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Abstract Coronavirus disease 2019 (COVID-19), caused

by the severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), is mainly transmitted through respiratory

droplets. The symptoms include dry cough, fever, and

fatigue; however, high propagation, mutation, and fatality

rates have been reported for SARS-CoV-2. This review

investigates the structure of SARS-CoV-2, antiviral

mechanisms, preventive strategies, and remedies against it.

Effective vaccines have been developed by Pfizer (95%

effective), AstraZeneca (90% effective), Moderna (94.5%

effective) vaccine, among others. However, herd immunity

is also required. Probiotics play a major role in the gut

health, and some are known to have therapeutic potential

against viral infections. Their modes of antiviral activities

include direct interaction with targeted viruses, production

of antiviral metabolites, and immunomodulatory effects on

the host. Hence, probiotics can be a useful prophylactic

against COVID-19, and more studies are required on the

effects of probiotics against other viral infections that may

occur in future.
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Introduction

Coronaviruses are enveloped positive-sense RNA virus

with spike (Richman et al., 2016). General coronaviruses

can cause mild respiratory diseases. Severe diseases have

occurred in humans over the past two decades by the

crossover of animal betacorona viruses. First, severe acute

respiratory syndrome coronavirus (SARS-CoV) was

reported in 2002–2003 in the Guangdong province of

China. Then, the Middle East respiratory syndrome coro-

navirus (MERS-CoV) of bat origin was reported in Saudi

Arabia with dromedary camels acting as the intermediate

host, infecting 2,492 people and caused 858 deaths (fatality

rate 34%) (WHO, 2021). Coronavirus disease 2019

(COVID-19) is caused by the severe syndrome coronavirus

2 (SARS-CoV-2), and originated in China’s Hubei pro-

vince. COVID-19 was reported in 2019, and recognized as

a pandemic on March 11, 2020 by the WHO, eventually

spreading in 213 countries, and resulting in more than 120

millions infections and over 2.65 millions deaths world-

wide as of March 15, 2021 by WHO.

Probiotics are known to confer health benefits on the

host when administered in appropriately amounts (FAO/

WHO, 2006), and are used as functional foods for human

welfare. Probiotics paly a role in balancing the intestinal

microflora and modulating the immune system. Recently,

research on probiotics has improved our understanding of

the modulation of the gut-liver axis, gut-lung axis, and gut-

brain-axis, through the production of IgA and brain-derived

neurotrophic factor (BDNF) by the gut microbiome (Vajro

et al., 2013). However, probiotics have limitations such as

viability control and side effects on hosts; therefore, post-

biotics and parabiotics have been investigated as well

(Nataraj et al., 2020). Postbiotics are metabolic products of

probiotics, such as enzymes, proteins, short chain fatty
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acids, vitamins, and amino acids, while parabiotics are

probiotics inactivated by physical or chemical treatments,

which are therefore stable with regard to production and

storage, and are considered safer due to lack of side effects

such as sepsis.

COVID-19 targets people of all ages, and spreads

through large droplets generated during coughing and

sneezing by symptomatic patients. SARS-CoV-2 is char-

acterized by high mutation rates. Some patients with

COVID-19 show intestinal microbial dysbiosis, and the

application of probiotics can balance the intestinal micro-

biota and reduce the risk of secondary infection (Xu et al.,

2020). Therefore, this review deals with the general char-

acteristics of COVID-19 and potential probiotic-related

therapeutic strategies for antiviral effects.

Structure of SARS-CoV-2 and symptoms of COVID-

19

SARS-CoV-2 virus is an enveloped, positive sense, single-

strand RNA viruses (genome size: 26–32 kb) belonging to

the large family of Coronaviridae and subfamily Ortho-

coronavirinae, members of which infect birds and mam-

mals (Coronaviridae study group of The International

Committee on Taxonomy of Viruses, 2020). SARS-CoV-2

binds to angiotensin-converting enzyme 2 (ACE2) recep-

tors on host cells via its spike glycoprotein, which consists

of two domains (S1 and S2). S1 binds to the peptidase

domain of ACE2, while S2 catalyzes membrane fusion,

thereby leading to entry of the viral genetic material into

host cell (Hoffmann et al., 2020a, 2020b). The viral RNA

codes for structural proteins such as replicase, envelope

protein, spike protein, membrane protein, and nucleopro-

tein; and several non-structural proteins, such as unchar-

acterized protein 14, and protein 9b (Ou et al., 2020). Non-

structural proteins participate in host-protein interactions

and modulate host-cell signaling pathways.

The primary infection results from viral transmission

through close contact with respiratory droplets from the

infected person. The general symptoms of COVID-19 have

been reported to be high temperature, dry cough, fever,

fatigue, myalgia, and dyspnea (WHO, 2021). Other

symptoms include headache, sore throat, rhinorrhea, and

gastrointestinal symptoms. The symptoms of COVID-19

manifest after 2–14 days of contact, with latent periods of

up to 14 days. The clinical features of COVID-19 vary, and

are indistinguishable from other respiratory infections.

Adverse outcomes and death are more common among the

elderly. Infections in infants and children have been

reported to be significantly milder than in adults.

Antiviral agents and their mechanisms

The RNA genetic material of COVID-19 has * 29,811

nucleotides, which encode approximately 29 proteins,

which include: structural proteins (4 proteins), nonstruc-

tural proteins (16 proteins), and accessory proteins (9

proteins) (Khailany et al., 2020). The four structural pro-

teins are the envelope and membrane proteins that form the

viral envelope, nucleocapsid protein that binds to the viral

RNA, and the spike S protein that binds to the human

ACE2 receptor present on the host cell surface.

Antiviral mechanisms target the life cycle of the virus.

The viral life cycle can generally be divided into early- and

advanced stages. The therapeutic strategy against COVID-

19 has so far involved blocking the early stage of the viral

life cycle (Al-Horani et al., 2020), and clathrin-mediated

endocytosis (Yang and Shen, 2020).

Quinoline derivatives have been investigated in various

settings for the treatment of coronavirus infection (Al-

Horani et al., 2020). At the beginning of the COVID-19

pandemic, chloroquine and hydroxychloroquine were

authorized for emergency use by the U.S. FDA (U.S. FDA,

2020). Chloroquine was shown to block SARS-CoV-2

infection at a low micromolar concentration in VeroE6

cells (Wang et al., 2020). Chloroquine appears to inhibit

the glycosylation of the host ACE2 receptor, which inter-

feres with binding of the virus to the host receptor (U.S.

FDA, 2020; Vincent et al., 2005). In addition, chloroquine

and hydroxychloroquine have been shown to increase the

endosomal/ lysosomal pH, and thus disrupt the viral entry

into the host cell (Vincent et al., 2005). However, chloro-

quine or hydroxychloroquine did not show antiviral effects

in patients with COVID-19 (U.S. FDA, 2020).

Antiviral drugs, such as ribavirin and lopinavir-riton-

avir, have been used for SARS and MERS. Serious adverse

effects have been reported with the use of quinoline-based

antimalarial dugs, and chloroquine has been linked to

cardiac arrhythmias and retinopathy. Arbidol (an antiviral

drug available in Russia and China), plant extracts, intra-

venous immunoglobulin, interferons, chloroquine, and

convalescent plasma, have been investigated for their

antiviral effects (Ahn et al., 2020; Bae et al., 2019; Jin

et al., 2020; Zhang et al., 2020). Polyphenols have also

been used for the prevention of COVID-19 in view of their

immune-boosting properties (Mehany et al., 2021). For

antiviral therapy, tocilizumab has been used against

COVID-19 with/without corticosteroids in February 2021

(NIH, 2019). It is recommended that tocilizumab be

administered in combination with dexamethasone. In

addition, hospitalized patients were treated for hypoxemia

with remdesivir, dexamethasone plus remdesivir, or dex-

amethasone; and immunotherapy involved administration

of corticosteroids, interleukin (IL)-1 or IL-6 inhibitors.
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Vaccines are in demand for herd immune, and herd

immune might be achieved before 2022. Some vaccines

have been permitted for use (BBC News, 2021). Pfizer/

BioNtech vaccine has up to 95% effective; however, the

vaccine must be stored at a temperature of approximately

- 70 �C. The Oxford University/AstraZeneca vaccine has

70–90% efficacy. And the data also showed a strong

immune response in the elderly. This may be one of the

easiest vaccines to distribute because it does not need to be

stored at very cold temperatures. The Moderna vaccine has

94.5% efficacy. It is easier to store than the Pfizer’s vaccine

because it remains stable at - 20 �C for up to six months.

The Russian Sputnik V vaccine has 92% efficacy. The

Wuhan Institute of Biological Products and Sinopharm in

China, and Russia’s Gamaleya Research Institute, are all in

the final testing stages of their respective vaccines. Sinovac

(China) has shown 50.4% efficacy in Brazil. Although

vaccines are prophylactics against COVID-19, their effi-

cacy is limited by multiple mutations in the virus, such as

those giving rise to the UK and South Africa strains, and by

their side effects (headache, fever, muscle ache, etc.). In

addition, these vaccines are reported to cause severe

allergic reactions after vaccine injection in some people.

Prophylactic therapy by probiotics

The human gut microbiome consists of approximately

1000 different species of microbes, with densities of 104–

105 CFU/mL of the digestive tract in the small intestine

and 1011 CFU/g of luminal content of the colon (Kastl

et al., 2020). The gut microbiome principally comprises of

four groups, namely Firmicutes, Bacteriodetes, Pro-

teobacteria, and Actinobacteria (Sweeney and Morton,

2013). The gut microbiome can help fight infection by

competing against pathogens, colonization ability, and

metabolite production (e.g., organic acids, antimicrobial

compounds, and short chain fatty acids) (Jang et al., 2019).

The gut microbiome influences the health of the host, its

imbalance being involved in many conditions such as lung

disorders, including asthma, chronic obstructive pulmonary

disease, chronic bronchitis, emphysema, lung cancer,

pneumonia, pleural effusion, viral infection, and infection

(Han et al., 2007). It is also recognized that viral infections

in the respiratory tract cause disturbances in the gut

microbiome, which points to the existence of the gut-lung

axis (Dhar and Mohanty, 2020). Changes in the gut

microbiome due to respiratory viral infections have been

demonstrated using microbiome analysis and metabolome

analysis (Groves et al., 2020). Table 1 showed the relat-

edness of the viral infection and the gut microbiome. Viral

infection results in an increase in the Bacteriodetes/Fir-

micutes ratio, and a decrease in microbial diversity in the

gut microbiome (Grayson et al., 2018). These changes in

gut microbiome result in anorexia by increasing the levels

of sphingolipids, polyunsaturated fatty acids (PUFAs), and

short-chin fatty acid (SCFA) valerate (Scencio et al., 2020;

Yu et al., 2019a). In addition, communication between

microbiota and environmental factors affects mucosal

immunity (Neish and Jones, 2014). The mucus layer pre-

sent on the surface of the gastrointestinal tract, respiratory

tract, and vaginal tract is the first line of defense, where

immunoglobulin A antibody acts as the first line of

mucosal immunity (Corthesy, 2013).

Probiotics have been defined as live microbes that

confer health benefits on the host when administered in

appropriately amounts (FAO/WHO, 2006; Lee et al.,

2019). Probiotics can balance the intestinal microflora,

which are involved in the epithelial barrier of intestines,

competition with disease-causing agents, attachment to the

epithelial wall of intestines, production of anti-pathogen

elements, and enhancement of the immune system of the

host (Abdulamir and Hafidh, 2020; Jang et al., 2019;

Kariyasawasam et al., 2020). Bifidobacterium bifidum and

Streptococcus thermophilus showed a decline in diarrheal

incidents and reduction of rotavirus titers in a meta-anal-

ysis (Szajewska et al., 2019). The maintenance of com-

mensal bacteria can influence immune homeostasis during

invasion by influenza A virus and coronavirus through the

gastrointestinal tract. Some probiotics and parabiotics have

been reported to reduce the titers of influenza virus,

although the underlying mechanism remains to be under-

stood (Park et al., 2018).

Probiotics and their metabolites help maintain com-

mensal microbiota despite viral infection (H1N1 and PR8

virus) (Ichinohe et al., 2011). Figure 1 shows the antiviral

potentials of probiotics and their metabolites through direct

or indirectly interfere with the viral life cycle (Al Kassaa

et al., 2014). They exert antiviral activity by direct probi-

otic–virus interaction, production of antiviral inhibitory

metabolites, and indirect modulation of the immune sys-

tem. Lactic acid bacteria (LAB) and their bacteriocins can

serve as antiviral agents (Al Kassaa et al., 2014). LAB are

known to synthesize exopolysaccharides, which may con-

fer health benefits to humans, including through

immunomodulatory, antitumor, antibiofilm, and antioxi-

dant activities (Jang et al., 2020). In addition, some pro-

biotics, such as Lactobacillus fermentum CECT5716, have

been found to enhance the effects of influenza vaccination

by inducing an antibody response (Olivares et al., 2007).

Direct probiotic–virus interaction

Some probiotics or their metabolites have been reported to

directly inhibit human immunodeficiency virus (HIV)

(D’Angelo et al., 2017) and transmissible gastroenteritis

virus (TGEV) (Chai et al., 2013). However, the direct

123

Probiotics against COVID-19 775



inhibition of the influenza virus was limited. Enterococcus

faecium NCIMB 10415 inhibits influenza virus (H1N1 and

H3N2) via direct physical interaction (Wang et al., 2013).

The S-layer protein of Lactobacillus acidophilus ATCC

4356 inhibits the invasion by and replication of the H9N2

virus (Gao et al., 2016).

In the vesicular stomatitis virus (VSV)–cell culture

model, Bifidobacterium longum Q46, Lactobacillus para-

casei A14, and Lactobacillus plantarum M1.1 have

demonstrated antiviral activity (Botic et al., 2007). Their

possible mechanisms include: (1) hindering the adsorption

of the VSV, (2) inhibition of virus protection, and (3)

production of metabolites with a direct antiviral effect.

Probiotic metabolites include organic acids, bacteri-

ocins, hydrogen peroxide, and its metabolites, which play a

role in the health of gut microbiome and host immunity

(Tiwari et al., 2020). These substances can inactivate

human immunodeficiency virus type I (HIV-1) and herpes

simplex virus type 2 (HSV-2) (Conti et al., 2009; Tuyama

et al., 2006).

Bacteriocins are ribosomally synthesized antimicrobial

peptides with bactericidal activity (Lee et al., 2013).

Table 2 shows the antiviral effects of bacteriocins.

Enterocin ST4V and CRL35 inhibit HSV-1 or HSV-2 and

target the multiplication of viral particles (Todorov et al.,

2005; Wachsman et al., 1999a, 1999b). A bacteriocin

originating from Lactobacillus delbrueckii subsp. bulgari-

cus 1043 inhibits influenza virus (H7N1 and H7N7)

(Serkedjieva et al., 2000). Until now, the mechanism

underlying the antiviral effects of bacteriocins have not

been uncovered; therefore, more research is necessary in

this field.

Increase of zinc bioavailability

Zinc plays an important role in membrane integrity, DNA

synthesis, and cell proliferation (Read et al., 2019). In

addition, zinc is associated with the improvement of the

host’s reaction to various infections and plays a significant

role in maintaining host homeostasis (Read et al., 2019).

Zinc supplementation resulted in a vital reduction in

sickness in children with pneumonia (Rerksuppaphol and

Rerksuppaphol, 2019).

Lactobacillus fermentum SR4 and Lactobacillus rham-

nosus GG have been reported to increase zinc bioavail-

ability in intestinal cells (Lule et al., 2020). These two

strains can chelate zinc at high ratios of 57.9% and 48.2%,

respectively, when compared with the commercial chelate

(Zn-sulfate (16.1%) and Zn-gluconate (26.9%)).

Modulation of immune system

Probiotics can influence immunity through various

cytokines produced by dendritic cells (DCs), monocytes or

macrophages, and B and T lymphocytes (Kawashima et al.,

2011). Probiotics are effective against several ailments,

including viral infections (Kanauchi et al., 2018). The

numbers and the activity of natural killer (NK) cells are

also significantly improved by IL-2 activation (Grudzien

and Rapak, 2018; Takeda et al., 2006). Innate immunity

can benefit from acquired immunity, which is mediated by

Table 1 Findings of recent investigations of the activity of gut microbiome against influenza virus

Virus Findings References

Influenza virus Increase in IFN-I levels in lung/production of desaminotyrosine by gut microbe Clostridium
orbiscindens

Steed et al.

(2017)

Influenza virus

(H1N1)

Gut microbiome increased anti-inflammatory cytokine (IL-10 and IL-14) levels in H1N1 infection Rosshart et al.

(2017)

Sendai virus The use of streptomycin in viral infection led to reduction of intestinal microbial diversity

These variations influence the increase in mortality and immune responses at distant mucosal sites

(decrease in Treg population/increase in IFN-c, IL-6, and CCL1 levels)

Grayson et al.

(2018)

Influenza virus

(H1N1/H3N2)

Decrease in short chain fatty acid concentration as dysbiosis Scencio et al.

(2020)

CCL CC chemokine ligand, IFN interferon, IL interleukin

Fig. 1 Mechanisms of action of antiviral probiotics against respira-

tory viruses. Abbreviation: IFN interferon, Ig immunoglobulin, IL
interleukin, NK natural killer
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Toll-like receptors (TLRs) (Belkaid and Hand, 2014).

Probiotics can also induce the production of antigen-pre-

senting cell (APC)-derived cytokines (IL-10, IL-12, IL-17,

tumor necrosis factor (TNF)-a, etc.) through activation of

adaptive immunity. Proinflammatory cytokines, chemoki-

nes, and their receptors are inhibited by the anti-inflam-

matory cytokine IL-10, produced by various immune-

activated cells (Azad et al., 2018). As a result, probiotics

can have two different types of immunomodulatory effects

on inflammation: the immunostimulatory effect, which

activates IL-12 production, and induces NK, Th1, and Th2

cells; and immunoregulatory effect, which induces IL-10

and Treg cell activation by Th2, DCs, B cells, and mono-

cytes, through overexpression of cytokines (Chiba et al.,

2010).

In some cases, COVID-19 can cause extreme storms of

inflammatory cytokines, including IL-2, IL-17, IL-10,

granulocyte colony-stimulating factor (GCSF), interferon

gamma-inducible protein (IP)-10, monocyte chemoattrac-

tant protein (MCP)-1, macrophage inflammatory protein

(MIP)1-a, and TNF-a (Chen et al., 2020). Table 3 lists the

various antiviral probiotics and their probable mechanisms.

L. plantarum CRL1506 has demonstrated antiviral prop-

erties through modulation of the intestinal immune

response (Mizuno et al., 2020). The major antiviral active

factor of L. plantarum CRL1506 may be lipoteichoic acid

(LTA). L. plantarum YU has been shown to exert antiviral

effects against H1N1 virus by inducing IL-2 secretion

(Kawashima et al., 2011). Heat-killed L. plantarum L-138

exerts antiviral immunomodulatory effects by inducing

interferon (IFN)-b (Maeda et al., 2009). L. plantarum

200655 and Lactobacillus paraplantarum SC61 have

demonstrated immune-enhancing effects (Son et al., 2018;

Yang et al., 2019). As stated above, the active factor behind

these immunomodulatory effects of heat-killed probiotics

might be LTA, a surface glycolipid found in gram-positive

bacteria. Some probiotics, such as L. plantarum KU15149

and Weissella cibaria JW15 exert anti-inflammatory

effects by LPS stimulation (Han et al., 2020; Yu et al.,

2019b).

In conclusion, this review investigates the use of pro-

biotics as prophylactics or treatment aids for therapy

against COVID-19. Outbreaks caused by zoonotic coron-

aviruses can result in severe human casualties. Viral

infection can lead to gut dysbiosis according to several

reviewers. Some probiotics can regulate host homeostasis

through immunomodulatory effects and the maintenance of

the gut microbiome. However, the use of probiotics is

limited as a therapeutic agent. Probiotics have also been

shown to reduce the side effects of chemotherapy. The

species and mechanisms behind antiviral probiotics vary.

Therefore, probiotics can be used as prophylactic medicinal

foods against viral infection. Further study is therefore

required, to understand the beneficial effects of probiotics

against viral infections and their potential use in antiviral

therapy.

Table 2 Antiviral effects and mode of action of some bacteriocins

Bacteriocin (producer) Virus Mode of action References

Bacteriocin (Lactobacillus delbrueckii) Influenza virus (H7N7, H7N1) Inhibition of invasion and

replication

of virus

Serkedjieva et al. (2000)

Peptide ST4V (Enterococcus mundtii
ST4V)

Herpes simplex viruses-1, polio

virus (PV3, strain Sabin), and

a measles virus (MV/BRAZIL/

001/91)

Aggregation of the viral particles

or blocking of their receptor

sites

Todorov et al. (2005)

Enterocin CRL35

(Enterococcus mundtii CRL35)

Herpesvirus Inhibition of viral replication Wachsman et al.

(1999a, 1999b)

Enterocin ST5Ha

(Enterococcus faecium ST5Ha)

Herpesvirus-1 Aggregation of viral particles,

blockage

of receptor sites on the host cell

Todorov et al. (2010)

Enterocin CRL35

(Enterococcus mundtii CRL35)

Herpesvirus (HSV-1, HSV-2) Inhibition of viral replication Wachsman et al. (2003)

Subtilosine KATMIRA 1933

(Bacillus amyloliquefaciens
KATMIRA 1933)

Herpesvirus-1 In high concentrations, inhibition

of viral particle formation and

release

Torres et al. (2013)
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