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In the event of a Food and Mouth Disease (FMD) outbreak in the United States, an

infected livestock premises is likely to result in a high number of carcasses (swine and/or

cattle) as a result of depopulation. If relocating infected carcasses to an off-site disposal

site is allowed, the virusmay have increased opportunity to spread to uninfected premises

and result in exposure of susceptible livestock. A stochastic within-herd disease spread

model was used to predict the time to detect the disease by observation of clinical signs

within the herd, and the number of animals in different disease stages over time. Expert

opinion was elicited to estimate depopulation parameters in various scenarios. Disease

detection was assumed when 5% of the population showed clinical signs by direct

observation. Time to detection (5 and 95th percentile values) was estimated for all swine

farm sizes (500–10,000 head) ranged from 102 to 282 h, from 42 to 216 h for all dairy

cattle premises sizes (100–2,000 head) and from 66 to 240 h for all beef cattle premises

sizes (5,000–50,000 head). Total time from infection to beginning depopulation (including

disease detection and confirmation) for the first FMD infected case was estimated

between 8.5–14.3 days for swine, 6–12.8 days for dairy or beef cattle premises. Total time

estimated for subsequent FMD cases was between 6.8–12.3 days for swine, 4.3–10.8

days for dairy and 4.5–10.5 days for beef cattle premises. On an average sized operation,

a sizable proportion of animals in the herd (34–56% of swine, 48–60% of dairy cattle, and

47–60% of beef cattle for the first case and 49–60% of swine, 55–60% of dairy cattle,

56–59% of beef cattle for subsequent cases) would be viremic at the time of beginning

depopulation. A very small fraction of body fluids from the carcasses (i.e., 1mL) would

contain virus that greatly exceeds theminimum infectious dose by oral (4–7x) or inhalation

(7–13x) route for pigs and cattle.
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INTRODUCTION

Foot and mouth disease (FMD) is a highly contagious viral
disease affecting primarily cloven-hoofed animal including key
livestock production species such as cattle and swine. In the event
that a case of FMD were detected in the United States (US), there
would likely be serious economic impact on international trade
of animals and animal products (1). The US has a preparedness
and response plan for disease control and eradication in the
event of a foreign animal disease event. This plan encompasses
management of multiple animal species, and may include
movement control, quarantine, vaccination, and depopulation
measures (2).

Identification of FMDwithin a herd relies upon observation of
clinical signs to trigger diagnostic testing of suspect individuals.
Testing methods for population-level disease surveillance are
lacking; this likely results in delayed detection until infection
has spread at the farm level. Experimental and modeling studies
of transmission in cattle (3) and swine (4) suggest that the
infectious period in these species as close as under 24 h before
the onset of clinical signs (fever or lesions). This underscores
the important role of prompt detection by clinical signs to limit
spread throughout the herd. Similarly, early detection decreased
the length of epidemics in a multi-species model based on a cattle
and feedlot-dense region of Texas, USA (5).

Depopulating an infected premises is performed to prevent
further spread of Foot and Mouth Disease virus (FMDv) to
susceptible animals and to limit additional FMDv shedding
in latently or clinically infected individuals. If an outbreak
were concentrated in a geographic area in which FMD can
be readily contained without further spread, the response
strategy of “stamping out” will likely be elected. “Stamping
out,” or immediate depopulation, is the preferred control
method for clinically infected and in-contact susceptible
animals as a means to reduce the potential of disease
spread. It is assumed that the depopulation procedures would
follow the United States Department of Agriculture, Foreign
Animal Disease Preparedness and Response Plan (FAD PReP)
Guidance (2).

FMD was eradicated from the United States in 1929 (6);
historical data specific to the modern large-scale agricultural
operations most common in the US are lacking. Especially in
areas where empirical data is lacking, expert opinion has been
a mainstay in informing proactive planning for FMD incursions,
and aspects such as disease characteristics in a naïve population
and depopulation techniques have been described (7, 8). Models
have been used as another means of understanding potential
disease scenarios and as a way to inform planning decisions.
Most models focus on between-herd spread, and incorporate
aspects such as vaccination strategies, movement characteristics,
and geographic proximity in areas with multiple species, such as
cattle, goats, and swine (5, 9–12). In all these studies depopulation
is one option to limit disease spread; however, management
strategies for carcasses after depopulation was not considered.

Swine and cattle (beef and dairy) are the two most prevalent
livestock species in the US (13, 14). If a swine or cattle
premises were infected and depopulated, the option to dispose of

carcasses off-site may be needed due to environmental and other
limitations of disposing a large biomass on-site. It is required for
trucks to be leak-proof while hauling animal carcasses according
to US Code of Federal Regulations (15), however, in the event
of an FMD outbreak, other means of hauling carcasses may
be employed. FMDv presents a containment challenge due
to its persistence in the environment, especially when it is
within organic material and protected from desiccation, heat
and adverse pH conditions (16). Movement of FMDv-infected
carcasses represents one of the main disease spread pathways
during an outbreak. Proactively evaulating the potential risk of
transmission and available mitigation meaures can allow risk
managers to be better prepared for these scenarios in the event
of an outbreak (Figure 1).

The aim of this study was to evaluate the likelihood
that carcasses in a truckload from a depopulated infected
premises would contain an infective FMDv dose at the time
of transportation to disposal. This information is an important
consideration for emergency preparedness and management
officials in the event of a FMD outbreak, as off-site transportation
of carcasses to disposal is a potential pathway to spread virus
during an outbreak.

MATERIALS AND METHODS

A stochastic disease spread model was developed to simulate
the transmission of FMDv within a swine, dairy or beef cattle
herd and predict the proportion of viremic animals at the
time of depopulation. The model was run for each of the
livestock types, and it estimated the number of animals in
various disease stages at each time step. Disease stages included:
susceptible (S), latent (L), pre-clinical (PI), clinical (CI), and
recovered (R) (17). Both pre-clinical and clinical animals were
considered viremic and infectious to other susceptible animals
within the herd (18, 19). The model updated the number of
animals in each disease state every 6 h. The uncertainties in input
variables, as well as the inherent variability associated with the
course of infection in individual swine, dairy and beef cattle
populations and the spread within the group were considered in
themodel in the form of distributions for the different parameters
(transmission coefficient, duration of the latent, pre-clinical and
clinical periods). Parameter distributions were obtained from
previous FMD modeling studies and meta-analyses (18–20).
The farm size scenarios used in the model were based on a
compilation of statistics published by the National Agricultural
Statistics Service (NASS) of the United States Department of
Agriculture for 2014 (21). Average farm sizes were calculated for
all production types within livestock category (swine, beef cattle,
or dairy cattle). Themodel assumed that disease transmission was
the same regardless of animal age. Table 1 shows the inputs used
in the disease spread model.

The model assumed random mixing among the entire
population. The number of susceptible animals that become
infected in each time step in the model was dependent on the
adequate contact rate and the proportion of infectious animals in
the herd at that time step. The same contact rate was used for both
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FIGURE 1 | Disease spread pathway by which FMDv may spread during the transportation of carcasses from an infected livestock premises to an off-site disposal

location. Steps in gray represent the potential transmisson risks during transportation.

TABLE 1 | Input parameters used in the FMD spread model in swine, dairy and

beef cattle premises.

Variablea Input distribution/value References

Latent period Normal (2.31, 1.40) (swine)

Weibull (1.78, 3.97) (cattle)

(19)

(18)

Pre-clinical period Normal (1.485, 1.099) (swine)

Gamma (α = 1.222, θ = 1.672) (cattle)

(19)

(18)

Clinical period Poisson (λ = 5.195)-Normal (1.485,

1.099) (swine)

(19)

Gamma (α = 4.752, θ = 0.736) (cattle) (20)

Group size (head) 500, 1,000, 5,000, and 10,000 (swine)

100, 500, 1,000, and 2,000 (dairy)

5,000, 15,000, 30,000, and

50,000 (beef)

(21)

Adequate contact

rate (contacts/day)

beta PERT (3.17, 6.84, 14) (swine) (22)

beta PERT (13, 54, 216) (cattle) (17)

Detection threshold 5% of group

aDistributions refer to swine groups of more than 200 head.

index and subsequent case scenarios. The adequate contact rate
(k) is defined as the mean number of other animals each infected
animal comes into contact with per unit time such that the
contact is adequate to transmit infection. Thus, the probability
(Pt) that an animal becomes infected and the number of newly
infected, latent individuals (Lnewt+1) in a given time step can be
expressed as:

Pt = 1− e
−

(

k It
N−1

)

(1)

Lnewt+1 ∼ Binomial(St , Pt) (2)

where N is the total population size of the farm, It is the
number of infectious animals (pre-clinical or clinical) and St
is the number of susceptible individuals at time t. Transitions
between other disease stages (from L to PI, PI to CI and CI to
R disease stages) were simulated based on the duration of each
period, which was determined individually for each animal.

The disease spread model also estimated the time to detect
FMD infection in the herd based on the active observation of
clinical signs, which is one of the surveillance measures that may
be applied in an outbreak at the herd level (23). The threshold for
detection of the disease was set at 5% of the herd showing clinical

signs, which was based on the percentage of naturally occurring
lameness on swine and cattle farms (24, 25). A sensitivity analysis
on the detection threshold (re-analyzed at 2.5 or 10%) was
performed for an exemplar scenario (swine herd of 5,000 head)
to ensure that time to detection distributions were not overly
sensitive to changes in this threshold (Supplementary Figure 1).

Once the disease was detected at a premises, it was assumed
that a depopulation protocol would be initiated by disease
management officials. Total time from detection to beginning
depopulationwas estimated by adding each time interval by using
the following equation:

Total time = tdet + tconf + tsdep(h) (3)

where, tdet is the time elapsed to detect FMD post-infection
depending on the farm size, tconf is the time interval between
detection of clinical signs in a particular premises to the
official laboratory confirmation of a positive sample, and tsdep
is the time interval between laboratory confirmation to starting
depopulation. All the time intervals were expressed in hours.

Expert opinion was solicited via email from five national
experts in emergency management and depopulation procedures
working in academia, industry and government settings to
provide estimates on time intervals for laboratory confirmation
after the detection of an infected premises and for starting the
depopulation protocol (Supplementary Table 1). It was assumed
that the time to complete indemnity or time to find disposal
options were not included in the estimation of total time
from infection to depopulation. Two scenarios (index case and
subsequent cases) were given to the experts for estimating the
time to start the depopulation procedure (tsdep). Input values of
equation 3 for swine, dairy and beef cattle as the index case are
shown in Tables 2–4. A Pert distribution was used to characterize
the variability among experts’ responses (26). The worst-case
scenario was selected to populate the distribution by identifying
the longest time interval estimates among all the experts for the
minimum, most likely and maximum values. For subsequent
cases, the time from disease detection to laboratory confirmation
and the time from confirmation to beginning depopulation
were each set at 24 h. A Monte Carlo simulation was carried
out by using @Risk 6.2 for Excel (Palisade Corporation, NY).
The analysis was performed using 1,000 iterations with Latin-
hypercubemethod. Outputs were expressed by themean and 90%
prediction intervals as calculated by the 5th and 95th percentile
values. The proportion of viremic and recovered animals at the
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TABLE 2 | Input values to estimate timings for depopulation procedure in case of FMD outbreak in swine premises.

Stochastic disease spread

model

Expert elicitation

Herd size Time to detect disease

post-infection (h)*

Time from disease detection to

laboratory confirmation (h)

Time from confirmation to

starting depopulation (h)

Depopulation rate

(head/h)**

500 PERT (102, 135, 228) PERT (24, 48, 72) PERT (24, 48, 72) PERT (30, 140, 600)

2,000 PERT (120, 155, 246)

5,000 PERT (132, 172, 270)

10,000 PERT (144, 183, 282)

Beta-PERT distributions represent minimum, most likely, and maximum values. *5% detection level. **Using three crews (8 men each) during 3 working shifts (20 + 4 h cleaning) and

two side discharge alleys with two loaders.

TABLE 3 | Input values to estimate timings for depopulation procedure in case of FMD outbreak in dairy premises.

Stochastic disease spread

model

Expert elicitation

Herd size Time to detect disease

post-infection (h)*

Time from disease detection to

laboratory confirmation (h)

Time from confirmation to

starting depopulation (h)

Depopulation rate

(head/h)**

100 PERT (42, 82, 192) PERT (24, 48, 72) PERT (24, 48, 72) PERT (18, 36, 60)

500 PERT (54, 93, 192)

1,000 PERT (60, 97, 192)

2,000 PERT (60, 107, 216)

Beta-PERT distributions represent minimum, most likely, and maximum values. *5% detection level. **Using three crews (8 men each) during 3 working shifts (20 + 4 h cleaning) and

two cow side discharge alleys (10 cows each) with two loaders.

TABLE 4 | Input values to estimate timings for depopulation procedure in case of FMD outbreak in beef cattle premises.

Stochastic disease spread

model

Expert elicitation

Herd size Time to detect disease

post-infection (h)*

Time from disease detection to

laboratory confirmation (h)

Time from confirmation to

starting depopulation (h)

Depopulation rate

(head/h)**

5,000 PERT (66, 109, 216) PERT (24, 48, 72) PERT (24, 48, 72) PERT (18, 36, 60)

15,000 PERT (72, 117, 210)

30,000 PERT (78, 120, 216)

50,000 PERT (78, 128, 240)

Beta-PERT distributions represent minimum, most likely, and maximum values. *5% detection level. **Using three crews (8 men each) during 3 working shifts (20 h + 4 h cleaning) and

two cow side discharge alleys (10 cows each) with two loaders.

time of starting depopulation was predicted from the disease
transmission model at the time elapsed between infection and
starting the depopulation.

RESULTS

The disease spread model estimated the time to reach 5% of

clinical animals in the herd (threshold for FMD detection by

active observational surveillance). Time to detection (5 and 95th
percentile values) was estimated at 102–282 h for all swine farm

sizes (500–10,000 head), from 42 to 216 h for all dairy cattle

premises sizes (100–2,000 head), and from 66 to 240 h for all beef
cattle premises sizes (5,000–50,000 head). A sensitivity analysis
of the detection threshold demonstrated that the distributions for
time to detection were not sensitive to the threshold.

A sensitivity analysis was carried out to identify the time
interval that had the greatest influence on the total time (from
detection to finalized depopulation). As it can be seen in Figure 2,
the detection time was the input variable with the greatest
influence for dairy and swine premises. However, given the size
(i.e., large number of animals on beef premises), the time to
depopulate a farm was the interval with the greatest influence on
beef premises.

Total time from infection to depopulation (90% prediction
interval) for the first FMD infected case was estimated to be
8.5–14.3 days for a 3,000 head swine herd, 6.0–12.8 days for a
2,000 head dairy herd and 6.0–12.8 days for 5,000 head beef cattle
premises (Tables 2–4). Total time estimated for subsequent FMD
cases is reported in Table 5. A sizable proportion of animals in
the herd (34–56% of swine, 48–60% of dairy cattle, and 47–60%
of beef cattle for the first case, and 49–60% of swine, 55–60% of
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FIGURE 2 | Sensitivity analysis of the influence of the input time intervals on

the total time from detection to depopulation of premises during an FMD

outbreak. (A) Dairy premises. (B) Swine premises. (C) Beef cattle premises.

TABLE 5 | Total time from infection to beginning depopulation.

Type of farm Total time (days)*

First index case Subsequent cases**

Swine (3,000 head) 10.8 (8.5–14.3) 8.8 (6.8–12.3)

Dairy (2,000 head) 8.5 (6.0–12.8) 6.5 (4.3–10.8)

Beef cattle (5,000 head) 8.6 (6.0–12.8) 6.6 (4.5–10.5)

*1,000 iterations (mean, 5th and 95th percentile values).

**Time from detection (including disease confirmation) to starting depopulation was set at

48 h for subsequent FMD cases.

dairy cattle, 56–59% of beef cattle for subsequent cases) would be
viremic at the time of depopulation (Table 6).

DISCUSSION

Model outputs suggest that if a herd is depopulated when 5%
of animals show active clinical signs, a large proportion of the
herd will be viremic at the time of beginning depopulation.

TABLE 6 | Number of viremic and recovered animals at the start of depopulation.

First index case

Time elapsed

before

depopulation

(days)*

Percentage of

viremic animals

(pre-clinical +

clinical) (%)

Percentage of

recovered

animals (%)

Swine (3,000 head) 10.8 (8.5–14.3) 46 (34–56) 46 (28–62)

Dairy cattle (2,000 head) 8.5 (6.0–12.8) 55 (48–60) 34 (22–45)

Feedlot cattle (5,000

head)

8.6 (6.0–12.8) 55 (47–60) 37 (22–47)

Subsequent cases**

Swine (3,000 head) 8.8 (6.8–12.3) 56 (49–60) 15 (13–18)

Dairy cattle (2,000 head) 6.5 (4.3–10.8) 57 (55–60) 12 (10–14)

Feedlot cattle (5,000

head)

6.6 (4.5–10.5) 58 (56–59) 12 (10–14)

*1,000 iterations. Reported values represent mean, 5th and 95th percentile values **Time

from detection (including disease confirmation) to starting depopulation was set at 48 h

for subsequent FMD cases.

Even in subsequent cases where it is assumed that the time to
from disease detection to depopulation will be shorter (48 h),
the proportion of viremic animals remains relatively unchanged.
Moving infected carcasses represents a real risk for FMDv spread
during an outbreak. However, in the event that “stamping out” is
employed, off-site disposal is likely to be required due to the size
of beef, dairy, and commercial swine premises in the US and the
large amount biomass resulting from depopulation.

Virus could escape from a load of carcasses in leaked
fluid, expelled fomites (e.g., dirt, feces), or jostled carcasses
from the load, or via aerosolization of virus-laden particulate
matter. The likelihood of a spill or aerosol event is unknown,
however it is likely that even a small volume of escaped
fluid may contain an infectious dose of virus. The average
concentration of FMDv in a carcass in experimental inoculation
studies was 103 PFU/g for a pig carcass and 106 PFU/g for
a cattle carcass (27–40). Consultation with rendering industry
experts revealed that for transportation of fresh, intact carcasses
under normal conditions, most body fluids remain inside the
carcass (personal communication, 2013). In a full load of a
standard rendering truck (29–1,000 carcasses), experts estimated
the amount of fluid leakage from carcasses at 20 L per load.
Assuming that 1mL of leakage contains equivalent virus to
1 g of carcass material, 1mL of body fluids could contain
10–100,000 times higher virus quantity (103-106 PFU) than
the minimum infectious dose by oral (1.4 × 104 – 1.4 ×

106 PFU) and inhalation route (7–357 PFU) for pigs and
cattle (41, 42). Of note, these estimates are based on literature
review and experimental studies; virus loads in tissues may
be different among virus strains and subtypes or in non-
experimental conditions, however, this data was not available
for extrapolation.

The environmental conditions which favor airborne FMDv
spread are high humidity, low precipitation, low to moderate
wind speed, and flat terrain (43). Suitable conditions of relative
humidity (RH) above 60% and temperatures below 33◦C
(91◦F) are needed for long-range airborne transmission to
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be possible. FMDv bioaerosols degrade quickly in RH below
55% due to desiccation (44). Precipitation generally reduces
atmospheric bioaerosol concentrations, while high levels of
turbulence temporarily increase aerosolized concentrations when
dust is raised (45). In longer-range airflows, turbulence eventually
causes dilution of FMD bioaerosol concentrations and higher
gravitational sedimentation, especially in particles smaller than
10 micrometers (46). Sunlight has minimal effect on the aerosol
spread of FMDv, and instead mostly affects survival on surfaces
(46). While beyond the scope of this study, further work on
the risks of aerosol spread may be warranted if off-site carcass
transportation is considered.

A standard rendering truck is outfitted with sealed tailgate
and tarp cover to prevent spills or aerosolization, however, it is
unlikely that this will completely mitigate risk of virus escape
from a load. In the event of an outbreak, other truck types may
be employed due to increased demand for timely carcass disposal.
A standard rendering truck, roll-off, or dump truck without tarp
covering would have an increased likelihood of spillage, due to
the proximity of carcasses and other contaminated debris to
the top of the trailer in a full load. The use of a sealed plastic
bag suitable for the disposal of biological residues is an option
provide full protection against spillage and aerosolization. In the
event that new or different types of equipment are employed, or
that new personnel lacking adequate training are used during an
outbreak, the potential that standardmitigationmeasures may be
misused due to human error cannot be underestimated.

Due to the proactive nature of this assessment, some
assumptions in calculations were made which may limit this
model’s applicability in the event of an outbreak. For example,
in estimating the time until FMD detection on a farm, only
direct animal-animal contact was considered in disease spread,
however, in some geographies or production systems, aerosol or
fomite (contaminated person/equipment) may also contribute
to spread. In addition, the presence of segregated or sub-
herds within a population would change the contact rate and
the number of animals with viremia at different time points.
However, an analysis by Kinsley showed that adding within-
farm population structure did not substantially influence time to
detection or time to the peak of the epidemic (47). Additionally,
although a change in time to detection (either shorter or longer)
could influence our results, we did not find time to detection
to be influenced by the detection threshold (percent of animals
clinical). Part of the reason for this is the high transmission
rate of the virus. By the time 5% of the animal are clinical,
transmission is in its exponential growth phase (48), and the
difference between time until 5 vs. 10% are clinically infected is
very small. In addition, our results for time to detection, derived
from the stochastic model, were consistent with an analysis of
real-world data from the UK epidemic, where the probability of
a farm escaping detection fell sharply at around 7 days and was
negligible by 12–13 days (49).

In the event of an especially large infected premises, such
as a feedlot operation or an integrated farrow to finish swine
operation, depopulation (even at efficient speeds) may last weeks
to months. The proportion of viremic animals near the end of
a depopulation effort and after significant time has elapsed in

disease progression is likely markedly different than that which
was calculated at the start of depopulation. Further modeling
of this disease progression is an area for further work which
may be instrumental in planning for management of large
infected premises.

In calculating length of time to depopulation, it was
assumed that the disposal site was identified and secured before
the outbreak, and no additional delays in depopulation or
transportation of carcasses occurred as a result of having to
locate an acceptable disposal site. It was assumed that the time
from depopulation to movement of carcasses to the disposal
site would be very short (a matter of hours), so the potential
for body fluids to escape from carcasses (leakage) will be
minimized. In the event that depopulation or movement of
carcasses from euthanasia location into transport vehicle is
delayed, it is likely that larger amounts of body fluids may be
present, and risks associated with leakage from carcasses may
become more significant. Additional delays in transportation
or increased duration of transportation to distant disposal sites
can be expected to have similar effects on increased leakage as
additional body fluids and products of autolysis escape from
a carcass.

Finally, this study did not consider issues related to capacity,
resource availability, and resource depletion. A large number
of infected premises over an extended time period would have
the potential to deplete available resources as well as capacity.
This would likely result in longer delays in identification,
depopulation and disposal. In this event, the herds continue to
progress toward a recovered stage, and the proportion of the herd
which is viremic will continue to decrease, while the potential
for viral contamination of the premises will increase. Issues of
logistics and animal welfare must be balanced with the potential
for depopulation to decrease the number of potential animal
hosts in a local area.

CONCLUSION

In the event of an FMD outbreak in the US, significant time will
lapse between infection of a livestock premises and beginning
depopulation. During this time, disease continues to spread
throughout a herd, and it is likely that a large proportion of
animals will be viremic at the time of depopulation, even if
disease confirmation and beginning depopulation occurs in a
timely manner. Given that even a small amount of leakage
from viremic carcasses is likely to contain FMDv concentrations
that will exceed the minimum FMD infective dose for pigs
and cattle by several degrees of magnitude, it appears that
leakage from vehicles transporting viremic carcasses to off-site
disposal locations represent a real risk for virus spread during
an outbreak. Delays in identification, depopulation and disposal
will likely result in greater number of animals that are in the
recovered stage.

This study can inform the risk assessment of FMD
transmission during the movement of infected carcasses,
and should be valuable for risk managers when considering
emergency response options. In addition, this can help federal
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and state agencies to adopt additional risk mitigationmeasures to
reduce the likelihood of infection of susceptible livestock during
an FMD outbreak in the US.
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