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Abstract: Among aquatic biota, corals provide shelter with sufficient nutrition to a wide variety of
underwater life. However, a severe decline in the coral resources can be noted in the last decades due
to global environmental changes causing marine pollution. Hence, it is of paramount importance to
develop and deploy swift coral monitoring system to alleviate the destruction of corals. Performing
semantic segmentation on underwater images is one of the most efficient methods for automatic
investigation of corals. Firstly, to design a coral investigation system, RGB and spectral images
of various types of corals in natural and artificial aquatic sites are collected. Based on single-
channel images, a convolutional neural network (CNN) model, named DeeperLabC, is employed
for the semantic segmentation of corals, which is a concise and modified deeperlab model with
encoder-decoder architecture. Using ResNet34 as a skeleton network, the proposed model extracts
coral features in the images and performs semantic segmentation. DeeperLabC achieved state-of-
the-art coral segmentation with an overall mean intersection over union (IoU) value of 93.90%,
and maximum F1-score of 97.10% which surpassed other existing benchmark neural networks
for semantic segmentation. The class activation map (CAM) module also proved the excellent
performance of the DeeperLabC model in binary classification among coral and non-coral bodies.

Keywords: coral; semantic segmentation; spectral imaging; convolutional neural networks; deep
learning; image processing

1. Introduction

Corals are a significant part of the marine ecosystem, with high primary productivity,
providing habitation with ample nourishment for various underwater organisms [1,2].
Despite its great importance in the marine ecosystem, corals and other organisms inhabiting
the surroundings face unprecedented challenges. Because of the gradual degradation of
coral resources, it is essential to put forward scientific programs to maintain corals, which
embarks with the coral investigation phase. Coral monitoring based on manual optical
detection through images and videos by divers is common in small-scale monitoring [3–5].
However, with varying depth, diving time, and the divers’ filming speed, it is difficult to
carry out long-term and large-scale monitoring.

Satellite remote sensing, using spectral imaging, is commonly practiced for large-scale
coral study [6,7]. Although the spectral feature of each spatial pixel can be extracted from
the image. However, the remote sensing spatial resolution is finite, and a particular spatial
pixel in the image may have a large imaging area with varying types of corals. In a heavily
dense coral area, it is difficult to differentiate the spectral characteristics of different corals.
Also, the limited propagation of natural light in seawater makes it challenging to detect the
coral situation through remote sensing technology [8].

The coral distribution should be analyzed after the image data is collected irrespective
of the scale of observation. Coral coverage zones in an image, as one of the essential
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statistical indicators, presents the proportion of coral in the investigated area, which can be
obtained by calculating the number of spatial pixels occupied by corals and all the spatial
pixels in the image. The segmentation result is that all the pixels belonging to corals are
marked uniformly, and the remaining pixels are classified as background.

Traditional coral image data analysis mainly depends on the experts who master
the knowledge of marine ecology. The pixel category is determined by comparing the
morphological feature information of corals in the image [9]. This method has a high labor
cost, and it is subjective to identification decisions by professionals.

In recent years, the rapid development of automatic judgment methods based on
efficient computing power can be noticed. Data analysis for computer vision techniques,
Refs. [10,11] such as recognition, classification, and semantic segmentation, can be carried
rapidly without interruption with such automatic detection and judgment [12,13]. To date,
several researches have been reported, using the application of such detection techniques
combined with different imaging methods in the aquatic environment [14,15]. For the
coral study, both spectral imaging and RGB imaging techniques have been used to get
morphological features. Later, various machine learning algorithms have been utilized for
automatic detection and segmentation as discussed in the following sections.

1.1. Segmentation Based on Spectral Features

The study of spectral features has inspired researchers to explore coral’s semantic
segmentation in underwater spectral images. For this purpose, a line scanning Underwater
Hyperspectral Imager (UHI) has been developed by Ectone, founded by the Norwegian
University of Science and Technology. In 2016, the team collected spectral images of
corals using UHI, later carried out semantic segmentation to analyze corals in the area.
For semantic segmentation, different distance measurement techniques like Euclidean
distance; Spectral Angle Measurement (SAM); Spectral Information Divergence (SID); and
different classification algorithms such as K-Nearest Neighbor (KNN) and binary encoding
classifier based on spectral feature differentiation, were tested. SAM distance measurement
combined with k = 1 KNN classifier showed better results among other segmentation
techniques [16].

In 2017, the Italian research team mounted an UHI on the remotely operated vehicle to
conduct underwater spectral imaging of the South Asian sea. To classify among 11 types of
coral reefs, a classification algorithm based on SAM was used pixel by pixel in the spectral
image, which achieved an average accuracy of 72% for all categories [17].

In 2019, the first underwater spectral imaging of shallow coral habitat was carried out
in Norway’s sea by an UHI carried by an unmanned ship. The UHI collected underwater
spectral images of 400~700 nm at intervals of 3.5 nm. The collected spectral image data were
manually labelled with pixel-level categories for training Support Vector Machine (SVM),
which resulted in a maximum accuracy of 89% for semantic segmentation of corals [18].

In another research in 2019, deep-sea cold-water coral was exposed to different con-
centrations of 2-methylnaphthalene, resulting in different degrees of variation in its health.
Spectral images of coral were collected before and after exposure to chemical and SVM
was trained to distinguish among the coral in different health conditions. The semantic
segmentation results showed that all the coral in the image with various health status were
correctly classified [19].

1.2. Segmentation Based on RGB Image Features

In the last century, because of the limited availability of high computing power ma-
chines, digital image processing methods using mathematical calculations and topologies
have been widely used for semantic segmentation based on image features. Among them,
the simplest and fastest semantic segmentation is a simple threshold segmentation. Otsu’s
method [20] of threshold selection has been used for semantic segmentation of corals
with unvaried textures exposed to relatively uniform illumination throughout the image.
For complex shapes, multi-threshold [21], adaptive threshold [22], and region growing
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algorithm are adopted to improve semantic segmentation effects. In 2012, Xu et al. im-
proved the region-growing algorithm by adding tensor-based anisotropic analysis, which
enhanced corals’ semantic segmentation effect [23].

Based on the gray level co-occurrence matrix, Shihavuddin et al. extracted the gray re-
lationship of adjacent pixels, calculated the regional texture features, and further combined
with SVM for semantic segmentation of seabed image containing coral. The segmentation
results showed an overall accuracy of 83.7% [24].

Edge detection operators, such as Sobel operator [25], Robert operator [26], Prewitt
operator [27], and Canny operator [28], are commonly used in semantic segmentation.
Awalludin et al. improved Canny operator for coral edge detection by suppressing the
interference of texture and imaging noise, to carry out edge detection and topological
contour analysis for semantic segmentation of corals [29].

However, most of the above-mentioned techniques utilize low-level features in the
images to perform semantic segmentation. Since AlexNet [30], CNN has made a significant
breakthrough with remarkable improvement in semantic segmentation. Benefiting from
skeleton networks, such as VGG [31], ResNet [32], and DenseNet [33], has improved the
performance accuracy. The Fully Convolutional Network (FCN) proposed in 2015 is a
classic algorithm for semantic segmentation [34]. Inspired by the excellent performance of
FCN, Ronneberger et al. proposed UNet: a semantic segmentation network that improved
the accuracy of FCN [35]. Multi-scale context aggregation by dilated convolutions proposed
by Yu [36] and DeepLab series [37–40] by Google also provides new ideas for semantic
segmentation. King et al. compared the semantic segmentation effect of the above networks
on underwater RGB coral images. FCN achieved the lowest accuracy of 50.45% among
the four algorithms. Benefiting from dilation convolution, the accuracy of improved
Multi-scale context aggregation by dilated convolutions network is 62.84% and 64.90%,
respectively. DeepLab V2 integrated with different scale dilation convolution achieved the
highest accuracy of 67.70% [41].

To further expand the applications of deep CNNs with enhanced performance ac-
curacy for underwater monitoring, this paper presents the analysis of the morphological
information by a novel DeeperLabC model that can automatically extract spatial features
and perform semantic segmentation of the coral image. The main contributions of this
work are highlighted as follows.

1. First, a new CoralS dataset containing single-channel underwater coral images col-
lected in natural underwater environment was constructed using RGB and spectral
imaging techniques, developed in laboratory.

2. A deep CNN was modelled by fine-tuning deeplabv3+ model and adjusting ResNet34
backbone architecture for semantic segmentation of single-channel coral images.
Depth to space module is added to the network to cope with the processing speed
and memory usage of graphic processing unit (GPU).

3. CAM module was installed at the tail of CNN to enhance visualization of the model’s
segmentation effects.

4. The fourth contribution is a comparison of the developed model, using the CoralS
dataset, to benchmark CNN models; results showed that the proposed model achieved
high accuracy. The comparison can be visualized through a GUI developed to perform
coral image segmentation.

The rest of the paper is organized as follows: Section 2 introduces data and methods
that include the construction of the coral dataset and the detailed structure of the proposed
neural network model for coral semantic segmentation. Experimentations, including
data preprocessing and network training, are outlined in Section 3. Segmentation effects,
comparative analysis of the proposed model and GUI development are noted in Section 4.
Lastly, synopsis of the work is presented in Section 5, which also draws the prospects of
the presented study.
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2. Methodology

Image semantic segmentation requires image dataset and a deep learning model
which can properly converge the data for better segmentation results. For coral semantic
segmentation, CoralS dataset is acquired by underwater RGB and spectral imaging tech-
niques, later the images are preprocessed and manually annotated for further processing
through a designed deep learning model for semantic segmentation of coral images. Image
acquisition, processing, and the deep learning model are explained below.

2.1. CoralS Dataset Collection

Table 1 introduces CoralS dataset used for semantic segmentation of corals, which
contains spectral images by Liquid Crystal Tunable Filter (LCTF) spectral imager [42], and
RGB images taken with Single-lens Reflex (SLR) RGB camera (EOS, Canon, Tokyo, Japan).
In addition to using a wide spectrum xenon lamp (HPLS-30-04, Thorlabs, Newton, NJ,
USA), other sources such as sunlight, white lighting LED, and blue LED (FL-1, Nightsea,
Lexington, MA, USA) were used as excitation light source.

Table 1. Dataset collection for coral semantic segmentation.

Location Coral Species Reference Figure

Third Institute of Oceanography,
MNR, Fujian, Xiamen. Plerogyra sinuosa, Acropora sp. Figure A1

Institute of Deep-sea Science and
Engineering, Chinese Academy of

Sciences, Hainan, Sanya.
Dead coral skeleton, Acropora sp. Figure A2

Ocean Optics Laboratory of
Zhejiang University, Zhejiang,

Zhoushan.

Trachyphyllia Geofroyi, Turbinaria
peltate, Zoanthus sp. Figure A3

Ocean Optics Laboratory of
Zhejiang University, Zhejiang,

Zhoushan.

Dead coral skeleton, Montipora
Capricornis, Trachyphyllia Geofroyi,

Montipora digitate, Caulastrea
furcate, Hydnophora exesa,

Nephthyigorgia sp.

Figure A4

Shenzhen Da’ao Bay, Coral
conservation base about 8 m depth.

22◦33′47′′ N and 114◦27′37′′ E
Mainly Acropora sp. Figures A5 and A6

Because of the limited number of coral species captured, python web crawler was used
to get RGB images, shown in Figure A7, on the network as supplementary data samples
to enrich coral morphological information. Crawler also collected coral images in more
complex scenes as in Figure A8, containing various corals and other marine organisms.
Python web crawler was executed in the following two steps:

1. ImageCrawler: obtain HTTP path of desired images;
2. ImageDownloader: download images to a local directory.

Parameters used for ImageCrawler and ImageDownloader were:

• engine: Baidu;
• keyword: Corals, Dead coral skeleton, and Acropora;
• n_scroll: It defines the number of scrolling in the browser;
• link_save_dir: It holds the directory to save web links of the images;
• image_save_dir: It defines a directory to save images on the local disk.

Crawler collected 500 images, including 400 positive sample images and 100 negative
sample images, which makes up to 12% of the total image dataset. The overall quantitative
analysis of the CoralS dataset is presented in Table 2.
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Table 2. Quantitative analysis of coral classification dataset.

Spectral
Images

RGB
Images RGB Images from Web Crawler Total

Positive sample 144 2128 400 2672
Negative sample 150 1209 100 1459

Total 294 3337 500 4131

Semantic segmentation requires pixel-level annotation of images in the dataset. Man-
ual annotation was done using Photoshop CC, with a coral area marked white and back-
ground marked as black, as shown in Figure A9. Negative supplementary images, as
shown in Figure A10, were used as comparative samples with the images containing corals.
Image level annotation, in which images with corals are marked as 1, and images without
corals bearing category mark of 0 are also added in the CoralS dataset.

2.2. DeeperLabC Model

Unlike other existing semantic segmentation models, the proposed “DeeperLabC”
model based on the excellent performance of DeeperLab [43], mainly extracts coral features
of a single-channel image and performs semantic segmentation. According to the change
in input data dimension, the DeeperLabC model adjusts the number of convolution kernels
to meet single-channel image processing requirements. For semantic segmentation, the
original model is pruned, and the irrelevant modules such as example segmentation are
removed, and the semantic segmentation part is kept, which makes the model more concise.
Besides, for the binary classification of coral segmentation, the feature graph’s dimension
is reduced, making the size of the model reduced, with a lower amount of memory usage
and improved speed of calculations.

The structure of DeeperLabC model shown in Figure 1 is divided into encoder and
decoder. Initially, the semantic feature maps of the input image to be segmented are
obtained by the skeleton network. Low-level features with more texture information are
further down-sampled by convolution and Space2Depth (S2D) operations. High-level
features are extracted from different receptive fields by Atrous Spatial Pyramid Pooling
(ASPP). At the end of the encoder, low-level features after convolution and high-level
features extracted by ASPP are stacked on the channel dimension. In the decoder, after a
series of convolution operations, the depth to space (D2S) and linear interpolation are used
to up-sample the feature map to the size of original image.

Figure 1. Structure of the DeeperLabC model for coral semantic segmentation.

Figure 2 shows the adjusted ResNet34 with residual modules, where the input image
is processed by the first layer convolution, batch normalization, and maximum pooling
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to get the low-level features, which are input into the subsequent convolution layer. To
cope with the high processing and large number of deep network parameters, the original
ResNet34 model is fine-tuned by pruning the last residual block while maintaining the
classification accuracy of the network. The resultant skeleton network contains three
residual blocks with 26 convolution layers. After three residual modules, the high-level
features are obtained with dimensions reduced to 1/16 of the original input, but the number
of channels increased from 1 to 256. Residual block convolutional layers are presented in
Figure 2b,c.

Figure 2. Components of DeeperLabC: (a) ResNet34 framework; (b) Residual module structure; (c) Details of convolution
layers of adjusted ResNet34 for feature extraction.

Mathematically, the obtained high-dimensional feature y can be expressed as

y = F(x) + x (1)

The ASPP module takes high-level features from the skeleton network and uses
several dilated convolutions with different dilation coefficients for multi-scale sampling in
parallel. As shown in Figure 3a, for the same red anchor, the greater the dilation coefficient
of the dilated convolution is, the larger the regional characteristics will be calculated and
analyzed. In the ASPP module, the global average pooling (GAP) is used to obtain the
global features of the input high-level semantic feature map, and the bilinear interpolation
is used to enlarge the global features. Four isometric feature maps obtained by four
different expansion coefficients through GAP are stacked in channel dimension. Later,
1 × 1 convolution is used to reduce the dimension to 256 to minimize graphics memory
consumption and enhance calculation speed.
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Figure 3. Network modules: (a) Atrous Spatial Pyramid Pooling (ASPP) module in DeeperLabC; (b) S2D and D2S
transformation of the feature map.

To handle the GPU memory usage and processing speed of the model while keeping
the promising accuracy of the model, Space2Depth for down-sampling and Depth2Space
for up-sampling, as in Figure 3b, is used in encoder and decoder, respectively. In the
two transformations, each feature map’s volume remains unchanged, only the spatial and
channel dimensions are adjusted to achieve up-sampling or down-sampling. To maintain
larger receptive fields, DeeperLabC uses a larger kernel size after concatenating low-level
and high-level features.

To evaluate the semantic segmentation results, cross-entropy is used as a loss function,
and gradient descent is used to optimize the network’s training parameters. Cross entropy
function is used to evaluate the probability distribution yp of prediction results and ygt of
real segmentation results, which can be expressed as

H
(

ygt, yp

)
= −∑ ygt · log

(
yp

)
(2)

3. Experimentation
3.1. Data Preprocessing

Before training the network, all the CoralS dataset images are preprocessed to ensure
image size and channel number consistency. Each RGB image is divided into three single-
channel images (R, G, B) to keep the channel dimension consistent with the spectral image.
To preserve all the features in a spectral image, the black edges at upper and lower ends
are added with the aspect ratio of 1:1. All the RGB images, corresponding manually
labelled images, and spectral images were uniformly clipped and scaled to the size of
512 × 512 × 1 pixels, as in Figure 4.

Figure 4. Cont.
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Figure 4. Coral images preprocessing: (a) RGB image; (b) R channel; (c) G channel; (d) B channel; (e–h) Preprocessed spectral images.

3.2. Skeleton Network Pre-Training

The skeleton network ResNet34 is pre-trained with an image-level classification label
in the CoralS dataset to enhance the model’s feature extraction ability. Quantitative analysis
of the dataset for pre-training is presented in Table 3.

Table 3. ResNet34 pre-training data analysis.

Training Set 90% Validation Set 10% Total

Single channel RGB image 10,359 1152 11,511
Spectral image 174 20 194

Total 10,533 1172 11,705

All images in the training set are augmented randomly with 50% probability; 0–180◦

random rotation, random horizontal flip, and random vertical flip. While no data aug-
mentation is performed on the images of the validation set. Adam optimizer is used to
optimize the parameters, and the initial learning rate is vo = 1 × 10−4. Exponential decay
is used in the learning rate optimization strategy, i.e.,

v = αj · vo (3)

where α is the attenuation coefficient of the learning rate, which is set as constant 0.99, and
j represents the number of epochs. The network is trained with total epochs of 200 and a
batch size of 32, which took around 10 h to reach the maximum iteration. During training,
the network loss is quantified by cross-entropy, and loss curves are plotted as in Figure 5.
Training loss and validation loss converges at 0.08 and 0.18, respectively. From the training
graph it is revealed that, with the sample dataset, the model reduces the overfitting and
increase the generalization in the network.

3.3. DeeperLabC Model Training

The data used for training the DeeperLabC model is presented in Table 4, which
contains labelled images in CoralS dataset, including single-channel RGB images and
spectral images illuminated with white light.

Table 4. DeeperLabC training data analysis.

Training Set 90% Validation Set 10% Total

Single channel RGB image 1552 176 1728
Spectral image 1369 153 1522

Total 2921 329 3250
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Figure 5. Skeleton network pre-training: (a) Training loss curve; (b) Validation loss curve.

The same data augmentation criteria are performed as that of skeleton network pre-
training. The parameters of ResNet34 are loaded, and parameters of DeeperLabC model
are adjusted and optimized using Adam optimizer. Keeping the same learning rate, the
network took about 5 h to train with 150 epochs and a batch size of 16. The loss curves of
DeeperLabC model are shown in Figure 6.

Figure 6. DeeperLabC model training. (a) Training loss curve. (b) Validation loss curve.

4. Results and Discussion
4.1. Visualization and Analysis of Segmentation Routine

The model’s semantic segmentation is visualized at progressing epochs from 0th to
150th, and coral regions are marked with a red mask as in Figure 7a. The network showed
improvement in the segmentation of validation set through continuous optimization of
network parameters. The parameters of 110 epoch are selected and loaded into the seg-
mentation model, and the validation set images verify the segmentation results. Although
the shapes of corals are different, the DeeperLabC model after 110 epochs of training can
fairly distinguish between coral and non-coral areas, as in Figure 7b.
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Figure 7. Result visualization: (a) Segmentation at different epochs; (b) Segmentation of validation set.

4.2. Performance Evaluation of Segmentation Model

This section defines the commonly used matrices for evaluation of segmentation
model. The evaluation matrices used in this work are given as follows:

Precision (PR) =
TP

TP + FP
(4)

Recall (RE) =
TP

TP + FN
(5)

TP, FP, and FN represent true positive, false positive, and false negative, respectively.
F1-score which is the hormonic mean of precision and recall, can be calculated as

F1− score =
2PR x RE
PR + RE

(6)

Mean IoU is calculated as

mean IoU =
1

c + 1
·

c

∑
i=0

TP
∑c

j=0 FN + ∑c
j=0 FP− FN

(7)

In the above equation c represents the number of classes. Since this work presents
binary classification, the value of c is taken as 2. Statistical analysis of DeeperLabC is
presented in Figure 8. The pink column represents each statistical index’s average value,
and the black line is the standard deviation. The mean value of IoU was 93.90%, and the
average values of PR, RE, and F1-score were 97.31%, 97.13%, and 97.10%, respectively.

4.3. Visualization of Segmentation Based on CAM

CAM module [44] is added to the DeeperLabC model’s tail to visualize the feature
map of semantic segmentation. The parameters of network and CAM module are fine-
tuned by using the images with category labels in the CoralS dataset. The addition of
CAM to the network is described in Figure 9, where N0(x) and N1(x) represent a non-coral
and coral characteristic thermal map of equal size, respectively. G0(x) and G1(x) are the
average values of two thermal maps extracted by GAP as

Gj(x) =
1

h ·w · ∑ Nj(x) ; j = 0, 1 (8)

where h and w are pixels height and width of the feature images, respectively.
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Figure 8. Statistical analysis of DeeperLabC on the validation set.

Figure 9. The class activation map (CAM) module in the semantic segmentation network.

The average values with the weights w0 and w1 predict that the input image belonged
to non-coral or coral. Comparing with the real label ygt, the cross-entropy loss function is
used to calculate the loss error. The activation map of coral species is calculated as

CAM(x) = w0 · N0(x) + w1 · N1(x) (9)

The probability of coral on each pixel is obtained by normalizing CAM, as follows:

CAM’(x) =
CAM(x)−min(CAM(x))

max(CAM(x))− min(CAM(x))
× 100% (10)

The same data set as a skeleton network pre-training is used for training, and the
parameter matrix of the CAM module is adjusted to get a more accurate activation map. In
CAM as in Figure 10, closer to red, shows the higher probability that the pixel belongs to
coral, conversely, closer to blue represents a lower probability of belonging to coral. In the
negative samples, most of the CAM areas are at a low value; while in the positive samples,
the coral area has a more apparent red color, which shows that the proposed DeeperLabC
model can better identify the coral features for semantic segmentation.
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Figure 10. Validation set samples and activation maps.

4.4. Comparison with Other Segmentation Models

FCN, UNet, DeepLabV3+ also have an excellent effect on semantic segmentation;
thus, DeeperLabC is compared with these networks, keeping even training criteria for
all the networks. Since the dataset includes single-channel images, the dimensions and
convolution kernel of the networks are adjusted accordingly. Except for UNet, other
networks are loaded with pre-trained ResNet34 as a skeleton network. Using data in
Table 3, the networks are trained with exponential decay learning strategy, with learning
rate vo = 1 × 10−4, and Adam as an optimization tool. Segmentation visualization and
statistical comparison of the networks are in shown Figure 11.

All the models were trained and tested over NVIDIA GeForce GTX 1070ti (8G). Results
revealed that all the models provided swift segmentation with a marginal difference in
inference time. Proposed DeeperLabC consumed around 1 gigabyte memory of GPU,
slightly lower than memory consumed by FCN, UNet, and DeepLabv3+. Lastly, the trained
model is encapsulated, and the graphical user interface (GUI) shown in Figure A11, is
developed to facilitate the subsequent use. GUI interface is designed and developed based
on python 3.5 and Qt 5.14.
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Figure 11. Comparison of semantic segmentation results of different CNN models: (a) Segmentation
results visualization; (b) Statistical comparison of CNN models for semantic segmentation.

5. Conclusions

This study presented a CNN-based deep learning model, “DeeperLabC” for semantic
segmentation of corals. For the purpose, a distinct coral image dataset which includes
single-channel images of various corals was constructed using RGB and spectral imaging
technologies. Spectral images at varying wavelengths and RGB images of several coral
species under different illumination were collected and used to train and validate the model.
The proposed model utilized ResNet34 backbone architecture to extract coral features
from single-channel coral images and perform semantic segmentation. In DeeperLabC,
convolutional kernels were adjusted for single-channel input images, and the model was
fine-tuned, which resulted in a concise semantic segmentation model. The training curves
and segmentation visualization results revealed that the model better converged on sample
CoralS dataset. The number of training samples in the dataset was sufficient to improve
model performance and reduce spurious correlations in dataset that can cause overfitting.

Upon visualizing the segmentation results and analyzing the statistical data after
experimentation, the DeeperLabC model proved to be the finest for coral segmentation,
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compared with FCN, UNet, and DeepLabV3+ model, achieving the resultant mean IoU
of 93.90%. Supplementing CAM module to the model provided an additional means of
coral segmentation visualization. Finally, the user-friendly GUI module was designed,
which encapsulated the entire model for performing semantic segmentation of coral im-
ages, visualization of segmentation results, and comparing different neural networks for
segmentation.

In literature, remote sensing techniques have stated that corals are dying drasti-
cally [45,46]. Our presented system containing coral imaging and the concise and encap-
sulated system for coral segmentation can be practically utilized for closer and long-term
investigation of underwater corals. Future work will focus on enlarging the dataset by
adding images of more complex and sparse coral structures. For the detailed morphological
study of corals, imaging in other spectral regions such as near-infrared (NIR) will be trialed.
Also, the model will be experimented with and deployed for the semantic segmentation of
other underwater bodies.
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Appendix A

Figure A1. Examples of spectral images under white light. (a) Plerogyra Sinuosa. (b) Acropora sp.

https://github.com/YcShentu/CoralSegmentation
https://github.com/YcShentu/CoralSegmentation
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Figure A2. (a) RGB images of Acropora sp. (b) RGB images of dead coral bones. (c) Spectral images
of Acropora sp. illuminated by blue light. (d) Spectral images of coral bones under white light.
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Figure A3. (a) RGB images indicating the specie size. (b) Spectral images of Turbinaria Peltata,
illuminated by blue light. (c) Spectral images of Trachyphyllia Geofroyi illuminated by white light.

Figure A4. (a) Coral species including the dead coral skeleton; (b–d) Spectral images under white
light illumination.

Figure A5. (a) Underwater spectral imaging system; (b) Imaging Acropora sp; (c) Imaging site.
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Figure A6. Coral images during the sea trial: (a) RGB images under white light; (b) RGB images under
blue light illumination; (c) Spectral images under blue light; (d) Spectral images under white light.

Figure A7. Examples of coral images that were collected through python crawler.
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Figure A8. Coral images with complex background obtained by the web crawler.

Figure A9. Examples of manual annotation of spectral and RGB images.

Figure A10. Negative sample images: (a) Spectral images of crust; (b) Spectral images of minerals
and sediments assemblage; (c) Negative RGB images that were collected by python crawler.
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Appendix B

Figure A11. GUI interface for coral semantic segmentation network.
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