), when extending the reaction time to 72 h (Figure 6). The two MOFs feature distinct RE clusters and topologies. For instance, the PCN-992(Eu) is composed of two kinds of clusters, 8-c $\left[\mathrm{RE}_{3}\left(\mu_{3}-\mathrm{OH}\right)(\mathrm{COO})_{8}\right]$ and $10-\mathrm{c}\left[\mathrm{RE}_{3}\left(\mu_{3}-\mathrm{OH}\right)(\mathrm{COO})_{10}\right]^{2-}$. Topologically, the $8-\mathrm{c}$ RE_{3} cluster can be viewed as a snub-disphenoid, a Johnson solid labeled as J_{84} (Figure S1a). The $10-\mathrm{c} \mathrm{RE}_{3}$ cluster is represented as an arrowhead-tetradecahedron generated by augmenting two vertices to the middle of the snubdsphenoid (Figure S1b). ${ }^{1} \mathrm{H}$ NMR spectrum indicates that dimethylamine cations serve as the counter cations to balance the negative charge of integral framework (Figure S46). Trinuclear clusters are common for d-block metal-based MOFs. ${ }^{62-71}$ However, only a limited number of RE_{3} clusters have been reported, most of which feature linear or bent geometries. ${ }^{72-76}$ To our knowledge, one rare example of trigonal prismatic RE_{3} clusters was observed in a MOF named JXNU-3 composed of $15-\mathrm{c}$ nonanuclear and 9-c trinuclear clusters. ${ }^{77} \mathrm{Han}, \mathrm{Gu}$, and coworkers reported several robust RE MOFs bearing 6-c trinuclear clusters in $2017 .{ }^{78}$ Notably, it is challenging to tailor the coordination sphere to stabilize trigonal prismatic RE_{3} clusters in coordination complexes, usually requiring chelating or macrocyclic auxiliary ligands. ${ }^{79-84}$ Interestingly,
the chemical structures of the two $\left[\mathrm{RE}_{3}\left(\mu_{3}-\mathrm{OH}\right)(\mathrm{COO})_{8}\right]$ and $\left[\mathrm{RE}_{3}\left(\mu_{3}-\mathrm{OH}\right)(\mathrm{COO})_{10}\right]^{2-}$ clusters in PCN-992(Eu) are pretty similar, in both of which the three RE ions feature coordination numbers of 8,8 , and 9 , respectively, bridged by one $\mu_{3}-\mathrm{O}$ atom and six μ_{2}-COO groups. Due to the high adaptability of RE-carboxylate coordination bonds, the 8-c RE_{3} cluster consists of eight capping carboxylate groups, while the $10-\mathrm{c} \mathrm{RE}_{3}$ cluster is surrounded by eight bidentate and two unidentate carboxylate groups (Figure S4). Each 10-c RE_{3} cluster is connected to two $10-\mathrm{RE}_{3}$ and six $8-\mathrm{c} \mathrm{RE}_{3}$ through 3c ligands, giving a ($3,8,10$) -c lfg net with a point symbol of $\left\{4^{16} \cdot 6^{4} \cdot 8^{25}\right\}\left\{4^{2} \cdot 6\right\}_{2}\left\{4^{3}\right\}_{4}\left\{4^{8} \cdot 6^{4} \cdot 8^{15} \cdot 10\right\}$ (Figure 7a). When viewed along the y axis, the $\mathbf{l f g}$ net can be divided into four different layers, in which the layers 1 and 3 and layers 2 and 4 are inverse to each other (Figure 7b,c). To further investigate the topology, one peripheral ring of the $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$ is assumed to be cleaved, and the lfg net is converted into two sets of zigzag supramolecular chains, composed of doubly or quadruply cross-linked RE_{3} clusters (Figure 7c-f). The interlinked zigzag chains form the lfg net with rhomboid channels.

Furthermore, a 12-c $\left[\mathrm{RE}_{4}\left(\mu_{3}-\mathrm{OH}\right)_{2}(\mathrm{COO})_{12}\right]^{2-}$ cluster was observed in the thermodynamic product PCN-993 during the synthesis, where the integral charge of the anionic framework is balanced by dimethylamine cations (Figure S48). The 12-c RE_{4} cluster can be represented by the sphenomegacorona, another Johnson solid labeled as J_{88}, with 12 vertices and 18 faces (Figure S1c). The four RE ions in the 12-c cluster are arranged in a rhombic manner, bridged by two $\mu_{3}-\mathrm{O}$ atoms. Notably, the $\left[\mathrm{RE}_{4}\left(\mu_{3}-\mathrm{OH}\right)_{2}(\mathrm{COO})_{12}\right]^{2-}$ cluster can be transformed from the $\left[\mathrm{RE}_{3}\left(\mu_{3}-\mathrm{OH}\right)(\mathrm{COO})_{8}\right.$] by augmenting one RE metal and four capping carboxylates (Figure S5). Although similar rhombic RE_{4} clusters have been reported in several coordination complexes and frameworks, the 12-c $\left[\mathrm{RE}_{4}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{OH})_{2}(\mathrm{COO})_{12}\right]^{2-}$ represents one RE_{4} cluster with the highest connectivity number to the best of our knowledge. ${ }^{35,85-87}$

In the PCN-993(Eu) with the orthorhombic space group Fddd, each RE_{4} cluster is connected with eight adjacent RE_{4} clusters through the $3-\mathrm{c}_{3} \mathrm{~L}-\mathrm{F}$ ligands, affording a $(3,12)-\mathrm{c}$ lee net with a point symbol of $\left\{4^{22} \cdot 6^{8} \cdot 8^{32} \cdot 10^{4}\right\}\left\{4^{3}\right\}_{4}$ (Figure 8a). When cleaving the carboxylate on the central phenyl ring and converting the $3-\mathrm{c} \mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$ into the TDC moiety, the RE_{4} clusters will be assembled into a double cross-linked sql layer. (Figure 8c). The two neighboring sql nets can be packed closely and intercalated to give an ABAB stacking due to the compatibility between the layers (Figure 8b). Moreover, the $(3,12)$-c lee net can be eliminated into an $A B A B$ stacking of hcb layers by removing one peripheral phenyl ring of the 3-c $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$ (Figure S5). The hcb net is cross-linked by quadruple $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$ ligands to form hexagonal pores. The adjacent hcb nets can be fused to generate hexagonal channels (Figure S6). Overall, both rhombic and hexagonal channels are present in the $(3,12)$-c lee net.

Formation Mechanism of Diverse Topologies

The structural diversity of RE MOFs can be attributed to the highly adaptable coordination modes of the RE ions, allowing multiple coordination directionality of carboxylate ligands. As a result, a series of polynuclear clusters with various connectivity and geometries have been attained, leading to diverse MOF topologies. In coordination complexes, structures of lantha-nide-oxo clusters profoundly depend on factors such as ligand types, auxiliary ligands, metal types, and reaction conditions. ${ }^{40,88-91}$ Our work suggests that the ortho functionaliza-

Figure 6. (a) Use of fluoro-functionalized $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$ ligand induced the formation of two RE MOFs with different reaction time. (b) PCN-992(Eu) with (3,8,10)-c lfg topology appeared after 36 h , consisting of rare 8-c and $10-\mathrm{c} \mathrm{RE}_{3}$ clusters. (c) After 72 h , the PCN-992(Eu) would be replaced by PCN-993(Eu) with the highly connected (3,12)-c lee topology, which was based on $12-\mathrm{c} \mathrm{RE}_{4}$ clusters.

Figure 7. Structural illustration of $\mathrm{PCN}-992(\mathrm{Eu})$ with the $(3,8,10)-\mathrm{clfg}$ topology. (a) Lavender snub-disphenoid represents the $8-\mathrm{c} \mathrm{RE}_{3}$ cluster, and the turquoise arrowhead-tetradecahedron represents the $10-\mathrm{c} \mathrm{RE}_{3}$ cluster. (b, d) lfg net contains four different layers along the x axis, in which the layers 1 and 3, and layers 2 and 4 are inverse to each other. (c, e, f) lfg net can be divided into two zigzag chains when cleaving one carboxylate of the $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$ ligand.
tion in tricarboxylate linkers contributes to the formation of diverse metal-oxo clusters, which are essential building blocks constructing the overall frameworks. Herein, we investigated how the altered ortho functionalization regulates the RE cluster structures and framework topologies.
The presence of functional groups at ortho position can significantly affect the acidity of the carboxyl group in benzoic
acid, which can be attributed to the electronic effects and steric hindrance (Figure S28). Herein, introducing ortho functional groups into the prototype ligand, [1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl]$4,4^{\prime \prime}, 5^{\prime}$-tricarboxylic acid, will not only change the overall conformation but also bring acidity difference between the carboxylates. To confirm our hypothesis, density functional theory (DFT) simulations were performed to calculate the

Figure 8. Structural illustration of PCN-993(Eu) featuring (3,12)-c lee topology. (a) lee net is based on the sphenomegacorona, representing a rare 12-c RE_{4} cluster. (b) Close stack of the 12-c RE_{4} clusters allows for the installation of $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$ to produce the layered structure. (c) Double cross-linked sql net is observed in the (3,12)-c lee net after the cleavage of one carboxylate of $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$.
deprotonation free energies of the tricarboxylate ligands, which are negatively associated with acidity ${ }^{92,93}$ (Figure S29). According to DFT calculations, the central carboxyl groups of $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$ and $\mathrm{H}_{3} \mathrm{~L}-\mathrm{CH}_{3}$ are more acidic than the peripheral ones, while the acidities of carboxyl groups are close in $\mathrm{H}_{3} \mathrm{~L}-$ Cl and $\mathrm{H}_{3} \mathrm{~L}-\mathrm{NH}_{2}$. Moreover, the acidity of central carboxyl of $\mathrm{H}_{3} \mathrm{~L}-\mathrm{OCH}_{3}$ is remarkably weaker than the peripheral ones due to the strong $\mathrm{p}-\pi$ electron donation from oxygen and the intramolecular hydrogen bonding. Herein, the calculation results demonstrate that the ortho functionalization of carboxylate groups enables the tuning of the acidity of tricarboxylate ligands.

SCXRD results reveal that the linkers feature various distorted conformations when confined in the frameworks (Tables S7 and S8). Single-point calculations were performed based upon the XRD-determined ligand geometries at B3LYP level. The ligand geometries were further optimized to attain the relaxation energy in the gas phase (Figures S31-S33). The energy changes were calculated by subtracting the free energy of the confined ligand with the one after geometry optimization. The calculation results showed that the ligands $\mathrm{H}_{3} \mathrm{~L}-\mathrm{Cl}$ and $\mathrm{H}_{3} \mathrm{~L}-\mathrm{NH}_{2}$ feature close free energy changes around $50 \mathrm{kcal} / \mathrm{mol}$ after distortion, indicating that the two ligands have similar steric hindrances. Furthermore, the $\mathrm{H}_{3} \mathrm{~L}-$
CH_{3} adopts three different conformations in PCN-991(Eu) with free energy changes of $62.92,74.75$, and $32.31 \mathrm{kcal} / \mathrm{mol}$, respectively. Herein, the $\mathrm{H}_{3} \mathrm{~L}-\mathrm{CH}_{3}$ is distorted to accommodate the coexistence of RE_{4} and RE_{6} clusters. In addition, the fluoro-functionalized linker $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$ adopts different conformation in PCN-992(Eu) and PCN-993(Eu). The single-point energy of $\mathrm{H}_{3} \mathrm{~L}-\mathrm{F}$ in PCN-993(Eu) is $21.9 \mathrm{kcal} /$ mol lower than that in PCN-992(Eu). Such a significant energy difference demonstrates that PCN-993(Eu) is a thermodynamic product with a more stable ligand conformation.

The calculation results provide insights into the formation mechanism of RE MOFs. Likewise, the transformation from PCN-992(Eu) to PCN-993(Eu) is favored when considering the linker energy and higher connectivity number of the cluster. Herein, this MOF transformation can be dominated by the evolution of RE clusters during the synthesis, in which the RE_{3} clusters are generated at the early synthetic stage to induce the occurrence of PCN-992(Eu). Due to the high coordination adaptivity of RE cations, the RE_{3} cluster can be further extended into a $12-\mathrm{c} \mathrm{RE}_{4}$ cluster, resulting in a more stable MOF PCN-993(Eu) with a decreased ligand conformational energy.

CONCLUSIONS

In conclusion, we present an ortho-functionalization strategy to alter the acidities and conformations of tricarboxylate linkers, which direct the formation of unexpected RE polynuclear clusters, including 8-c $\mathrm{RE}_{3}, 10-\mathrm{c} \mathrm{RE}_{3}$, and 12-c RE_{4}. These novel building blocks led to the discovery of six MOFs named PCN-99n ($n=1-6$) with unprecedented topologies. Furthermore, the utilization of $\mathrm{H}_{3} \mathrm{~L}-\mathrm{CH}_{3}$ functionalized with bulky methyl groups resulted in a $(3,3,8,10)$-c kyw net consisting of $8-\mathrm{c} \mathrm{RE}_{4}$ and $10-\mathrm{c} \mathrm{RE}_{6}$ clusters, while (3,3,3,10,10)-c wxl, (3,12)-c gmx, and (3,3,3,12)-c joe topologies were constructed based on RE_{6} clusters with varying connectivity numbers. Interestingly, a phase transformation from a ($3,8,10$) -c lfg net to a (3,12)-c lee net was discovered, involving the displacement of RE_{3} clusters with RE_{4} clusters when extending the reaction time. This work unveils the significance of ortho effects in regulating the structures of organic ligand and RE polynuclear clusters, which will provide insights into the construction of framework materials with unprecedented structural complexity and application potentials.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacsau.2c00635.

Synthetic procedures of all tricarboxylic linkers (Scheme S1-S5); crystal data and structure refinements for PCN991(Eu) to PCN-996(Eu) (Tables S1 and S2); pK ${ }_{\mathrm{a}}$ of ortho-substituted carboxylic acid (Figure S1, Tables S3S6); structural illustrations of RE polynuclear clusters and MOFs (Figures S2-S7); power X-ray diffraction of MOFs (Figures S8-S14); thermal gravimetric analysis of MOFs (Figures S15-S19); Gas adsorption test of PCN-991(Eu) and PCN-996(Eu) (Figures S20-S26); optical images of MOF crystals (Figure S27); dihedral angle analysis of tritopic ligands in MOFs (Figure S28, Tables S7 and S8); computational calculation about ligand's energy and acidity (Figures S29-S33); ${ }^{1} \mathrm{H}$

NMR spectra of synthesized compounds (Figures S34S44); ${ }^{1} \mathrm{H}$ NMR spectra of decomposed MOFs (Figures S45-S49) (PDF)

Accession Codes

X-ray crystallographic data for PCN-99X (X = 1-6) .The detailed crystallographic data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (CCDC: 21225212122526).

AUTHOR INFORMATION

Corresponding Authors

Weidong Fan - School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; © orcid.org/0000-0002-7139-4137; Email: wdfan@upc.edu.cn
Daofeng Sun - School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; © orcid.org/0000-0003-3184-1841; Email: dfsun@upc.edu.cn
Hong-Cai Zhou - Department of Chemistry, Texas A\&M University, College Station, Texas 77843-3255, United States; Department of Materials Science and Engineering, Texas A\&M University, College Station, Texas 77843-3255, United States; © orcid.org/0000-0002-9029-3788; Email: zhou@chem.tamu.edu

Authors

Fugang Li - School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
Kun-Yu Wang - Department of Chemistry, Texas A\&M University, College Station, Texas 77843-3255, United States; © orcid.org/0000-0001-8982-0547
Zhengyang Liu - School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
Zongsu Han - Department of Chemistry, Texas A\&M University, College Station, Texas 77843-3255, United States
Dacheng Kuai - Department of Chemistry, Texas A\&M University, College Station, Texas 77843-3255, United States; © orcid.org/0000-0002-4787-7331
Liang Feng - Department of Chemistry, Texas A\&M University, College Station, Texas 77843-3255, United States
Yutong Wang - School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; © orcid.org/0000-0001-8943-1832
Xiaokang Wang - School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
Yue Li - School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
Zhentao Yang - Department of Chemistry, Texas A\&M University, College Station, Texas 77843-3255, United States

Rongming Wang - School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; © orcid.org/0000-0002-5445541X
Complete contact information is available at:
https://pubs.acs.org/10.1021/jacsau.2c00635

Author Contributions

"F.L. and K.-Y.W. contributed equally. CRediT: Fugang Li data curation, methodology, project administration, resources, writing-original draft; Kunyu Wang conceptualization, data curation, formal analysis, methodology, resources, visualization, writing-review \& editing; Zhengyang Liu data curation, investigation, resources; Zongsu Han data curation, investigation; Dacheng Kuai data curation, software; Weidong Fan conceptualization, funding acquisition, investigation, methodology, supervision; Liang Feng conceptualization, formal analysis, supervision; Yutong Wang data curation; Xiaokang Wang data curation, formal analysis, resources; Yue Li data curation, formal analysis, resources; Zhentao Yang formal analysis; Rongming Wang project administration, supervision; Daofeng Sun conceptualization, funding acquisition, supervision; Hong-Cai Zhou conceptualization, funding acquisition, investigation, supervision, validation.
Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (NSFC, Grant No. 22275210, 22201305), the Fundamental Research Funds for the Central Universities (22CX06024A), and the Outstanding Youth Science Fund Projects of Shandong Province (2022HWYQ070). The authors also thank the support of the Robert A. Welch Foundation through a Welch Endowed Chair to H.C.Z. (A-0030) and Qatar National Research Fund under Award Number NPRP9-377-1-080. The authors also acknowledge the support from the Foresight Institute.

REFERENCES

(1) Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477-1504.
(2) Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal-Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869-932.
(3) Bloch, E. D.; Queen Wendy, L.; Krishna, R.; Zadrozny Joseph, M.; Brown Craig, M.; Long Jeffrey, R. Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites. Science 2012, 335, 1606-1610.
(4) Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, X.; Han, Y.; Li, B.; Ren, Q.; Zaworotko Michael, J.; Chen, B. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141144.
(5) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak David, T.; Kim, J.; O'Keeffe, M.; Yaghi Omar, M. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300, 1127-1129.
(6) Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metalorganic frameworks. Chem. Soc. Rev. 2009, 38, 1294-1314.
(7) Mason, J. A.; Oktawiec, J.; Taylor, M. K.; Hudson, M. R.; Rodriguez, J.; Bachman, J. E.; Gonzalez, M. I.; Cervellino, A.; Guagliardi, A.; Brown, C. M.; Llewellyn, P. L.; Masciocchi, N.; Long,
J. R. Methane storage in flexible metal-organic frameworks with intrinsic thermal management. Nature 2015, 527, 357-361.
(8) He, Y.; Zhou, W.; Qian, G.; Chen, B. Methane storage in metalorganic frameworks. Chem. Soc. Rev. 2014, 43, 5657-5678.
(9) Chen, Z.; Li, P.; Anderson, R.; Wang, X.; Zhang, X.; Robison, L.; Redfern Louis, R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón Diego, A.; Yildirim, T.; Stoddart, J. F.; Farha Omar, K. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 2020, 368, 297-303.
(10) Liu, J.; Xie, D.; Shi, W.; Cheng, P. Coordination compounds in lithium storage and lithium-ion transport. Chem. Soc. Rev. 2020, 49, 1624-1642.
(11) Kim, H.; Yang, S.; Rao Sameer, R.; Narayanan, S.; Kapustin Eugene, A.; Furukawa, H.; Umans Ari, S.; Yaghi Omar, M.; Wang Evelyn, N. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 2017, 356, 430-434.
(12) Xu, W.; Yaghi, O. M. Metal-Organic Frameworks for Water Harvesting from Air, Anywhere, Anytime. ACS Cent. Sci. 2020, 6, 1348-1354.
(13) Hanikel, N.; Pei, X.; Chheda, S.; Lyu, H.; Jeong, W.; Sauer, J.; Gagliardi, L.; Yaghi Omar, M. Evolution of water structures in metalorganic frameworks for improved atmospheric water harvesting. Science 2021, 374, 454-459
(14) Millward, A. R.; Yaghi, O. M. Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. J. Am. Chem. Soc. 2005, 127, 17998-17999.
(15) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi Omar, M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319, 939-943.
(16) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Carbon Dioxide Capture in Metal-Organic Frameworks. Chem. Rev. 2012, 112, 724781.
(17) D'Alessandro, D. M.; Smit, B.; Long, J. R. Carbon Dioxide Capture: Prospects for New Materials. Angew. Chem., Int. Ed. 2010, 49, 6058-6082.
(18) McDonald, T. M.; Mason, J. A.; Kong, X.; Bloch, E. D.; Gygi, D.; Dani, A.; Crocellà, V.; Giordanino, F.; Odoh, S. O.; Drisdell, W. S.; Vlaisavljevich, B.; Dzubak, A. L.; Poloni, R.; Schnell, S. K.; Planas, N.; Lee, K.; Pascal, T.; Wan, L. F.; Prendergast, D.; Neaton, J. B.; Smit, B.; Kortright, J. B.; Gagliardi, L.; Bordiga, S.; Reimer, J. A.; Long, J. R. Cooperative insertion of CO2 in diamine-appended metalorganic frameworks. Nature 2015, 519, 303-308.
(19) Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378, 703-706.
(20) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276-279.
(21) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.
(22) O’Keeffe, M.; Yaghi, O. M. Deconstructing the Crystal Structures of Metal-Organic Frameworks and Related Materials into Their Underlying Nets. Chem. Rev. 2012, 112, 675-702.
(23) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to MetalOrganic Frameworks. Chem. Rev. 2012, 112, 673-674.
(24) Furukawa, H.; Cordova Kyle, E.; O’Keeffe, M.; Yaghi Omar, M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, No. 1230444.
(25) Zhou, H.-C. J.; Kitagawa, S. Metal-Organic Frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.
(26) Guillerm, V.; Maspoch, D. Geometry Mismatch and Reticular Chemistry: Strategies To Assemble Metal-Organic Frameworks with Non-default Topologies. J. Am. Chem. Soc. 2019, 141, 16517-16538.
(27) Eddaoudi, M.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Cu2[o-BrC6H3(CO2)2]2(H2O)2•(DMF)8(H2O)2: A Framework Deliber-
ately Designed To Have the NbO Structure Type. J. Am. Chem. Soc. 2002, 124, 376-377.
(28) Furukawa, H.; Kim, J.; Ockwig, N. W.; O’Keeffe, M.; Yaghi, O. M. Control of Vertex Geometry, Structure Dimensionality, Functionality, and Pore Metrics in the Reticular Synthesis of Crystalline Metal-Organic Frameworks and Polyhedra. J. Am. Chem. Soc. 2008, 130, 11650-11661.
(29) Yuan, S.; Chen, Y.-P.; Qin, J.-S.; Lu, W.; Zou, L.; Zhang, Q.; Wang, X.; Sun, X.; Zhou, H.-C. Linker Installation: Engineering Pore Environment with Precisely Placed Functionalities in Zirconium MOFs. J. Am. Chem. Soc. 2016, 138, 8912-8919.
(30) Yuan, S.; Lu, W.; Chen, Y.-P.; Zhang, Q.; Liu, T.-F.; Feng, D.; Wang, X.; Qin, J.; Zhou, H.-C. Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal-Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 3177-3180.
(31) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P.; New, A. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850-13851.
(32) Feng, L.; Day, G. S.; Wang, K.-Y.; Yuan, S.; Zhou, H.-C. Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks. Chem 2020, 6, 2902-2923.
(33) Ejegbavwo, O. A.; Martin, C. R.; Olorunfemi, O. A.; Leith, G. A.; Ly, R. T.; Rice, A. M.; Dolgopolova, E. A.; Smith, M. D.; Karakalos, S. G.; Birkner, N.; Powell, B. A.; Pandey, S.; Koch, R. J.; Misture, S. T.; Loye, H.-C. z.; Phillpot, S. R.; Brinkman, K. S.; Shustova, N. B. Thermodynamics and Electronic Properties of Heterometallic Multinuclear Actinide-Containing Metal-Organic Frameworks with "Structural Memory. J. Am. Chem. Soc. 2019, 141, 11628-11640.
(34) Saraci, F.; Quezada-Novoa, V.; Donnarumma, P. R.; Howarth, A. J. Rare-earth metal-organic frameworks: from structure to applications. Chem. Soc. Rev. 2020, 49, 7949-7977.
(35) Zheng, Z. Ligand-controlled self-assembly of polynuclear lanthanide-oxo/hydroxo complexes: from synthetic serendipity to rational supramolecular design. Chem. Commun. 2001, 24, 25212529.
(36) Feng, L.; Pang, J.; She, P.; Li, J. L.; Qin, J. S.; Du, D. Y.; Zhou, H. C. Metal-Organic Frameworks Based on Group 3 and 4 Metals. Adv. Mater. 2020, 32, No. e2004414.
(37) Devic, T.; Serre, C.; Audebrand, N.; Marrot, J.; Férey, G. MIL103, A 3-D Lanthanide-Based Metal Organic Framework with Large One-Dimensional Tunnels and A High Surface Area. J. Am. Chem. Soc. 2005, 127, 12788-12789.
(38) Luo, T.-Y.; Liu, C.; Eliseeva, S. V.; Muldoon, P. F.; Petoud, S.; Rosi, N. L. Rare Earth pcu Metal-Organic Framework Platform Based on RE4 $(\mu 3-\mathrm{OH}) 4(\mathrm{COO}) 62+$ Clusters: Rational Design, Directed Synthesis, and Deliberate Tuning of Excitation Wavelengths. J. Am. Chem. Soc. 2017, 139, 9333-9340.
(39) Ma, B.-Q.; Zhang, D.-S.; Gao, S.; Jin, T.-Z.; Yan, C.-H.; Xu, G.X. From Cubane to Supercubane: The Design, Synthesis, and Structure of a Three-Dimensional Open Framework Based on a Ln4O4 Cluster. Angew. Chem., Int. Ed. 2000, 39, 3644-3646.
(40) Wang, R.; Liu, H.; Carducci, M. D.; Jin, T.; Zheng, C.; Zheng, Z. Lanthanide Coordination with α-Amino Acids under Near Physiological pH Conditions: Polymetallic Complexes Containing the Cubane-Like $[\operatorname{Ln} 4(\mu 3-\mathrm{OH}) 4] 8+$ Cluster Core. Inorg. Chem. 2001, 40, 2743-2750.
(41) Gao, Y.; Xu, G.-F.; Zhao, L.; Tang, J.; Liu, Z. Observation of Slow Magnetic Relaxation in Discrete Dysprosium Cubane. Inorg. Chem. 2009, 48, 11495-11497.
(42) Lin, P.-H.; Korobkov, I.; Wernsdorfer, W.; Ungur, L.; Chibotaru, L. F.; Murugesu, M. A Rare $\mu 4$-O Centred Dy4 Tetrahedron with Coordination-Induced Local Chirality and SingleMolecule Magnet Behaviour. Eur. J. Inorg. Chem. 2011, 2011, 15351539.
(43) Yi, X.; Bernot, K.; Calvez, G.; Daiguebonne, C.; Guillou, O. 3D Organization of Dysprosium Cubanes. Eur. J. Inorg. Chem. 2013, 2013, 5879-5885.
(44) Zhou, J.-M.; Shi, W.; Li, H.-M.; Li, H.; Cheng, P. Experimental Studies and Mechanism Analysis of High-Sensitivity Luminescent Sensing of Pollutional Small Molecules and Ions in Ln4O4 Cluster Based Microporous Metal-Organic Frameworks. J. Phys. Chem. C 2014, 118, 416-426.
(45) Zou, D.; Zhang, J.; Cui, Y.; Qian, G. Near-infrared-emissive metal-organic frameworks. Dalton Trans. 2019, 48, 6669-6675.
(46) Maruyama, T.; Kawabata, H.; Kikukawa, Y.; Hayashi, Y. Yttrium-Containing Sandwich-, Ring-, and Cage-Type Polyoxovanadates: Synthesis and Characterization. Eur. J. Inorg. Chem. 2019, 2019, 529-533.
(47) Litvinova, Y. M.; Gayfulin, Y. M.; van Leusen, J.; Samsonenko, D. G.; Lazarenko, V. A.; Zubavichus, Y. V.; Kögerler, P.; Mironov, Y. V. Metal-organic frameworks based on polynuclear lanthanide complexes and octahedral rhenium clusters. Inorg. Chem. Front. 2019, 6, 1518-1526.
(48) Xue, D.-X.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y.; Alkordi, M. H.; Eddaoudi, M. Tunable Rare-Earth fcu-MOFs: A Platform for Systematic Enhancement of CO2 Adsorption Energetics and Uptake. J. Am. Chem. Soc. 2013, 135, 7660-7667.
(49) Alezi, D.; Peedikakkal, A. M. P.; Weseliński, ŁJ.; Guillerm, V.; Belmabkhout, Y.; Cairns, A. J.; Chen, Z.; Wojtas, Ł.; Eddaoudi, M. Quest for Highly Connected Metal-Organic Framework Platforms: Rare-Earth Polynuclear Clusters Versatility Meets Net Topology Needs. J. Am. Chem. Soc. 2015, 137, 5421-5430.
(50) Wang, Y.; Feng, L.; Fan, W.; Wang, K.-Y.; Wang, X.; Wang, X.; Zhang, K.; Zhang, X.; Dai, F.; Sun, D.; Zhou, H.-C. Topology Exploration in Highly Connected Rare-Earth Metal-Organic Frameworks via Continuous Hindrance Control. J. Am. Chem. Soc. 2019, 141, 6967-6975.
(51) Lin, S.-k.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th Edition. Molecules 2001, 6, No. 1064.
(52) Böhm, S.; Fiedler, P.; Exner, O. Analysis of the ortho effect: acidity of 2-substituted benzoic acids. New J. Chem. 2004, 28, 67-74.
(53) Chen, L.; Hu, H.-J.; Wang, Y.-L.; Zhang, X.-F.; Xu, L.-P.; Liu, Q.-Y. Metal-Organic Frameworks Featuring 18-Connected Nonanuclear Rare-Earth Oxygen Clusters and Cavities for Efficient C2H2/CO2 Separation. Inorg. Chem. 2021, 60, 13471-13478.
(54) Guillerm, V.; Weselińnki, ŁJ.; Belmabkhout, Y.; Cairns, A. J.; D'Elia, V.; Wojtas, Ł.; Adil, K.; Eddaoudi, M. Discovery and introduction of a $(3,18)$-connected net as an ideal blueprint for the design of metal-organic frameworks. Nat. Chem. 2014, 6, 673-680.
(55) Lin, W.; Ning, E.; Yang, L.; Rao, Y.; Peng, S.; Li, Q. Snapshots of Postsynthetic Modification in a Layered Metal-Organic Framework: Isometric Linker Exchange and Adaptive Linker Installation. Inorg. Chem. 2021, 60, 11756-11763.
(56) Mahé, N.; Guillou, O.; Daiguebonne, C.; Gérault, Y.; Caneschi, A.; Sangregorio, C.; Chane-Ching, J. Y.; Car, P. E.; Roisnel, T. Polynuclear Lanthanide Hydroxo Complexes: New Chemical Precursors for Coordination Polymers. Inorg. Chem. 2005, 44, 7743-7750.
(57) Savard, D.; Lin, P.-H.; Burchell, T. J.; Korobkov, I.; Wernsdorfer, W.; Clérac, R.; Murugesu, M. Two-Dimensional Networks of Lanthanide Cubane-Shaped Dumbbells. Inorg. Chem. 2009, 48, 11748-11754.
(58) Wang, R.; Carducci, M. D.; Zheng, Z. Direct Hydrolytic Route to Molecular Oxo-Hydroxo Lanthanide Clusters. Inorg. Chem. 2000, 39, 1836-1837.
(59) Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst. Growth Des. 2014, 14, 3576-3586.
(60) Blatov, V. A. Multipurpose Crystallochemical Analysis with the Program Package TOPOS, IUCr CompComm Newsletter, 2006; pp 4-38.
(61) Guillerm, V.; Eddaoudi, M. The Importance of Highly Connected Building Units in Reticular Chemistry: Thoughtful Design of Metal-Organic Frameworks. Acc. Chem. Res. 2021, 54, 32983312.
(62) Férey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.; Margiolaki, I. A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction. Angew. Chem., Int. Ed. 2004, 43, 6296-6301.
(63) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 2005, 309, 2040-2042.
(64) Serre, C.; Mellot-Draznieks, C.; Surblé, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks. Science 2007, 315, 1828-1831.
(65) Horcajada, P.; Surblé, S.; Serre, C.; Hong, D.-Y.; Seo, Y.-K.; Chang, J.-S.; Grenèche, J.-M.; Margiolaki, I.; Férey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun. 2007, 27, 2820-2822.
(66) Chen, Z.; Li, P.; Zhang, X.; Li, P.; Wasson, M. C.; Islamoglu, T.; Stoddart, J. F.; Farha, O. K. Reticular Access to Highly Porous acsMOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. J. Am. Chem. Soc. 2019, 141, 2900-2905.
(67) Feng, D.; Wang, K.; Wei, Z.; Chen, Y.-P.; Simon, C. M.; Arvapally, R. K.; Martin, R. L.; Bosch, M.; Liu, T.-F.; Fordham, S.; Yuan, D.; Omary, M. A.; Haranczyk, M.; Smit, B.; Zhou, H.-C. Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal-organic frameworks. Nat. Commun. 2014, 5, No. 5723.
(68) Bhattacharjee, S.; Chen, C.; Ahn, W.-S. Chromium terephthalate metal-organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv. 2014, 4, 52500-52525.
(69) Lian, X.; Chen, Y.-P.; Liu, T.-F.; Zhou, H.-C. Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chem. Sci. 2016, 7, 6969-6973.
(70) Dezotti, Y.; Ribeiro, M. A.; Pirota, K. R.; Barros, W. P. Influence of the Metal Ion on the Topology and Interpenetration of Pyridylvinyl(benzoate) Based Metal-Organic Frameworks. Cryst. Growth Des. 2019, 19, 5592-5603.
(71) Ma, G.; Zhang, J.-J.; Sun, L.; Xu, Y.-X.; Gao, H.-L.; Zhang, H.Y.; He, X.-W. A New Cluster-Based MOF for Selective Gas Sorption and Treatment Effect on Acute glomerulonephritis by Reducing NFκ b Pathway Activation and Cytokines Release. J. Cluster Sci. 2020, 31, 1061-1069
(72) Chen, X.-Y.; Zhao, B.; Shi, W.; Xia, J.; Cheng, P.; Liao, D.-Z.; Yan, S.-P.; Jiang, Z.-H. Microporous Metal-Organic Frameworks Built on a Ln3 Cluster as a Six-Connecting Node. Chem. Mater. 2005, 17, 2866-2874.
(73) Karmakar, A.; Hazra, S.; Guedes da Silva, M. F. C.; Paul, A.; Pombeiro, A. J. L. Nanoporous lanthanide metal-organic frameworks as efficient heterogeneous catalysts for the Henry reaction. CrystEngComm 2016, 18, 1337-1349.
(74) Liu, B.; Wu, W.-P.; Hou, L.; Wang, Y.-Y. Four uncommon nanocage-based Ln-MOFs: highly selective luminescent sensing for $\mathrm{Cu} 2+$ ions and selective CO2 capture. Chem. Commun. 2014, 50, 8731-8734.
(75) Zhang, L.; Song, T.; Xu, J.; Sun, J.; Zeng, S.; Wu, Y.; Fan, Y.; Wang, L. Polymorphic $\operatorname{Ln(iii)~and~BPTC-based~porous~metal-~}$ organic frameworks with visible, NIR photoluminescent and magnetic properties. CrystEngComm 2014, 16, 2440-2451.
(76) Xu, H.; Fang, M.; Cao, C.-S.; Qiao, W.-Z.; Zhao, B. Unique $(3,4,10)$-Connected Lanthanide-Organic Framework as a Recyclable Chemical Sensor for Detecting Al3. Inorg. Chem. 2016, 55, 47904794.
(77) Li, Y.-J.; Wang, Y.-L.; Liu, Q.-Y. The Highly Connected MOFs Constructed from Nonanuclear and Trinuclear Lanthanide-Carboxylate Clusters: Selective Gas Adsorption and Luminescent pH Sensing. Inorg. Chem. 2017, 56, 2159-2164.
(78) Wei, N.; Zuo, R.-X.; Zhang, Y.-Y.; Han, Z.-B.; Gu, X.-J. Robust high-connected rare-earth MOFs as efficient heterogeneous catalysts for CO2 conversion. Chem. Commun. 2017, 53, 3224-3227.
(79) Evans, W. J.; Sollberger, M. S. Synthetic and structural studies on the formation of a tetradecametallic yttrium oxide alkoxide chloride complex: an example of how molecular yttrium oxygen frameworks form extended arrays. Inorg. Chem. 1988, 27, 4417-4423. (80) Wong, K.-L.; Zhu, Y.-M.; Yang, Y.-Y.; Law, G.-L.; Fan, H.-H.; Tanner, P. A.; Wong, W.-T. Structure and photophysical properties of new trinuclear lanthanide complexes ($\mathrm{Ln}=\mathrm{Eu}$ and Tb) with $1,10-$ phenanthroline. Inorg. Chem. Commun. 2009, 12, 52-54.
(81) Paluch, M.; Slepokura, K.; Lis, T.; Lisowski, J. Enantiopure trinuclear lanthanide(III) complexes: Cooperative formation of $\operatorname{Ln} 3(\mu 3-\mathrm{OH}) 2$ core within the macrocycle. Inorg. Chem. Commun. 2011, 14, 92-95.
(82) Costes, J.-P.; Dahan, F.; Nicodème, F.; Trinuclear, A. Gadolinium Complex: Structure and Magnetic Properties. Inorg. Chem. 2001, 40, 5285-5287.
(83) Xue, S.; Chen, X.-H.; Zhao, L.; Guo, Y.-N.; Tang, J. Two BulkyDecorated Triangular Dysprosium Aggregates Conserving VortexSpin Structure. Inorg. Chem. 2012, 51, 13264-13270.
(84) Kobyłka, M. J.; Ślepokura, K.; Acebrón Rodicio, M.; Paluch, M.; Lisowski, J. Incorporation of Trinuclear Lanthanide(III) Hydroxo Bridged Clusters in Macrocyclic Frameworks. Inorg. Chem. 2013, 52, 12893-12903.
(85) Barash, E. H.; Coan, P. S.; Lobkovsky, E. B.; Streib, W. E.; Caulton, K. G. Anhydrous yttrium acetylacetonate and the course of thermal "dehydration" of $\mathrm{Y}(\mathrm{acac}) 3.3 \mathrm{H} 2 \mathrm{O}$. Inorg. Chem. 1993, 32, 497-501.
(86) Ma, S.; Yuan, D.; Wang, X.-S.; Zhou, H.-C. Microporous Lanthanide Metal-Organic Frameworks Containing Coordinatively Linked Interpenetration: Syntheses, Gas Adsorption Studies, Thermal Stability Analysis, and Photoluminescence Investigation. Inorg. Chem. 2009, 48, 2072-2077.
(87) Han, L.; Zhang, S.; Wang, Y.; Yan, X.; Lu, X. A Strategy for Synthesis of Ionic Metal-Organic Frameworks. Inorg. Chem. 2009, 48, 786-788.
(88) Wang, R.; Selby, H. D.; Liu, H.; Carducci, M. D.; Jin, T.; Zheng, Z.; Anthis, J. W.; Staples, R. J. Halide-Templated Assembly of Polynuclear Lanthanide-Hydroxo Complexes. Inorg. Chem. 2002, 41, 278-286.
(89) Kong, X.-J.; Long, L.-S.; Zheng, L.-S.; Wang, R.; Zheng, Z. Hydrolytic Synthesis and Structural Characterization of Lanthanide Hydroxide Clusters Supported by Nicotinic Acid. Inorg. Chem. 2009, 48, 3268-3273.
(90) Wu, Y.; Morton, S.; Kong, X.; Nichol, G. S.; Zheng, Z. Hydrolytic synthesis and structural characterization of lanthanideacetylacetonato/hydroxo cluster complexes - A systematic study. Dalton Trans. 2011, 40, 1041-1046.
(91) Zheng, X.-Y.; Kong, X.-J.; Zheng, Z.; Long, L.-S.; Zheng, L.-S. High-Nuclearity Lanthanide-Containing Clusters as Potential Molecular Magnetic Coolers. Acc. Chem. Res. 2018, 51, 517-525.
(92) Bodnarchuk, M. S.; Heyes, D. M.; Dini, D.; Chahine, S.; Edwards, S. Role of Deprotonation Free Energies in pKa Prediction and Molecule Ranking. J. Chem. Theory Comput. 2014, 10, 25372545.
(93) Williams, S. L.; de Oliveira, C. A. F.; McCammon, J. A. Coupling Constant pH Molecular Dynamics with Accelerated Molecular Dynamics. J. Chem. Theory Comput. 2010, 6, 560-568.

[^0]: Received: November 19, 2022
 Revised: March 19, 2023
 Accepted: March 20, 2023
 Published: April 26, 2023

