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T cell activation is vital for immune response initiation and modulation. Except for the
strength of the interaction between T cell receptors (TCR) and peptides on major
histocompatibility complex molecules (MHC), mechanical force, mediated by
professional mechanosensitive ion channels, contributes to activating T cells. The
intrinsic characteristic of synthetic micro/nanomotors that convert diverse energy
sources into physical movement and force, opening up new possibilities for T cell
regulation. In this work, Pd/Au nanomotors with spiky morphology were fabricated,
and in the presence of low concentrations of hydrogen peroxide fuel, the motors
exhibited continuous locomotion in the cellular biological environment. Physical cues
(force and pressure) generated by the dynamic performance are sensed by
mechanosensitive ion channels of T cells and trigger Ca2+ influx and subsequent
activation. The successful demonstration that mechanical signals generated in the bio
microenvironment can potentiate T cells activation, represents a potential approach for
cell-based cancer immunotherapy.
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INTRODUCTION

A micro/nanomotor is a biomimetic system of natural molecular motors and micro-organisms that
converts energy into movement and force (Abdelmohsen et al., 2014). Typically, to propel in
biological media, these artificial machines rely on either chemically powered [including hydrogen
peroxide (Wilson et al., 2013), glucose (Ma et al., 2015), urea (Hortelão et al., 2018), etc.] or external
energy sources [such as light (Ibele et al., 2009), ultrasonic (Lu et al., 2019) or magnetic fields (Liu
et al., 2020), etc.]. Such unbound tiny machines have inherent advantages such as active transport,
high tissue penetration, and motion controllability, indicating immense potentials for a variety of
biomedical applications in targeted drug/cell delivery (Tu et al., 2017a; Tu et al., 2017b) minimally
invasive surgery (Malachowski et al., 2014; He et al., 2016) and biosensing (Molinero-Fernandez
et al., 2020), etc., serving as a revolutionary toolbox for cancer diagnosis and therapy.

In recent years, immunotherapy has created a novel paradigm for cancer treatment and has made
many extraordinary breakthroughs in clinic practice (Mellman et al., 2011). Among them, activation
of T cells is a key step in cell-based immunotherapies. Generally, T cells are activated in response to
the interaction of T cell receptors (TCRs) with peptides on major histocompatibility complex
molecules (pMHC)and induction of downstream signaling (Restifo et al., 2012). Benefiting from the
signal transduction of the immune cascade, methods have been developed to activate T cells with
various cytokines (IL-6, IFN-γ, CXCL10, etc.). While effective treatment, it also faces the risk of
causing excessive activation of T cells and eventually leading to a cytokine storm. To reduce this risk,
precise local activation methods are required. The micro/nanomotor system has advantages in
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temporal and spatial controllability, making it a potential
candidate for local activation of T cells. To modulate immune
cells, current works have loaded micro/nanomotors with various
antigens and stimulatory ligands and used them as artificial
antigen-presenting cells (APCs). For instance, Lee et al. (Lee
et al., 2016) achieved remote activation of T cells using Janus
magnetic particles with anti-CD3 coating. Our group (Wang et al.,
2020) proposed a magnesium (Mg)-based polymeric micromotor
system loaded with chemical stimulators, as an additional
biocompatible system for immune cell regulation. However,
these immune cells regulation focus on agonists modified on
the carrier, bypassing the innate mechanical performance caused
by the motility itself as well the need for mechanical cues in T cell
activation. Actually, in addition to the strength of the interplay of
TCRs with pMHC, mechanical forces and pressure contribute to
accentuating T cell activation via mechanosensitive cation
channels, especially Piezo1 members (Liu et al., 2018; Pan
et al., 2018; Liu and Ganguly, 2019). Recent data suggest that
such mechanosensitive ion channels are widely expressed in
human immune cells and function as professional
mechanotransducers at the immunological synapse, thus
playing a crucial role in cell activation. Solis et al. (Solis et al.,
2019) found that sustained mechanical stimulation (cyclical
hydrostatic pressure and force) can induce immunity
activation, demonstrating that mechanical signals can also be
used as regulators of immune cell function. Moreover, by further
quantification, mechanosensitive channels of immune cells can
be activated with a force near 10 pN (Wu et al., 2016).
Accordingly, Ma et al. (Ma F. et al., 2015) used an optical
tweezer setup to measure the effective force generated by a
single enzyme-driven nanomotor after breaking through the
self-thermal force of Brownian motion (~40 pN in this work).
In addition, the continuous self-driven behavior of the motor in
the extracellular environment induces rapid convection of the
surrounding fluid, and this dynamic microenvironment may have
a synergistic effect on the force of the motor acting on the cell
(Paxton et al., 2004; Solis et al., 2019; Walmsley, 2019; Lopez-
Ramirez et al., 2020). Hence, it is reasonable to use nanomotors to
activate T cells because it can deliver physical signals to elicit
responses from mechanosensitive ion channels and ultimately
induce cell activation.

Although various forms of synthetic micromotors and
nanomotors have been developed, with Janus particles,
rods, spiral structure, and tube form (Gao et al., 2013; Ma
X. et al., 2015; Zhang et al., 2020), the impact of motor
morphology on its performance has not been systematically
studied so far. Especially, the spiky nanomotors prepared in
this study resemble many pathogens with spike-like
nanostructures on their surface, which are known to be
crucial for their adhesion and infection (Christo et al.,
2016). Wang et al. (Wang et al., 2018) demonstrated spiky
nanoparticles to activate and amplify the immune response
through exerting mechanical stress on the cells and their
research sheds light on the significance of nanostructural
cues in the regulation of innate immune response,
deducing that spiky nanomotors may have an analogous
effect on the immune system.

Herein, we fabricated Pd/Au Janus nanomotors decorated
with nano-spikes and utilize the mechanosensitive ion
channels (calcium-permeable) as a sensor to investigate their
ability for activating T cells in vitro. Figure 1 schematically
illustrates the synthesis of the spherical Pd nanoparticles with
dendric structures via hydrothermal reaction, and then
asymmetrically sputtering with a thin gold (Au) layer on one
side of the nanospheres for the fabrication of nanomotors. By
decomposing hydrogen peroxide, the thrust was generated and
the motor was pushed forward. Subsequently, the nanomotors
fast-moving around T cells or in or induce convection of the
environment fluid outside the cell as a whole, and the pressure
generated is transmitted to mechanosensitive ion channels, which
largely exist on the membrane of T cells, making inwardly flow of
calcium ions and eventually optimize T cell activation overall.

MATERIALS AND METHODS

Materials
Palladium chloride (59–60%) was purchased from Macklin
Biochemical Co., Ltd. (Shanghai, China), hydrochloric acid
(AR), hydrogen peroxide (30%) was purchased from
Guangzhou brand reagent company (Guangzhou, China), oleic
acid, oleylamine, benzyl alcohol (99%), absolute ethanol, and
sucrose were obtained fromAladdin Biochemical Technology Co.
(Shanghai, China). Fluo-4 AM, Hoechst 33342, Trypan Blue
Solution (0.4%), HEPES buffer solution (pH = 7.4), PBS buffer
solution (pH = 7.4) was bought from Beyotime Biotechnology
(Shanghai, China). Roswell Park Memorial Institute (RPMI-
1640) cell media were bought from Gibco. Jurkat T cells were
donated by Southern Medical University. All other chemical
reagents used in this experiment were analytically pure
without further purification. Purified deionized water was
prepared by the Milli-Q Plus system (Millipore, United States).

Fabrication of Spiky Pd/Au Nanomotors
Pd nanospikes were firstly synthesized by hydrothermal method.
In a typical procedure, 0.2 mmol PdCl2 (dissolved in 1M HCl),
80.0 ml benzyl alcohol, 4.0 ml oleylamine (OAm) and 4.0 ml oleic
acid (OA) were mixed in a 100 ml beaker and stirred at room
temperature for 30 min. Then, it was transferred to a stainless teel
autoclave lined with a polytetrafluoroethylene container, and
reacted at 120°C for 8 h. Naturally cool to room temperature,
centrifuge at 10,000 rpm to remove the surfactant, wash the
precipitate with ethanol 3 times, and then dry it under
vacuum at 40°C. Subsequently, an aqueous solution (~200 mg/
ml) containing Pd nanoparticles was dropped onto the glass slide
by a spin coater to form a monolayer, using an ion sputter coater
to sputter gold (~3 nm, 50s) were used to produce Pd/Au Janus
surface. Then, it was collected by ultrasound and resuspended in
PBS, washed three times, and dispersed in PBS buffer solution for
further use.

Motion Evaluation of Pd/Au Nanomotors
The optical videos were recorded by A Nikon Ti2-A inverted
optical microscope with a ×40 objective. Dilute Pd/Au
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nanomotors to the appropriate concentration with PBS buffer
and add H2O2 solution with different concentrations (0.00, 0.05,
0.10, 0.50% wt, add 10 µL in 1 ml PBS dispersion solution, the
final concentration is 0.00, 0.165, 0.33, 1.65mM, respectively) in a
petri-dish and record the movement videos up to 10 s at 10 fps,
respectively. Then, the moving tracking trajectories and the speed
of nanomotors (at least 15) were analyzed by ImageJ.

The mean square displacements (MSD) curves were fitted by
the following Eq. 1 (Arque et al., 2019; Tang et al., 2020):
MSD(Δt) � < (xi(t + Δt) − xi(t))2 >, where i = 2 refers to
two-dimensional analysis.

Extract the slope of the MSD curves, and then calculate the
long-term diffusion coefficient (DL) according to the formula 2
(Wang et al., 2019; You et al., 2019):

MSD � 4DLΔt

Cell Culture and Staining
Jurkat T cells were cultured in Roswell Park Memorial Institute
(RPMI-1640) cell media supplemented with 10% (v/v) fetal
bovine serum (FBS) and penicillin/streptomycin (1%, v/v) in
an incubator at 37°C with an atmosphere with 5% CO2. For
calcium imaging, transfer the cells to a serum-free cell culture
medium and starve them for 2 h. Then, incubate with 5 μM Fluo-
4 AM in serum-free cell culture medium at 37°C for 30 min, and
then stain with Hoechst 33342 for 10 min.

Monitor the Activation of Jurkat T Cells
Resuspended the Jurkat T cells loaded with Fluo-4 AMwith the DEP
cellmediumand seeded into the 96-well plates with a density of about
1× 104 cells per well. Incubated the cells with Pd/Au nanomotors

(~20 μg/ml) in the presence or absence ofH2O2 (add 2 µL 0.05%wt in
200 µL dispersion, final concentration is 0.165mM) and only H2O2

were investigated, respectively. Then, the green fluorescence of Fluo 4
was captured by A Nikon Ti2-A fluorescence microscopy (Intensity:
100%; Exposure time:100ms; Gain:1.0X). Corresponding
fluorescence intensity was calculated with the Image J software
according to the previous research (Sheffield 2007).

CCK-8 Assay and Live/Dead Staining
The cytotoxicity of nanomotors was assessed by a standard CCK-
8 method. NIH3T3 cells were cultured with Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with fetal bovine serum
(FBS, 10%,v/v) and penicillin/streptomycin (1%, v/v) at 37°C in a
5% CO2 incubator. NIH3T3 cells were seeded into a 96-well plate
at a concentration of 1 ×104 cells/well in 100 μL medium in
triplicate for 24 h. Then, the medium was replaced by H2O2, Pd/
Au NPs, Pd/Au NMs with different concentrations. 2 h later,
10 μL/well Cell Counting Kit-8 (CCK-8) was added after washing
with PBS twice, allowing cells to continuously culture for 30min
in the culture incubator. Absorbance at 450 nm was then
measured in a BioTek SynergyHTX microplate reader. Live/
dead staining has further assessed the biocompatibility of Pd/
Au nanomotors by cell viability. The Jurkat T cells were seeded in
a 96-well plate and incubated with nanomotors for 2 h.
Subsequently, the treated cells were stained with Calcein-AM
(green)/PI(red) for 30 min. The staining results of cells were
observed under an inverted fluorescence microscope.

Instruments
The morphology of the tested nanoparticles was captured with a
transmission electron microscope (JEM-1400 Plus, JEOL) and
scanning electron microscope (SEM) images were recorded on

FIGURE 1 | Schematic illustration of the construction process of spiky Pd/Au Janus nanomotors and the fast-moving nanomotor triggers T cell activation mediated
by the professional mechanosensitive ion channels.
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Field-Emission-SEM (Zeiss GeminiSEM500, Germany). Energy-
dispersive X-ray spectroscopies (EDX) were obtained by
elemental analysis with an EDX analyzer installed on a Field-
Emission-SEM (Zeiss GeminiSEM500, Germany) at an
accelerating voltage of 15kV. Nikon Ti2-A Inversion
Fluorescence Microscope was utilized to track the motion of
nanomotors, cell morphology, and fluorescence images. A Multi-
Mode Reader (BioTek SynergyHTX, United States)was used to
detect the absorbance of the CCK-8 assay.

RESULTS AND DISCUSSION

Synthesis and Characterization of the Spiky
Nanomotors
To synthesize Pd nanoparticles with dendritic structure, oleic acid
(OA) and oleylamine (OAm) were used as surfactants/templates,

and benzyl alcohol play as the solvent and reducing agent. First,
OA and OAm were dissolved in benzyl alcohol to form spherical
micelles having a dendritic peripheral structure. Then PdCl4- ions
were slowly reduced and deposited on the interior of the micelles
and on the dendrites. Finally, the Pd nanoparticles with special
morphology were obtained by removing the OA/OAm templates
with ethanol washing. As depicted in Figures 2A,2B, TEM
images, the as-prepared Pd nanoparticles have a 3D dendritic
structure, which consists of spherical structures with diameters of
about 215 ± 50 nm (Figure 2E) and dendrites with an average
length of 40 ± 17 nm (Figure 2F) that are densely dispersed on
the surface of the nanospheres.

For the formation of Pd/Au Janus structures, a layer of the
spiky Pd nanoparticles was uniformly dispersed onto a glass slide,
followed by an asymmetrical coating of the nanospheres by
sputtering with a thin (5 nm) Au layer. The SEM images are
shown in Figures 2C,D further confirms its unique structure.

FIGURE 2 | (A,B) TEM images of Pd nanospikes, scale bars were 500 and 200 nm, respectively; (C,D) SEM images of gold (Au)-coated Pd nanoparticles; scale
bars were 200 and 50 nm, respectively; (E) Diameter distribution of Pd nanospheres; (F) Length distribution of the spikes dispersed on the surface of the nanospheres
(The gray dash line is the corresponding Gaussian fitting curve); (G) Elemental mapping result of gold (Au)-coated Pd Janus nanomotor (scale bar, 100 nm) and (H)
corresponding energy spectra (placed on a silicon substrate).
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According to its corresponding energy-dispersive X-ray
spectroscopy (EDX) (Figure 2H), demonstrating the presence
of Pd and Au about 64%, 17%, respectively. In addition,
Figure 2G is clearly shown that the Au element is distributed
on surface of the Pd nanospheres. These results demonstrate the
successful preparation of spiky-like nanomotors, indicating its
geometrical asymmetry ensures an asymmetrical generation of
forces.

Motion Behavior of the Spiky Nanomotors
After confirming the asymmetric structure of the nanomotor, its
self-propelling ability was recorded by an inverted optical
microscope and analyzed by the manual tracking plugin of
ImageJ software according to previous reports. Owing to the
Janus structure of Pd NPs coated with Au nano-sized thin, an
effective propulsion driving force was generated through the
asymmetric catalytic decomposition reaction of the hydrogen

peroxide, as illustrated in Figure 3A. The optical tracking images
are shown in Figure 3B (captured from Supplementary Video
S2), illustrating the obvious autonomous propulsion of motors in
an H2O2 solution. Varying the fuel concentrations, changing
motion was observed, as the typical tracking trajectories
displayed in Figures 3C–F (acquired from Supplementary
Videos S1–S4). In the absence of fuel, the motion trajectory of
the motor showed a typical random walk and localized within a
small area behavior as a result of Brownian motion. As the fuel
concentration increases, the catalytic nanomotors display
relatively efficient propulsion. Obtained the coordinates of the
moving trajectories and quantified the corresponding velocity of
the motor by ImageJ on the basis of the optical tracking videos,
results are depicted in Figure 3G. It is obvious that the velocity of
the motor can be adjusted by the concentration of H2O2, the
average velocity of the motor is 4.16 μm s−1 and 4.64 μm s−1at
H2O2 concentrations of 0.165 and 0.33 mM, respectively. When

FIGURE 3 | (A) Schematic diagram of the propulsion mechanism of spiky Pd/Au bimetallic nanomotors which depend on the decomposition of hydrogen peroxide.
(B) Time-lapse images showing the movement of Pd/Au nanomotors in the presence of hydrogen peroxide fuel (0.165 mM H2O2) at 0,4,8 s, respectively; The scale bar
was 5 μm. (C–F) Tracking paths (time interval = 100 ms, duration 10 s; 15 trajectories were analyzed) of Pd/Au nanomotor under different H2O2 concentrations
(0.00 mM,0.165 mM,0.33 mM, 1.65 mM, respectively). (G) Average velocity of Pd/Au nanomotors at different fuel concentrations. (H)Mean square displacements
(MSD)curve and (I) corresponding diffusion coefficients of Pd/Au nanomotors with different H2O2 concentrations.
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the H2O2 concentration is up to1.65 mM, the nanomotors
conducted self-driving motion with a speed of 5.77 μm s−1,
which is 1.95 times higher than that of performing Brownian
motion (2.95 μm s−1). Further, according to the X-Y coordinates
of the trajectories, obtained from the optical videos using ImageJ
software, the mean square displacements (MSD) of Pd/Au
nanomotors along with different concentrations were
investigate (You et al., 2019; Tang et al., 2020). As shown in
Figure 2H, the plots of MSD versus time interval (t) reveal that
the slope of MSD plots tends to increase with the concentration of
the fuel. Subsequently, fitted the plots and estimated the effective
diffusion coefficient (DL) according to formula 2. The
corresponding results are shown in Figure 2I where the
diffusion coefficient shows a significant increase from 0.26 ±
0.18 μm2 s−1 (without fuel) to 0.83 ± 0.51 μm2 s−1 (in the presence
of 0.165 mM H2O2) and with a maximum enhancement of
5 times to 1.69 ± 0.58 μm2 s−1 (1.65 mM H2O2), exhibiting the
fuel concentration dependence of enhanced diffusion motion.
These results showed that the Pd/Au nanomotor system could
achieve enhanced motion in the presence of hydrogen peroxide
even under a relatively low concentration, providing the
possibility for subsequent application in the bioenvironment.

T Cell Activation Ability of the Spiky
Nanomotors
To address whether the moving Pd/Au nanomotors could
optimize the activation of the immune cells via
mechanotransduction, we monitored the performance to
activate Jurkat T cells, which express high levels of
endogenous mechanical sensitive ion channel (Liu and
Ganguly, 2019). The Jurkat cell line has been used to model
and characterize signaling events in T cell activation (TCA), a
critical process in an effective adaptive immune response
(Abraham and Weiss, 2004). To prove that spiky nanomotors
can achieve high-efficiency movement in biologically relevant
media, the self-driving ability of the nanomotors has been
observed in the dielectrophoresis (DEP)cell culture medium
(Supplementary Video S5). Note that the DEP medium is a
non-ionic iso-osmotic solution with a small dielectric shielding
effect, so the effect of the background solution on the motor
movement efficiency can be eliminated to a greater extent
(Marino et al., 2015). Considering high concentration of
hydrogen peroxide is cytotoxic, so we chose a relatively low
concentration of 0.165 mM that does not harm the cells and
also has a relatively high speed of motion as the driving fuel
(Supplementary Figure S8) (Kuang et al., 2011; Yu et al., 2021).
As shown in Supplementary Figure S1 (Supplementary
Material), in the presence of 0.165 mM hydrogen peroxide,
the nanomotor can approach the cells or move continuously
in the culture medium. Then, to quantify T cell activation, we
measured the concentration fluctuation of intracellular Ca2+ ions
over the duration of the operation of the nanomotors. It has been
verified that professional mechanical sensitive ion channels
(especially Piezo 1 ion channels) are calcium ion-permeable
and the activation of such channels is accompanied by an
influx of Ca2+ into the cell cytosol from the extracellular

environment (Pottosin et al., 2015; Ranade et al., 2015; Liu
et al., 2018; Atcha et al., 2021). Also, a rapid increase of
calcium ion concentration in the cytoplasm is a common
mark of T cell activation, this suggested that mechanical-
mediated T cell activation could be reflected via the dynamic
change of calcium flux (Dirar et al., 2020). In our experiments, the
influx of Ca2+ was measured by a calcium-sensitive dye, Fluo-4,
which was loaded into the cell cytosol. The fluorescence emission
of Fluo-4 increases proportionally to intracellular [Ca2+], so it
provides a direct and quantitative readout of the T cell activation
(Figure 4A). Considering the oscillation and flow of the entire
solution system caused by the movement of the autocatalytic
motor, the state of the whole cell was observed. The images
recorded in Figures 4B–G illustrate the effect of the moving
nanospikes on the overall cells (t = 0 min, t = 50 min) and then
Image J analysis was used to obtain the fluctuation results of
calcium ion concentration. It displays that the mean values of the
Ca2+ fluorescence intensity gradually increased, and reaches the
maximum value at t = 50 min (Figure 4H). Compare their
fluorescence intensity at t = 50 min, the intensity of the
former is 1.45 ± 0.19 times that of the resting T cells (t =
0 min) (Figure 4I). In the same time interval, resting T cells
only containing Fluo-4 exhibited a 7.12 ± 7.13% increase in
fluorescence (Supplementary Figure S3). To exclude the
influence of chemical fuel hydrogen peroxide on the state of
cells, calcium ions were tested under the same conditions, as
depicted in Figure 4J, and an evaluation of the corresponding
results implies that the interference of low concentration
hydrogen peroxide solution (0.165 mM) can be ignored (an
increase of 4.08 ± 1.34%). Moreover, to explore the
performance of the unique self-driving character of the
nanomotor on the activation efficiency, we incubated the
spiky-like nanoparticles with Jurkat T cells without adding
hydrogen peroxide as fuel and examined calcium fluorescent
intensity after the same time interval (Figure 4J). Compared with
movable nanomotors, static nanoparticles influence T cell
activation with an amplitude (1.18 ± 0.07 fold) smaller than
the dynamic state (1.45 ± 0.19 fold). In addition to the effective
self-driving force of the dynamic motor, the dynamic behavior of
the nanomotor in the cell microenvironment induces fluid flows,
generating distinct flow fields surrounding the cell is also an
important physical factor, according to reports in the literature
(Syeda et al., 2015; Liu et al., 2018). Working synergistically with
the inherent nature of the motor to enhance the forces exerted on
the cell during activation. Sustained acts for a period of time,
mechanosensitive ion channels on T cells percept these physical
stimuli and mediate an intracellular calcium response, which
contributes to the activation of Jurkat T cells in the overall
environment.

Evaluate the Mechanical Force Generated
by a Single Nanomotor
The self-propulsion of the nanomotors endows itself as an
effective force. To calculate how large the force is, we based
on a theory for self-propelled particles, involving the long-time
translational diffusion coefficient reported by ten Hagen et al.
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FIGURE 4 | (A) Schematic illustration of the spiky Janus nanomotors to activate T cells via the calcium-permeable ion channel. (B,D,F) Bright-field and (C,E,G)
corresponding fluorescent images showing the interaction between T cells and nanomotors at t = 0,10, and 50 min, respectively. Scale bars = 10 μm; (H) Plotted the
fluorescence intensity against time is to show the calcium response of Jurkat T cells when incubated with Pd/Au nanomotors (n = 4); (I) the corresponding increment of
calcium fluorescence intensity over time (relative to the initial time, t = 0 min). The asterisk (*) denotes that the statistical significance between groups (**p < 0.01,
***p < 0.001); (J) Comparison of the increase in fluorescence intensity among different groups within the same time interval (50 min): the resting Jurkat T cells, cells with
Pd/Au nanomotors (Pd/Au NMs, 0.165 mM H2O2), Pd/Au nanoparticles (Pd/Au NPs) and hydrogen peroxide (0.165 mM H2O2).
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(2011) (ten Hagen et al., 2015). Such aspherical particles with two
rotational degrees of freedom, the absolute value of the effective
driving force can be evaluated by the following formula 3:

F � 3kBT
2r

����������
2(DL

Dτ
− 1)√

where kB is the Boltzmann constant, T the absolute temperature, r
the radius of the nanoparticles, and DL, Dτ is the long-time and
translational diffusion coefficient, respectively.

In our cases, the active motion of the self-propelled Janus
nanomotors was investigated by mean square displacement
(MSD) analysis (Figure 2I). In the absence of fuel, Pd/Au
nanomotors perform Brownian motion, the value of DL is
equal to the translational diffusion coefficient Dτ (Campbell
and Ebbens, 2013; Ma X. et al., 2015; You et al., 2019). As
illustrated in Figure 2I, the value of Dτ was about 0.26 ±
0.18 μm2 s−1, at room temperature of 25°C. At 0.165 mM
H2O2, the diffusion coefficient is increased by 2.13 times
compared to that without fuel. Taken together, we can
estimate the effective driving force generated by a single
nanomotor with the decomposition of 0.165 mM hydrogen
peroxide is about 120.94 ± 79.6 fN, which is approximate to
that calculated by DLS results (Supplementary Figure S6).

In addition, the dynamic behavior of multiple nanomotors in
the cellular microenvironment causes rapid local fluid convection,
generating pressure and shear stresses around the cell, thereby
synergizing the forces of multiple nanomotors and enhancing the
expression of mechanical signals to a certain extent (Takatori et al.,
2014). Mechanosensitive ion channels, particularly the Piezo1 ion
channel used as a physical stimulus sensor, have recently been
shown to be abundantly expressed on T cells (Liu and Ganguly,
2019). The mechanical force or shear stress produced by the
advancing nanospike is captured by such biosensors and
benefits ion influx or efflux, which is a prerequisite for
subsequent T cell activation (Syeda et al., 2015; Liu et al., 2018).

CONCLUSION

In summary, novel bionic spiky Pd Janus nanomotors were
successfully fabricated. Driven by the catalytic reaction of
hydrogen peroxide at low concentrations, we further
estimated the corresponding driving force and explored
their activation effect on Jurkat T cells in vitro. Further, the
fluid convection caused by the locomotion property of
nanomotors in the biological microenvironment generated
local pressure and shear stress around the cells cooperating
with the force and inherent characteristics of the nanomotors
to enhance the mechanical signal. The nanomotor system
represents a platform to achieve local regulation of T cells
through physical signals, which is different from T cell

activation in cytokines ways, risking the excessive activation
of T cells and immunological storm. Additionally, benefiting
from the special dendritic structure on the motor surface
enhances the adhesion ability and also promotes the
mechanical stress of the motor on the cell membrane. An
intracellular calcium response mediated by the
mechanosensitive ion channels optimizes the activation of
T cells through physical effects. Activation of T cells is a
critical step in immunotherapy, the current research not
only provides a new way for the application of the special
properties of motors in cancer immunotherapy but also
further clarifies the significance of mechanical force
signaling in T cell activation.
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