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Large skin defects caused by burns, unhealing chronic wounds, and trauma, are still an

intractable problem for clinicians and researchers. Ideal skin regeneration includes several

intricate and dynamic stages of wound repair and regeneration of skin physiological

function. Adipose-derived stem cells (ADSCs), a type of mesenchymal stem cells (MSCs)

with abundant resources and micro-invasive extraction protocols, have been reported

to participate in each stage of promoting skin regeneration via paracrine effects. As

essential products secreted by ADSCs, extracellular vesicles (EVs) derived from ADSCs

(ADSC-EVs) inherit such therapeutic potential. However, ADSC-EVs showed much more

clinical superiorities than parental cells. ADSC-EVs carry various mRNAs, non-coding

RNAs, proteins, and lipids to regulate the activities of recipient cells and eventually

accelerate skin regeneration. The beneficial role of ADSCs in wound repair has been

widely accepted, while a deep comprehension of the mechanisms of ADSC-EVs in skin

regeneration remains unclear. In this review, we provided a basic profile of ADSC-EVs.

Moreover, we summarized the latest mechanisms of ADSC-EVs on skin regeneration

from the aspects of inflammation, angiogenesis, cell proliferation, extracellular matrix

(ECM) remodeling, autophagy, and oxidative stress. Hair follicle regeneration and skin

barrier repair stimulated by ADSC-EVs were also reviewed. The challenges and prospects

of ADSC-EVs-based therapies were discussed at the end of this review.

Keywords: skin regeneration, extracellular vesicles, adipose-derived stem cells, stem cells therapy, wound healing

INTRODUCTION

The skin, the largest organ of the human body, protects the body from exogenous irritation and
pathogen invasion as the first barrier between organisms and the environment. Skin damage caused
by diseases or trauma threatens the defensive function, leading to the suffering of patients and
the burden of public health care (1, 2). Repair of skin, including both structural integrity and
physiological function, is essential to maintain its protective property, which remains intractable
for clinicians and researchers. Stem cells have been reported to possess considerable potential
for skin regeneration through multiple mechanisms (3–5). Adipose-derived stem cells (ADSCs)
are a promising type of mesenchymal stem cells (MSCs) for skin regeneration, with abundant
resources among human tissue and minimally invasive extraction protocols. However, some severe
complications impact the application of stem cells since they are large and sticky, such as elevation
in pulmonary arterial pressure or even vascular embolism, along with potential oncogenesis
and ethical issues (6, 7). Moreover, some properties of stem cells might impair the beneficial
effect of stem cells. For example, restricted delivery of stem cells and uncertain differentiation
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to proinflammatory or anti-inflammatory phenotype of stem
cells in inflammatory conditions might lead to no benefit or
even negative effect in the treatment of acute kidney injury after
cardiac surgery (8).

Extracellular vesicles (EVs) are natural particles with a

phospholipid bilayer membrane secreted by almost all types of
cells during vital activities (9). Transferring proteins, nucleic

acids, and lipids to recipient cells, EVs derived from stem

cells have been deemed to be intercellular communicators and
functional executors (10, 11). Compared to stem cells, EVs

possess more advantages for clinical application. EVs are safer
owing to their smaller size and non-tumorigenic. Because EVs
show no immunogenicity and can be stored at −80◦C, they are
available once patients need, avoiding waiting for cell culture as
autologous stem cells therapy (12). In recent years, considerable
research efforts on EVs derived from ADSCs (ADSC-EVs)
have indicated that ADSC-EVs have a positive impact on skin
regeneration, similar to their parental cells. Moreover, ADSC-
EVs manifested a superior impact on wound healing than EVs
derived from other stem cells, which might be due to their
robust angiogenic effect (13). ADSC-EVs might accelerate skin
wound repair by participating in inflammation, angiogenesis,

FIGURE 1 | The production, functions, and applications of ADSC-EVs. Culture medium of ADSCs was collected and processed to obtain ADSC-EVs. By accelerating

wound healing and repairing skin function, ADSC-EVs promote skin regeneration. ADSC-EVs are promising for clinical applications as well.

cell proliferation, and extracellular matrix (ECM) remodeling
(14, 15), regulating cell apoptosis and autophagy (16, 17),
and relieving oxidative stress in the wound microenvironment
(18). The regeneration of skin appendages and recovery of
physiological functions are also promoted by ADSC-EVs (19, 20),
which is essential for ideal skin regeneration. Current documents
have summarized the promoting effects of ADSC-EVs in skin
regeneration, mostly focusing on mechanisms in wound healing
but hardly with functional repair involved. In this review, the
profile of ADSC-EVs, mechanisms in the promotion of skin
regeneration, and potential for clinical applications are discussed
(Figure 1). The existing challenges and prospects of ADSC-EVs
in regenerative medicine are also discussed here. We hope this
work replenishes current comprehension of how ADSC-EVs
generate and work, and provides potential inspiration for future
research on regenerative medicine.

EXTRACELLULAR VESICLE FROM
ADIPOSE-DERIVED STEM CELLS

ADSCs are a subtype of MSCs isolated from adipose tissues with
self-renewal and multiple differentiation properties. Through
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FIGURE 2 | Biogenesis of each subtype of EVs. Exosomes (<150 nm in size) originate from endosome. Microvesicles (up to 1,000 nm) generate from plasma

membrane. Apoptotic bodies (more than 1,000 nm) are particles of apoptotic cells disassembly.

paracrine of a variety of cytokines, ADSCs are known as
powerful therapeutics utilized in regenerative medicine (21, 22).
In addition to direct secretion, ADSC-EVs have been reported
to be functional executors of ADSCs (23). As products of
ADSCs during biological activities, ADSC-EVs encapsulate
cargoes, including DNA, RNA, proteins, and lipids produced by
ADSCs, acting as intercellular communicators and biomolecule
transporters (24).

Classification and Biogenesis of EVs
EVs are a generic term for particles with lipid bilayer
membranes released by cells in natural activities and are
divided into three main subtypes based on the current
understanding of their biogenesis, size, and content: exosomes
(<150 nm in size), microvesicles (up to 1,000 nm), and
apoptotic bodies (more than 1,000 nm) (25–27). Exosomes
and microvesicles seem to be generated by almost all
types of viable cells (28) and are major subtypes of EVs
studied in regenerative medicine to date. Apoptotic bodies,
the relatively larger group in size, are products of cell

apoptosis and encapsulate contents of cells disassembly.
The biogenesis of the three main EV-subtypes is shown
here (Figure 2).

The biogenesis of exosomes is a complex process. First,
endocytosis of the plasma membrane forms the early
sorting endosomes, carrying surface proteins and lipids. Early
endosomes subsequently transform to late endosomes under
interaction with the Golgi complex (28). Exosomes originate
from the inward budding of the endosomal membrane as
intraluminal vesicles (IVLs) during maturation of multivesicular
endosomes (MVBs), which then enter lysosomes for degradation,
or fuse with the plasma membrane to be released as exosomes
(27). Exosomal membrane components are derived from
plasma or the Golgi complex before the formation of IVLs
in endosomes. The cargoes sorted into exosomes are heavily
dependent on endosomal sorting mechanisms, which involve
the endosomal sorting complex required for transport (ESCRT)
proteins (29). ESCRT-independent mechanisms have also been
demonstrated, including ceramide and its metabolites and
tetraspanin family members (30–32).
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Microvesicles released by healthy cells originate from the
outward budding of the plasma membrane. Phospholipids on the
plasma membrane rearrange with activation of scramblase by the
inflow of Ca2+, in which phosphatidylserine flips from the inner
leaflet of the bilayer to the outer leaflet. Consequently, budding of
the plasmamembrane and degradation of the cytoskeleton occur,
forming microvesicles (33). However, biogenesis of microvesicles
can proceed without the rearrangement of phospholipids (34),
indicating that other mechanisms may also be involved, such as
the participation of cholesterol-rich lipid rafts (35).

Although the destinies differ between parental cells of
apoptotic bodies and microvesicles, the formation of the
two subtypes of EVs involves similar changes in the plasma
membrane. Biogenesis of apoptotic bodies is described as
three sequential well-coordinated steps with corresponding
morphological changes: plasma membrane blebbing, thin
membrane protrusion formation, and fragmentation (36).
During blebbing, phosphatidylserine flips from the inner layer
of the plasma membrane to the outer layer, which is induced
by caspase-activated scramblase (37). Compared to the former
two subtypes, cargoes of apoptotic bodies tend to include
intact organelles, chromatin, and higher levels of histones (38).
However, recent studies have also shown that some organelles
might be enclosed by microvesicles (39). Information on cargoes
in EVs needs to be enriched with further research.

Biomarkers of EVs include molecules involved in their
biogenesis, such as transmembrane proteins anchored to the
plasma membrane or endosomal membrane and cytosolic
proteins (27). Non-EV proteins co-isolated with EVs are detected
to assess the purity of EVs, such as apolipoproteins A1/2 and
B, and albumin (26). According to the biogenesis of exosomes,
their biomarkers are conventionally deemed to be ESCRT-
associated proteins (Alix, TSG101, Syntenin, and HSC70),
tetraspanin family proteins (CD9, CD63, and CD81), and major
histocompatibility complex (MHC) class I and class II proteins.
However, some of these proteins have also been demonstrated to
be contained in other subtypes, such as flotillin-1, HSC70, and
MHC class I and II proteins (40). Microvesicles derived from
the plasma membrane mainly contain proteins present in the
cytoplasm and plasma membrane, especially post-translational
modified proteins (41). Apoptotic bodies contain high levels of
apoptosis-associated proteins, such as cleaved caspase-3, C1q,
and nuclear debris (42). Nevertheless, overlapping biomarkers
exist among each group of EVs, making it imprecise for
identification. In addition, isolation methods used in current
studies, especially for microvesicles and apoptotic bodies, are
mainly centrifugation based on the size and density of EVs, which
leads to groups overlapping on the very edge of the size scale.

Exosomes and microvesicles transfer information and
therapeutic molecules from viable cells to recipient cells
(43), rendering them potential options for investigation in
regenerative medicine. However, from the orthodox perspective,
apoptotic bodies tend to be cell debris responsible for the
clearance of dying cells (44). Moreover, cargoes distributed into
apoptotic bodies vary in quantity and component (45, 46), along
with a relatively large size scale, impeding the identification
and mechanical exploration of apoptotic bodies. Hence, studies

have paid more attention to the mechanisms and applications of
the former two subtypes of EVs. In this review, our discussion
of ADSC-EVs is mainly based on exosomes and microvesicles
derived from ADSCs.

Isolation and Characterization of EVs
In the past few decades, researchers have isolated EVs by
several common strategies (Figure 3). The traditional method
is centrifugation, which is based on the density of different
groups of EVs, allowing denser particles to sediment out first.
Differential ultracentrifugation (DC) is the most frequently
used method and is still the “gold standard” for the isolation
of EVs (26). Density gradient centrifugation (DGC) is an
improved ultracentrifugation method that produces EVs with
higher purity, in which a prepared density gradient generally
formed by sucrose or iodixanol is required. EVs pass through
a gradient with increasing density from top to bottom in the
DGC system, and then each subtype of EVs is separated into
perspective layers with different densities. Common methods
based on the size of EVs include ultrafiltration (UF) and
size exclusion chromatography (SEC) (28). In UF, the target
group of EVs passes through the filtration membrane with
a certain molecular weight cut off (MWCO) while larger
particles are retained. In SEC, EVs with different sizes pass
through the column filled with porous polymer microspheres
that allows smaller particles to penetrate. Routes in those pores
take more time for smaller EVs to elute than larger EVs.
Immunoaffinity capture (IC) technology relies on the binding
between antigens on the surface of EVs and antibodies attached
to the surface of tools, such as magnetic beads or plates.
IC allows the isolation of EVs originating from a specific
source with certain surface proteins. Polymer precipitation (PP),
typically polyethylene glycol base, takes advantage of strong
hydrophilicity to “grab” the water molecules in the solution,
rendering EVs “dehydrated” to aggregate (41). Commercial
isolation kits with various strategies described above have also
been used in research. However, each method possesses its
shortcomings. A large initial volume is required for DC and
a long DC duration increases the risk of structural damage to
EVs and protein contamination. DGC is associated with extra
preparation and a low yield of EVs. When EVs pass through
the filter membrane, the pores might be blocked, causing low
yield, and the shear force leads to deformation and lysis of EVs.
SEC and IC cannot process a large volume of solution. EVs
isolated by PP tend to be contaminated by polymers and proteins
(41). The isolation method, which is linked to the purity of
EVs, is suggested to be chosen according to different research
purposes (26).

With the boosted development of technology, novel strategies
have been developed to isolate EVs efficiently. Microfluidic
techniques allow the isolation of EVs considering their physical
and biochemical properties simultaneously. Acoustic (47),
electrical (48), and electromagnetic field forces (49) can be
addressed inside microfluidic devices to isolate EVs, along with
immuno-based (50) and asymmetric flow field flow-based (51)
microfluidic techniques.While this technology is still developing,
the efficiency, simplicity, and low initial volume of the sample
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FIGURE 3 | Common isolation strategies of EVs. (A) Differential ultracentrifugation (DC). (B) Density gradient centrifugation (DGC). (C) Ultrafiltration (UF). (D) Size

exclusion chromatography (SEC). (E) Immunoaffinity capture (IC). (F) Polymer precipitation (PP).

render it a promising method for future clinical application.
Other methods of large-scale EV production include the use of
bioreactor culture of parental cells, in which the characteristics
of EVs need to be clarified with the culture condition in the
bioreactor (52). Shear stress and cell extrusion can scale up EV-
like vesicles production, while the purity of vesicles is relatively
poor (53). Hydrostatic filtration dialysis and cytochalasin B
induced vesicles have also been reported to improve EVs yield

(54, 55). Immortalization of MSCs is also a potential strategy,
along with increased safety concerns (56).

For the characterization of EVs, each subtype has been
identified by some detection strategies based on their
morphology, size, biomarkers of surface, and contents. The
morphology of EVs is frequently observed by scanning electron
microscopy and transmission electron microscopy (26).
Electron cryo-microscopy and atomic force microscopy are
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FIGURE 4 | Mechanisms of ADSC-EVs promoting skin regeneration. ADSC-EVs might accelerate skin wound repair by participate in inflammation, angiogenesis, cell

proliferation, and extracellular matrix (ECM) remodeling, regulating cell apoptosis and autophagy, and relieving oxidative stress in wound microenvironment. The

regeneration of skin appendages and physiological functions are also promoted by ADSC-EVs.

also used (28). The size distribution and concentration of EVs
are usually detected by nanoparticle tracking analysis and
dynamic light scattering, and tunable resistive pulse sensing
(57). Some new technologies, such as light microscopic single
EV analysis, have been utilized to analyze the properties of
a single EV (58). Common biochemical analysis methods
of EVs include western blotting, flow cytometry, and liquid
chromatography and mass spectrometry. In recent years, new
technologies for EVs analysis have emerged, including small
particle flow cytometry, micronuclear magnetic resonance, and
thermophoretic profiling (33).

MECHANISMS BY WHICH ADSC-EVs PLAY
A THERAPEUTIC ROLE IN SKIN
REGENERATION

Recent studies have demonstrated the beneficial role of ADSC-
EVs in multiple tissue regeneration, such as skin (59), tendon
(60), bone (61), and nerve tissue (62). ADSC-EVs exert a
regenerative effect by delivering signals to cells with single

or coordinated actions of biomolecules. Wound healing is
one of the dominant components of skin regeneration and
consists of several intricate and dynamic processes: hemostasis,
inflammation, proliferation, and remodeling (63). ADSC-EVs
participate in each process of wound healing, along with
the regeneration of skin physiological functions to achieve
ideal skin regeneration. The comprehensive abstract of current
understandings of ADSC-EVs functioning in skin regeneration
is shown in Figure 4.

Promote Wound Healing
Inflammation Regulation
In the process of ideal wound healing, the immune system
is supposed to defend against the invasion of pathogens by a
moderate inflammatory response. When immune homeostasis
is compromised, excess and persistent inflammation contributes
to impaired wound healing, such as in chronic diabetic wounds
(64). ADSC-EVs improve the inflammatory microenvironment
at wound sites by regulating the activities of immune cells,
thereby accelerating wound repair.
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ADSC-EVs can regulate the balance between CD4T cell
subsets (65) and inhibit the proliferation of T cells and the release
of inflammatory factor IFN-γ (66). The engulfment of ADSC-
EVs by macrophages and subsequent increased expression
of Arg-1 and IL-10, soluble markers of anti-inflammatory
phenotype macrophages (M2) (67), were observed in obese mice.
Mechanically, ADSC-EVs induced transactivation of Arg-1 in
macrophages by transferring signal transducer and activator
of transcription 3 (68). Additionally, the polarization of M2
macrophages after treatment with ADSC-EVs was found to be
associated with the S1P/SK1/S1PR1 signaling pathway, along
with reduced expression of inflammatory cytokines IL-6, IL-1β,
IFN-γ, and TNF-α (69).

The immunosuppressive activity of ADSC-EVs regulates
inflammation in skin wounds, too. Interestingly, another study
demonstrated that ADSC-EVs attenuated the polarization of
inflammatory M1 macrophages, while hardly inducing M2
polarization (70). Although clarification of this controversy needs
to be addressed in further investigation, both inhibited M1
polarization and increased M2 polarization led to improved
inflammation. In addition, treatment of ADSC-EVs in ischemia-
reperfusion skin flaps resulted in less infiltration of inflammatory
cells and ameliorated apoptosis (71).

Current studies have demonstrated the effects of ADSC-
EVs as mediators in the inflammatory response, in which
the inhibition of inflammation dominates, promoting wound
repair. However, it is noteworthy that a necessary inflammatory
response also contributes to the protection of the wound
microenvironment (72). In the early stage of using ADSC-
EVs, they were indicated to cause inflammation, whereas exert
pro-adipogenic function and promote collagen synthesis in
the late stage (73). From this perspective, homeostasis of
inflammation at wound sites needs to be considered in both
research and application of ADSC-EVs, rather than absolute
inhibition of inflammation.

Angiogenesis
Angiogenesis involves multiple cytokines and intricate signaling
pathways, which are essential for the supply of oxygen
and nutrients as skin wounds heal. ADSC-EVs have been
documented to trigger angiogenesis by transferring contained
proangiogenic mediators. Neovascularization of human
umbilical vein endothelial cells (HUVECs) was promoted with
the treatment of ADSC-EVs, which was more robust when
miR-126-3p was overexpressed (74). Other microRNAs carried
by ADSC-EVs were also reported to participate in angiogenesis,
such as miR-126, miR-130a, and miR-132 (75). Additionally,
miR-125a-3p from ADSC-EVs enhanced angiogenesis of
HUVECs by activating the PI3K/AKT signaling pathway,
targeting the PTEN gene (76). Another study indicated that
ADSC-EVs also contributed to angiogenesis in the diabetes
microenvironment by increasing HIF-1α and VEGF expression
through the PI3K/AKT/mTOR signaling pathway (77). The
angiogenic potential of ADSC-EVs might be enhanced in the
specific microenvironment. Under hypoxia conditions, ADSC-
EVs encapsulated more proangiogenic growth factors, including
IGF-1, FGF, VEGF and their receptors (17), angiopoietin-1, and

fetal liver kinase-1 (78), and demonstrated more prominent
neovascularization and faster wound repair. With the stimulus
of PDGF, secretion of ADSC-EVs increased, along with
upregulated c-kit and SCF (79). The c-kit is a tyrosine kinase
receptor that regulates the differentiation of progenitor cells
to blood or vascular endothelial cells. C-kit ligand SCF is a
kind of stem cell regulator that plays an important role in
angiogenesis and recruitment of MSCs (80). EVs released by
ADSCs overexpressing glyoxalase-1 (GLO-1) promoted capillary
growth compared with normal ADEC-EVs under high-glucose
conditions by upregulating the eNOS/AKT/ERK/P-38 signaling
pathway, which regulates the proliferation and migration of
HUVECs (17).

ADSC-EVs facilitate angiogenesis by providing cargos that
participate in capillary growth or activate angiogenic signaling
pathways, thereby promoting wound healing. However, newly
formed capillaries are supposed to degrade to form an
appropriate vascular density similar to normal skin at the
late stage of wound healing without scarring (81). In wound
repair, further experiments are necessary to figure out optimal
administration time and quantity of ADSC-EVs, avoiding
potential side effects, such as scar formation out of excessive
angiogenesis caused by the overdose of ADSC-EVs.

Cell Proliferation
During the proliferative phase of wound healing, epithelialization
occurs mainly by proliferating and migrating to the wound site
of epithelial cells. Fibroblasts are activated to proliferate and
produce ECM to repair the defect. ADSC-EVs can be engulfed
by human skin fibroblasts (HSFs) and HaCaT keratinocytes,
promoting subsequent proliferation and migration (74, 82) in a
dose-dependent manner (83). After the uptake of ADSC-EVs, the
cell cycle of HSF was stimulated to accelerate re-epithelialization
(82, 83) by the activation of AKT and ERK signaling pathways
(82). Intriguingly but predictably, the Wnt/β-catenin signaling
pathway, which participates closely in cell growth and renewal,
was also involved in the proliferative effect of ADSC-EVs
(84, 85). Long non-coding RNA (lncRNA) H19 in ADSC-EVs
combined with miR-19b and inhibited its expression, targeting
SRY-related high-mobility-group box 9, thus promoting wound
healing (84). ADSC-EVs promote the proliferation andmigration
of human dermal fibroblasts (HDFs) and HaCaT keratinocytes
by lncRNA MALAT-1 targeting miR-124 (85). Additionally,
boosted proliferation and migration of HDFs were induced by
upregulated miR-199 and downregulated miR-93 contained in
ADSC-EVs (86). Finally, ADSC-EVs-treated M2 macrophages
contributed to the proliferation and self-renewal of ADSCs (68).

Extracellular Matrix Remodeling
The synthesis and remodeling of ECM affect the formation
of hypertrophic scars and the time of wound healing. Scar,
which is composed of ECM, mostly collagen I (87), provides
temporary strength to injured skin and will be degraded by
matrix metalloproteinases (MMPs) gradually in the wound
healing process (88). ADSC-EVs have been demonstrated to
regulate the process of ECM remodeling. With the treatment

Frontiers in Medicine | www.frontiersin.org 7 June 2022 | Volume 9 | Article 858824

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wang et al. ADSC-EVs in Skin Regeneration

of ADSC-EVs, deposition of collagen I and III with a well-
organized histological structure increased at the wound site,
along with the regeneration of skin appendages (89, 90).
ADSC-EVs facilitated ECM remodeling during wound repair
by upregulating the ratio of collagen III/I, TGF-β3/TGF-
β1, and MMP-3/tissue inhibitors of MMP-1 (TIMP-1). The
differentiation of fibroblasts to myofibroblasts that contribute to
scarring was also inhibited by ADSC-EVs (91). Overexpressed
miR-21 in ADSC-EVs promoted the expression of MMP-9 and
MMP-3 and suppressed that of TIMP-1, TIMP-2 and TGF-β1
by activating the PI3K/AKT signaling pathway to restrain scar
formation (92). Although persistent high MMPs levels indicated
extra ECM degradation and poor prognosis in diabetic wounds
(93), ADSC-EVs boosted the deposition of collagen, which is
essential for ECM formation in skin wounds, exerting a positive
effect on ECM remodeling (94). In the mouse model, ADSC-EVs
were reported to increase the synthesis of collagen to accelerate
wound repair, which was inhibited in the late stage to reduce
scarring (83). However, with the treatment of ADSC-EVs, HSF
produced less collagen I, collagen III, and α-SMA, which differed
from other studies, although they all ameliorated scar formation
(95). This controversial result might be because that HSF in
this study was isolated from hypertrophic scar tissue, in which
HSF remained persistently hyperactive (96) while other studies
utilized cells from normal skin tissue.

Autophagy and Apoptosis Modulation
From the orthodox perspective, autophagy and apoptosis
were merely considered to be essential parts during skin
wound healing. However, some studies have documented
that ADSC-EVs promote wound repair with autophagy and
apoptosis involved in the microenvironment of the wound
site. Overexpressed circular RNA mmu_circ_0000250 in ADSC-
EVs suppressed the expression of miR-128-3p in endothelial
progenitor cells (EPCs), hence activating autophagy of EPCs
and attenuating apoptosis of skin tissue (16). Moderate
autophagy has been demonstrated to augment angiogenesis
by recovering the function of EPCs (97), thus promoting
wound healing. ADSC-EVs also ameliorated apoptosis of
skin cells under irritations, acting as a protective buffer in
the wound microenvironment (17, 98). Interestingly, MSCs
underwent remarkable apoptosis after transplantation in vivo,
but they still exerted prominent therapeutic effects and prevented
hypertrophic scar formation (99). ADSCs might participate in
wound healing by secreting EVs in healthy conditions, but
also transferring therapeutic information when they are dying.
ADSC-EVs produced during apoptosis are potential functional
parts, which need further investigations.

Oxidative Stress Relief
The generation of reactive oxygen species (ROS) in the processes
of wound healing is required to defend against the invasion
of pathogenic microbes and active cell survival signaling (100).
Nevertheless, excessive ROS in the microenvironment of skin
wounds causes oxidative damage and impaired wound healing.
For example, in diabetic wounds, persistent high glucose level
activates protein kinase C in smoothmuscle and endothelial cells,

increasing the activity of NDPH and the production of ROS,
which leads to impairment of the viability of dermal fibroblasts
and keratinocytes (64). After long-term exposure to high glucose,
endothelial cells tend to reduce the secretion of vasoactive factor
endothelial nitric oxide synthase (eNOS), resulting in restricted
blood flow and difficult wound healing (101). ADSC-EVs have
been investigated to exert protective effects in such an oxidative
stress microenvironment, maintaining the biological activities
of cells. ADSC-EVs relieved ROS damage in EPCs induced by
high glucose via the reduced expression of oxidative stress-related
proteins NOX1 and NOX4, which could be inhibited by the EV
inhibitor GW4869 and enhanced by overexpression of nuclear
factor erythroid 2-related factor 2 (102). When facing oxidative
stress caused by hydrogen peroxide (H2O2), ADSC-EVs also
maintained the viability and metabolic activity of keratinocytes
and HSF (18), which might be attributed to lncRNA MALAT-
1 contained in ADSC-EVs (85, 103). Additionally, EVs derived
from ADSCs pretreated with H2O2 possessed a more prominent
effect on oxidative stress relief and microvessel formation (71).
Some studies have documented that pretreatment with H2O2

enables MSCs to produce higher levels of miR-21 to relieve
cell death caused by oxidative stress (104, 105). Irritation seems
to change the cargos of ADSC-EVs, thereby affecting their
functions. GLO-1 is the rate-limiting enzyme in the glyoxalase
system that plays an important role in the detoxification of
advanced glycation end products (106, 107), accelerating the
clearance of ROS in endothelial cells (108). After coculture
with ADSC-EVs containing GLO-1, HUVECs accumulated less
ROS and inflammatory cytokine IL-1β in a high glucose wound
environment, with the involvement of the eNOS/AKT/ERK/P-38
signaling pathways (17).

Regeneration of Skin Physiological
Function
The closure of skin wounds is not the end of perfect skin
regeneration, in which the recovery of normal structure and
physiological function are also important. The barrier function
of the skin mainly relies on the external layer, the epidermis
that lies openings of appendages (hair follicles, sweat glands, and
sebaceous glands) and intercellular lipids (ceramides, filaggrin,
and cholesterol) (109–111). Recent studies have demonstrated
that ADSC-EVs function as positive regulators in recovering skin
physiological function, at least partly.

Hair Follicle Regeneration
Hair deficiency is one of the major aesthetic complaints
not only in patients with alopecia but also in those who
have healed skin wounds without hair follicle regeneration.
Moreover, skin with more hair follicles heals faster than
that with less hair or without hair, which is due to the
involvement of hair follicle stem cells in wound healing
(112, 113). However, wound repair of adult mammals is
likely to form scars without skin appendage regeneration
(114). ADSC-EVs seemed to rescue hair regeneration in some
way. In nude mice models, additional 50µg/ml ADSC-EVs
in experimental groups were grafted with dermal cells and
epidermal cells to skin wounds, in which more hairs with
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normal structure and mature hair follicles were observed, along
with higher expression of PDGF and VEGF and lower TGF-
β1 expression in skin tissue (20). Although morphological
observation cannot provide a detailed explanation mechanically,
PDGF and VEGF are deemed to be growth regulators of
hair follicles in the anagen phase (115). In addition, the
reduced expression of TGF-β1 might contribute to hair
maintenance, since it participates in the catagen phase of
hair development and affects hair follicle apoptosis-associated
molecules (116, 117). ADSC-EVs themselves also contain
cytokines that stimulate hair follicle growth, including VEGF
and FGF (17, 118), and enable the activation of the Wnt
signaling pathway essential to hair follicle induction (85, 98,
119, 120). Even so, more research in this field is required
to decipher the specific molecular mechanism of hair follicle
regeneration promoted by ADSC-EVs. Current studies are
largely based on rodent models, however, the structure of the
skin and mechanisms of wound healing in humans and rodents
are different.

Skin Barrier Repair
The epidermal barrier of the skin is supplied by stratum corneum
(SC), which consists of corneocytes and an intercellular lipid
mixture of ceramides, free fatty acids, and cholesterol (111).
Among lipids in SC, ceramides are the dominant content,
with weight over 50% (121), the defect of which is a critical
part of etiology in atopic dermatitis (AD). Recently, ADSC-
EVs have been indicated to promote skin barrier repair
in AD mouse models. With the injection of ADSC-EVs,
impaired SC hydration induced by oxazolone was normalized.
Meanwhile, the quantity of long-chain dihydroceramide, a
precursor component during de novo synthesis of ceramides,
was significantly increased (19, 122). Predictably, enhanced
synthesis of sphingosine-1-phosphate (S1P), a metabolite of
ceramides, was also observed in this study. S1P has been
reported to inhibit ceramide-associated apoptosis and stimulate
the viability and differentiation of keratinocytes (123, 124). As
mentioned before, ADSC-EVs activated the S1P / SK1 / S1PR1
signaling pathway to promote M2 macrophages polarization,
thus attenuating inflammation (69), which is in accordance
with the reduced inflammatory cytokines, such as TNF-α and
IFN-γ (19). The lipid regenerative function of ADSC-EVs
might be partly due to their regulatory role in inflammation.
The particular actions of contents in ADSC-EVs helping
skin barrier repair remain elusive, but ADSC-EVs may be a
potential cell-free therapeutic approach for regeneration of skin
barrier function.

PRECLINICAL AND CLINICAL STUDIES OF
ADSC-EVs FOR SKIN REGENERATION
AND REPAIR AFTER INJURY

Wound Healing
After long-term exploration, researchers gradually found the
advantages and appropriate drug delivery methods of ADSC-
EVs in skin regeneration and repair. Initially, the application

of human fibrocyte-derived EVs in wound models of diabetic
mice showed that all wound healing was significantly enhanced
(125). EVs derived from other MSCs were also found to play a
critical role in promoting re-epithelialization, collagen synthesis
and angiogenesis in skin wound healing (126, 127). Considering
that it would be easier to obtain autologous ADSC when it is
finally applied to human wound treatment because liposuction
has been very common and mature, researchers mixed ADSC-
EVs with fibroblasts and demonstrated that this synergistic effect
was helpful to induce the enrichment of miRNAs related to
promoting wound healing in fibroblasts (86). Earlier it was
shown that direct IV administration of ADSC-EVs in a murine
wound model was beneficial to ameliorate cutaneous repair by
regulating ECM remodeling (91). Furthermore, local injection
of ADSC-EVs into mouse full-thickness cutaneous wounds
significantly increased re-epithelialization, collagen deposition,
and neovascularization and induced accelerated wound closure
(82). To explore the therapeutic potential of ADSC-EVs more
accurately, BMSC-EVs and ADSC-EVs were applied, respectively
to diabetic wounds, and the results demonstrated that ADSC-
EVs possess the more potent pro-angiogenic activity and can
promote the wound healing of diabetic ulcers (13). Considering
the availability of adipose tissue and fewer ethical concerns of
EVs, emerging skin regenerative studies tend to focus on ADSC-
EVs to better transform to future clinical trials (128).

Since the regeneration and repair mechanism of swine skin
is similar to that of humans, swine skin is more promising than
rodent skin for studying skin wounds. The topical conditioned
medium of ADSC therapy displayed increased angiogenesis and
a diminished inflammatory response and improved the wound
closure rates in the full-thickness dorsal wound models in pigs
(129). However, such research reports are very scarce.We analyze
the possible reasons from two aspects. On the one side, it is
technically and economically more difficult to operate diabetic
or burn wound models in large animals. On the other side, the
application of EVs in large animals requires a larger dose of EVs,
which is limited by current EV isolation methods. Researchers
need to accelerate the maturation of methods producing large-
scale EVs or find new deliverymethods to improve local retention
of EVs, which is more conducive to the research on EVs
application in the future.

At the time of this review writing, only a few trials related to
applying EVs to treat skin wounds can be searched on the web
clinicaltrials.gov (accessed on Nov. 20, 2021). Unfortunately, no
trial related to ADSC-EVs is included until now, however, the
following summary of other EVs applied to skin wound repair
has important reminder and reference values for the subsequent
direct application of ADSC-EVs in this field. Autologous serum-
derived EVs will be evaluated to determine whether they could
play a positive role in cutaneous wound healing (NCT02565264)
and venous ulcers not responsive to conventional treatments
(NCT04652531). One trial will investigate the therapeutic
potential of stem cell-conditioned medium as an additional
growth factor in chronic skin ulcer healing (NCT04134676).
Another trial that has completed patient recruitment aims to
develop a safe and reasonable method of administering BMSC-
EVs to burn wounds (NCT05078385). Although no EV product

Frontiers in Medicine | www.frontiersin.org 9 June 2022 | Volume 9 | Article 858824

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wang et al. ADSC-EVs in Skin Regeneration

had been approved by the FDA to date, it is firmly believed
that more clinical studies will be included soon, and high-quality
clinical trial results can energetically promote the final clinical
application of EVs.

Skin Photoaging and Senescence
As the most commonly used stem cell therapeutics, the
application of ADSCs in skin rejuvenation has been widely
investigated. The paracrine effects of ADSCs, which are
characterized by the release of cytokines in the form of
EVs, are recognized as critical mechanisms in skin tissue
repair and regeneration. Drawing support from their paracrine
effects, ADSC-free derivatives, including ADSC-EVs and ADSC
conditioned medium (ADSC-CM), have gained attention as
novel therapeutics in ameliorating skin health (24, 130). As
is universally acknowledged, human dermal fibroblasts (HDFs)
work as essential objects in anti-wrinkle, wound healing, skin
aging, and overall homeostasis studies. The ADSC-EVs and
ADSC-CM acted as therapeutic agents in skin rejuvenation by
improving proliferation, migration, and collagen synthesis in
HDFs without adverse effects (131, 132). Because ADSC-CM
could effectively downregulate the activation and transcription
of UVB-related signaling pathways and upregulate antioxidant
response agent expression, it was regarded to play a positive role
in keeping HDFs away from UVB-induced photoaging damage
(133). By decreasing ROS production andMMPs overexpression,
which are directly linked to ECM proteins degradation, ADSC-
EVs slowed wrinkle formation and skin photoaging (70, 134).
Morphometric and morphological assessment of histological
changes showed that ADSC-EVs could decrease UV-mediated
epidermal thickening and prevent skin damage caused by
UV photoaging (135). Because research on ADSC-EVs is still
limited, the majority of studies on the therapeutic function of
ADSC derivatives in skin rejuvenation focus on ADSC-CM.
Despite slight differences in protein properties that exist between
ADSC-EVs and ADSC-CM, these two main components in
ADSC derivatives contain factors linked to ECM remodeling
and immunoregulation, which are crucial for maintaining skin
homeostasis and antiaging (136). Furthermore, the removal of
EVs from ADSC-CM significantly weakened its positive effects
on cell proliferation, migration, and scar prevention (137, 138).
This demonstrates that EVs are crucial components in ADSC-
CM and may possess an independent or synergistic role that is
beneficial for anti-skin photoaging.

Skin Pigmentation After Trauma
In posttraumatic skin regeneration, the non-Caucasian race
is more susceptible to pigmentation and/or scar formation.
For such patients, anti-scar treatment while desalinating the
pigment as far as possible will be conducive to the appearance
of regenerated skin closer to normal. The increased expression
of S1P induced by ADSC-EVs was negatively correlated with
the production of melanin, which implies that ADSC-EVs have
potential application value in skin-brightening (19). As shown
in a prospective, double-blind, randomized, placebo-controlled
study, a cosmetic formulation containing ADSC-EVs decreased
skin melanin contents and reversed hyperpigmentation in

human volunteers (139). Although the effect of ADSC-EVs on
improving skin brightness becomes weak with time due to
the limitation of transdermal delivery, the actuation duration
of ADSC-EVs will be expected to be ameliorated with the
continuous development of new drug delivery agents such as
nano biomaterials. In the early stage of skin injury repair, the
application of ADSC-EVs can promote scarless healing (83), but
whether similar effects will appear in colored people and whether
they could dilute pigmentation while reducing scarring need to
be further studied.

Due to the different types of skin damage, the diversity of the
involved skin layers also exists. Further research will be needed
to locate which cells in the skin damage microenvironment are
targets of ADSC-EVs. It is foreseeable that accurately applying
EVs to selectively act on target cells in the epidermis or
dermis will greatly contribute to further explaining the specific
mechanism of EVs’ regenerative function.

CHALLENGES AND PROSPECTS

ADSCs have been demonstrated to play a beneficial role in
skin regeneration and rejuvenation due to their participation
in multiple biological activities of skin cells. ADSC-EVs, the
products, and the information disseminators of ADSCs, seem to
inherit similar therapeutic effects from their parental cells but
are safer and more convenient to use. ADSC-EVs may promote
skin regeneration, including structural repair and functional
recovery, by accelerating the canonical wound repair process
and regulating the skin microenvironment. The regenerative
effect of ADSC-EVs renders them a potential option for clinical
application in wound treatment and skin cosmetology. With
multiple signal recognition molecules anchoring to the natural
lipid membrane, ADSC-EVs are underlying carriers delivering
drugs in vivo. EVs have been modified to carry therapeutic
molecules by multiple loading methods, such as transfection of
parental cells for endogenous loading (16), electroporation (140),
co-incubation (141), and freeze-thawing (142) for exogenous
loading. Furthermore, the combination between ADSC-EVs and
bioactive scaffolds is an effective strategy to improve the quick
clearance of ADSC-EVs at the wound site. Meanwhile, hydrogel
dressings containing ADSC-EVs can be modified to possess
functions promoting wound repair, such as antibacterial (89) and
antioxidation (18).

Nevertheless, as mentioned above, current comprehension
of ADSC-EVs themselves and the mechanisms of their actions
remain elusive, and challenges exist in their manufacture and
application. With skin structure more similar to human skin,
pigs and guinea pigs are preferred animal models for skin wound
research than rodent models mostly used in current studies
of ADSC-EVs in skin regeneration. More convincing evidence
needs to be uncovered to clarify the current enigma existing
in the mechanisms of ADSC-EVs. For example, regulation
of ADSC-EVs on the proliferation and differentiation of
fibroblasts, which is essential for wound repair but results in scar
formation when overwhelming. From a current perspective, the
effect of ADSC-EVs is strongly associated with their contents,

Frontiers in Medicine | www.frontiersin.org 10 June 2022 | Volume 9 | Article 858824

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wang et al. ADSC-EVs in Skin Regeneration

which are influenced by the physiological conditions of their
parental cells (14, 143). Diverse isolation methods also lead
to discrepancies in cargo (25). Quality control of ADSC-EVs
is fundamental to probe the particular portion of ADSC-EVs
functioning directly or mediately as key therapeutics in skin
regeneration, thus further formulating instructive protocols to
study or manufacture in the future. Likewise, a low yield of
ADSC-EVs is also a crucial issue, which is attributed to the
limited culture medium of ADSCs and repeated centrifugation
processes in conventional isolation methods. Strategies for the
production with large quantities and long-term storage of
ADSC-EVs must be developed for clinical application. To date,
research on ADSC-EVs has mainly remained at the laboratory
level. To utilize the regenerative and therapeutic functions of
ADSC-EVs, much more comprehensive information needs to
be uncovered.
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