
An RNA Polymerase II-coupled function for histone H3K36 
methylation in checkpoint activation and DSB repair

Deepak Kumar Jha1 and Brian D. Strahl1,2

1Department of Biochemistry and Biophysics, School of Medicine, UNC-Chapel Hill, NC, USA

2Lineberger Comprehensive Cancer Center, School of Medicine, UNC-Chapel Hill, NC, USA

Abstract

Histone modifications are major determinants of DNA double-strand break (DSB) response and 

repair. Here we elucidate a DSB repair function for transcription-coupled Set2 methylation at H3 

lysine 36 (H3K36me). Cells devoid of Set2/H3K36me are hypersensitive to DNA-damaging 

agents and site-specific DSBs, fail to properly activate the DNA-damage checkpoint, and show 

genetic interactions with DSB-sensing and repair machinery. Set2/H3K36me3 is enriched at 

DSBs, and loss of Set2 results in altered chromatin architecture and inappropriate resection during 

G1 near break sites. Surprisingly, Set2 and RNA polymerase II are programmed for destruction 

after DSBs in a temporal manner – resulting in H3K36me3 to H3K36me2 transition that may be 

linked to DSB repair. Finally, we show a requirement of Set2 in DSB repair in transcription units 

– thus underscoring the importance of transcription-dependent H3K36me in DSB repair.

Eukaryotic genomes are constantly subjected to exogenous and endogenous forms of DNA 

damage1. Double strand breaks (DSBs) can lead to temporary loss of genetic information, 

and failure to repair DSBs can lead to severe genome instability and cell death. DSBs can be 

programmed (e.g., meiosis and immunoglobulin rearrangements) or caused by exogenous 

agents (e.g., ionizing radiation (IR), ultra-violet (UV) and anti-cancer drugs)1, 2.

In eukaryotes, chromatin plays a fundamental role in regulating the cellular response to 

DNA damage2. Among the factors that contribute to the DNA damage response (DDR) are 

histones and their post-translational modifications (e.g., phosphorylated H2A serine 129; γ-

H2A.X in metazoans), ATP-dependent chromatin remodelers (e.g., RSC, INO80, TIP60), 

and histone variants (e.g., Htz1)2. Transcription-associated histone modifications, including 

H3 lysine 4 methylation (H3K4me) and H3 lysine 79 methylation (H3K79me) also 

contribute to DNA damage response and repair2. Interestingly, a majority of stalled 

replication sites tend to occur in transcribed genes3, increasing the propensity for the 
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collision of transcription and replication bubbles eventually resulting in DSBs4. Yet, how 

the transcription apparatus influences DSB repair is not well understood.

One major regulator of chromatin structure during transcription is H3 lysine 36 methylation 

(H3K36me). This mark is deposited by the Set2 methyltransferase and is highly conserved 

from yeast to humans5, 6, 7, 8, 9, 10. Set2 is recruited, at least in part, through binding to 

hyper-phosphorylated RNA Polymerase II (RNAPII) after RNAPII enters the productive 

elongation phase5, 6, 7, 8, 9, 10. Set2 recognizes the phosphorylated C-terminal domain (CTD) 

of RNAPII through the presence of a domain called the SRI domain (for Set2-RNAPII 

interaction domain)7, 8. In yeast, Set2/H3K36me regulates chromatin structure in the bodies 

of genes by activating the histone deacetylase complex Rpd3S5, 11, 12, 13 and by regulating 

histone exchange through regulating the activity of Asf1, Chd1 and ISW1b complexes14, 15. 

Outside of a role for Set2 in transcription elongation, much less in known regarding how this 

enzyme contributes to other DNA-templated functions.

Here we describe a role for Set2/H3K36me in DNA repair, specifically repair of DSBs. We 

show that in budding yeast Set2/H3K36 is required for appropriate activation of the response 

to DSB as well as subsequent repair, a finding that is restricted to its function in 

transcription. Interestingly, we find that Set2 and RNAPII are programmed for destruction 

after DSBs, which for H3K36me, results in a temporal patterning of H3K36me2 and 

H3K36me3 around DSBs that we propose underlies the regulation of chromatin structure at 

break sites. Significantly, we find that Set2 loss leads to altered chromatin structure and 

inappropriate resection at G1 at break sites, which ultimately impacts pathway repair choice.

Results

Set2/H3K36me is required for resistance to DSB

To test whether Set2 and H3K36me function in DNA damage repair, we assessed the 

sensitivity of yeast cells lacking SET2 to various genotoxic agents. Deletion of SET2 caused 

sensitivity to the DSB-causing agent phleomycin (an IR-mimic), mild sensitivity to the 

alkylating agent methyl methane sulfonate (MMS), but no sensitivity to hydroxyurea (HU; 

replication stress) or UV (nucleotide damage) (Fig. 1A). The phleomycin sensitivity was 

rescued by transforming the set2Δ strain with full-length SET2 (Fig. 1B). In contrast, 

sensitivity of the set2Δ strain could not be suppressed by transformation with a catalytically 

inactive SET2 mutant (SET2H199L); thus, methylation activity is required for survival after 

DSB (Figs. 1B and 1F). To further confirm the importance of Set2 in the DSB response, we 

utilized a strain (JKM179) in which a galactose-inducible, site-specific DSB in chromosome 

III can be repaired only by non-homologous end joining (NHEJ)16 (Fig. 1C). Consistent 

with the phleomycin-sensitivity found with deletion of SET2, set2Δ was also sensitive to this 

galactose-induced DSB and was rescued by expressing wild-type (WT), but not catalytically 

inactive, Set2 (Figs. 1C, 1D and 1F). We ruled out the MAT-specific effect by using a strain 

with the HO cut site in ADH4 gene and found that set2Δ was sensitive to a reparable Gal-

inducible DSB as well (Supplementary Fig. 1A). Recently, it was suggested that Set2 

functions in DNA damage in a catalysis-independent manner17, however examination of the 

levels of H3K36me in the presumed C201A catalytic mutant used by Winsor et. al revealed 

that it only abolished the tri-methyl form of H3K36 (Supplementary Fig. 1B). Importantly, 
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and consistent with a role of Set2 methylation at H3K36 in this phenotype and DSB repair, 

we found that mutation of H3K36 (H3K36A) confers sensitivity to phleomycin (Fig. 1E).

Set2 functions through its association with the elongating (phosphorylated) form of 

RNAPII7. We therefore asked whether the DNA damage-induced phenotype we observed in 

the absence of Set2 and H3K36me is connected to its RNAPII function. We previously 

characterized a domain in the C-terminus of Set2, termed the SRI domain, which is essential 

for coupling Set2 with the transcribing polymerase7. Mutation of this domain uncouples 

Set2 from RNAPII and results in selective loss of H3K36me3 (Fig. 1F and18). Significantly, 

mutation of the SRI domain of SET2 (SRIΔ) could not rescue the sensitivity of set2Δ to 

persistent gal-induced DSB (Fig. 1D). Taken together, these data suggest that Set2 functions 

in DSB repair through its interaction with elongating RNAPII. They further suggest the 

possibility that transcribing polymerase itself may play an important role in DSB repair – a 

finding that would be consistent with studies showing RNAPII is present at DSBs19.

SET2 is functionally connected to DSB response and repair

To further establish that Set2 functions in cellular survival against genotoxic insults, we 

selected 30 genes representative of the pathways involved in DDR and repair and analyzed 

double mutant sensitivity to MMS. We performed our genetic interaction screen using MMS 

because of its ability to activate several DNA repair pathways as compared to phleomycin, 

thus allowing us to initially capture more possible genetic interactions between SET2 and 

DDR genes. Our screen revealed that SET2 genetically interacts (both positively and 

negatively) with a subset of DDR and repair genes, albeit to different extents (Fig. 2A and 

Supplementary Fig. 2A). In addition to recapitulating some prior genetic interactions (e.g., 

between SET2 and SLX5) reported by the Idekker group20, we discovered several novel 

genetic interactions upon MMS treatment (e.g., RAD9 and RAD51) (Fig. 2A). We focused 

on DSB-specific genes and repeated the genetic interactions using phleomycin (examples 

shown in Fig. 2B and Supplementary Figs. 2A and 2B). Interestingly, the set2Δrad9Δ 

double mutant was more sensitive to MMS and phleomycin than either single mutant alone, 

suggesting that Set2 functions in parallel to Rad9, to provide resistance to DSB (Fig. 2A, 

and Supplementary Fig 2C). Like the set2Δ single mutants, the set2Δrad9Δ synthetic 

sickness was rescued by WT SET2, but not by a catalytically-dead version of SET2 

(SET2H199L) (Supplementary Fig. 2C). These results agree with similar findings recently 

reported in a high-throughput genetic interaction map using multiple genotoxic agents21.

Because Set2 antagonizes the histone chaperone Asf1 to regulate histone exchange during 

transcription elongation15, we also asked whether the sensitivity of set2Δ might be due to 

mis-regulated histone exchange after DSB. To test this, we analyzed the asf1Δset2Δ double 

mutant on phleomycin. However, the double mutant was synthetically sick on phleomycin 

(Fig. 2B), indicating that Set2 is required for survival in the absence of Asf1 after DSB. Our 

data show that in regards to DSB, Asf1 and Set2 have independent functions.

Since Set2/H3K36me is a histone modification associated with transcription elongation, we 

wondered whether any of the genetic interactions observed might be an indirect 

consequence of transcriptional alterations. However, transcription is only mildly affected in 

set2Δ22, 23, and most of the changes are relatively modest increases in gene expression23. 
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Notably, only a handful of genes are down-regulated in set2Δ (shown in Supplementary 

Table 1), and do not include any canonical DDR or repair genes. Consistent with this, the 

gene expression and pathway analysis performed by Lenstra et al. showed that set2Δ do not 

cluster with processes related to DDR and repair23. Additionally, we asked whether the 

protein levels of an early DSB response factor might be altered in set2Δ. We found no 

significant change in the proteins levels of yKu80, before or after DSB (Supplementary Fig. 

1C). Thus, the specific sensitivity of set2Δ to DSB-causing agents is not attributable to an 

indirect effect of gene expression changes.

Set2/H3K36me regulates checkpoint activation after DSB

To determine if the sensitivity of set2Δ was due to defective DNA-damage signaling, we 

exposed asynchronous cultures of WT and set2Δ strains to either MMS (M) or phleomycin 

(P) and monitored activation of γ-H2A.X (or H2AS129ph) and Rad53 (yeast homolog of 

mammalian Chk2). We observed reduced levels of Rad53 activation and γ-H2A.X in set2Δ, 

suggesting attenuated DSB damage response signaling (Figs. 3A, 3B and Supplementary 

Fig. 3B). Deletion of SET2 in the evolutionarily divergent yeast species 

Schizosaccharomyces pombe also resulted in reduced H2AS129ph when exposed to 

phleomycin (Supplementary Fig. 3A).

γ-H2A.X activation is one of the earliest steps after DSB-induction and occurs with 

extremely fast kinetics24. To determine if this reduced level of γ-H2A.X was due to 

inefficient activation or faster de-phosphorylation (which normally occurs later in the DDR 

pathway)25, we monitored the activation of γ-H2A.X after DSB-induction by phleomycin. 

We observed significantly lower levels of γ-H2A.X within the first hour of phleomycin 

treatment of set2Δ cells (Fig. 3C), implying a function for Set2 at an early step after DSB. 

Additionally, and in line with reduced activation of DNA damage checkpoint, Rad53 hyper-

phosphorylation was severely reduced in a set2Δ strain in a similar time-scale (Fig. 3D). 

Importantly, we found Rad53 activation was also reduced in a H3K36A strain (Fig. 3E). 

Taken together, our data show that Set2-mediated H3K36me is essential for maximal 

activation of the DNA damage checkpoint after DSB induction.

H3K36me2 and me3 are DSB-inducible and present at DSBs

Because the catalytic function of Set2 is responsible for providing resistance to DSBs (Fig. 

1) and full activation of DDR (Fig. 3), we next determined if the levels of H3K36me change 

after induction of DSB. We induced DSBs using phleomycin in an asynchronously growing 

culture and monitored H3K36me3 levels by Western blot analysis. Interestingly, H3K36me3 

levels increased globally within an hour after exposure to phleomycin and then returned to 

basal levels (Fig. 4A). In contrast, H3K36me2 increased with much slower kinetics (Fig. 

4B) and reached its highest levels at a later time-point (i.e., 4-5 hours after phleomycin 

treatment). Although it is possible that the increase in H3K36me2 at the later time-point was 

an active response to DSB, the increase coincided with the decrease in H3K36me3 – 

suggesting a specific loss of H3K36me3 to form more H3K36me2. To further verify that we 

were monitoring a DSB-inducible histone modification, we examined the levels of 

H3K36me3 near the site of DSB (0.2 kb distal to the DSB in the MAT locus) at early time-

points to accurately capture a transient induction. H3K36me3 was increased, although 
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modestly, within 30 minutes of galactose-induced DSB and tapered off approximately 75 

minutes after DSB induction (Fig. 4C). This degree of increase is in line with the changes 

reported for H4 acetylation around the DSB26, 27. Consistent with global H3K36me2 levels 

measured by immunoblot (Fig. 4B), ChIP analysis indicated that H3K36me2 was induced at 

a later time point than H3K36me3 (Fig. 4D). Further, we detected an enrichment of Set2 at 

the DSB at an early time-point following DNA damage (Fig. 4E). The specificities of our 

H3K36me3, H3K36me2 and Set2 antibodies were confirmed by inclusion of a set2Δ sample 

(Figs. 4A-E and Supplementary Fig. 4). Collectively, our data indicates H3K36me3 is DSB-

inducible and transitions into H3K36me2 – a finding which coincides with transiently 

enriched Set2.

To further understand the molecular basis for the temporal regulation of H3K36me2 and 

H3K36me3, we monitored the global levels of Set2 following DNA damage. Upon MMS 

and phleomycin treatment, we found that Set2 protein levels were significantly decreased 

(Fig. 4F). Surprisingly, we also noticed that the levels of Rpb1 (the largest subunit of 

RNAPII), and consequently the Ser2 phosphorylated form of RNAPII CTD (Ser2p CTD), 

also degraded after DNA damage in a proteasome-dependent manner (Fig. 4F and 

Supplementary Figs. 4B, 4F). Collectively, these results reveal a programed destruction of 

Set2 and RNAPII after DSB, which may be an important event in DSB sensing and repair.

To monitor if we see a similar reduction in the levels of RNAPII in the vicinity of a DSB, 

we did ChIP analysis for RNAPII around the MAT DSB. Consistent with the presence of 

Set2, we see RNAPII to be present at the same locus. Additionally, after 30 minutes of DSB 

induction, we can see significant reduction in the level of RNAPII (Supplementary Figure 

4G), a result consistent with our global analysis. To our knowledge, this is the first 

demonstration of proteasome-dependent regulation of RNAPII after DSB in any model 

system.

To further understand how Set2 is regulated after DSB, we immunoprecipitated FLAG-

tagged Set2 at several time-points following phleomycin treatment. We noticed an increase 

in pS/T-phosphorylation (a mark commonly associated with phosphorylation-dependent 

degradation28) concomitant with reduced Set2 levels (Supplementary Fig. 4D). While Set2 

degradation is likely attributed to loss of RNAPII interaction, an alternate hypothesis could 

be that Set2 is targeted for phosphorylation-dependent degradation in a checkpoint-

dependent manner after DSB. However, we found that Set2 levels were still decreased in a 

number of key checkpoint mutants tested (Supplementary Fig. 4E). These data show that in 

WT cells, Set2, RNAPII and H3K36me are regulated after DSB, consistent with a role for 

Set2/H3K36me in regulating cellular resistance to DSB.

Interplay between Set2 and chromatin regulators after DSB

Our genetic and biochemical evidence suggests that Set2 has a methylation- and RNAPII-

dependent function after DSB. Set2-catalyzed H3K36me modulates chromatin structure via 

activation of the Rpd3S histone deacetylase complex5, 11, 12, 13, antagonizing the function of 

Asf115 and regulating ISW1b function14. Thus, we investigated whether any of these 

pathways contribute to the function of Set2 after DSB. As mentioned above, the asf1Δset2Δ 

double mutant is synthetically sick on phleomycin, suggesting that Set2 and Asf1 function in 
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parallel after DSB (Fig. 2B). Consistent with this finding, we also noticed synthetic sickness 

of H3K36A with H3K56R (H3K56Ac being a marker of histone exchange) on phleomycin 

(Supplementary Fig. 2E). To test the other possible H3K36me effector proteins, we deleted 

RCO1 (Rpd3S-specific subunit), IOC4 (Isw1b-specific H3K36me effector protein) and 

YLR455w (a PWWP-containing putative H3K36me binder) and determined if any of these 

strains phenocopied set2Δ. None of these known or putative H3K36me effector proteins 

showed similar phleomycin sensitivity as set2Δ in isolation (Supplementary Fig. 2D). 

Whether specific combinations of these effectors are required or if a novel effector protein is 

reading H3K36me remains to be determined.

We next investigated other histone modifiers known to play a role in the DDR, Dot1 and the 

histone variant Htz1. Dot1-dependent H3K79 methylation (H3K79me) and Htz1 are two 

chromatin components that are crucial for DSB response and repair29, 30, 31, 32, 33, 34. 

H3K79me modulates the DSB checkpoint response by recruiting or stabilizing the Rad9 

adaptor protein on chromatin34, 35 and inhibits DSB end-resection in a Rad9-dependent 

fashion36, 37. Htz1 has been implicated in a multitude of events occurring after DSB. We 

investigated the genetic interactions between SET2 with DOT1 and HTZ1 to determine 

whether Set2 is part of any of the known pathways (or processes) in which these proteins 

function after DSB. We observed that set2Δ was synthetically sick with htz1Δ and swr1Δ 

(Supplementary Fig. 2E), but set2Δ suppressed the mild resistance of dot1Δ to phleomycin 

(Fig. 2B). These data reveal that Set2/H3K36me is required for cell survival in the absence 

of Swr1/Htz1 function. They also suggest that Set2 and Dot1 might function in antagonistic 

manner to regulate cellular response to DSB.

Set2 regulates chromatin dynamics around a DSB

Based upon synthetic sickness of set2Δ with genes involved in homologous recombination, 

early abrogation of DNA damage checkpoint and sensitivity to ‘error-prone NHEJ’ (as 

revealed by persistent DSB in JKM179 ‘donor-less’ strain) (Fig.1C), we investigated if the 

early steps of chromatin remodeling might be defective in cells deleted for SET2. Thus, we 

induced DSB (in asynchronous cultures) by galactose treatment in the JKM179 donor-less 

strain and performed a time-course-based ChIP experiment for histones, their post-

translational modifications and histone variants, at regions near the DSB and at an unrelated 

locus (ARS315) as a control. We monitored the DSB induction kinetics, using primers 

across the induced DSB, in WT and set2Δ and found that to be identical (Supplementary 

Fig. 5a). We also confirmed the reduced DNA damage checkpoint activation in set2Δ by 

monitoring γ-H2A.X around a DSB. Consistent with previously published results for γ-

H2A.X around a DSB, we observed a rapid accumulation of γ-H2A.X within an hour of 

DSB induction. In contrast, set2Δ showed no significant γ-H2A.X activation (Fig. 5A).

After a DSB, an early response of WT cells is to ensure a de-acetylated chromatin state, 

thereby enabling NHEJ in yKu70-80-dependent fashion38, 39, 40, 41. Removal of yKu70-80, 

due to activation of Sae2 (and other resection enzymes) results in DSB being processed for 

homologous recombination41, which correlates with increased acetylation of histones26, 27. 

Consistent with previously published results for H4 acetylation38, in WT cells, H4 

acetylation decreased early, followed by an increase in H4 acetylation (Fig. 5B, solid line, at 
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0.2kb away from DSB). In contrast, H4 acetylation was significantly higher in set2Δ cells 

compared to WT cells around 1.5 hour after gal-induced DSB (Fig. 5B, dashed line). 

Notably, the subsequent increase in H4 acetylation seen in WT cells did not occur in set2Δ 

cells (Fig. 5B, dashed line), indicating that the dynamic changes in H4 acetylation that 

normally occur after a DSB were altered in the absence of Set2 – a result consistent with the 

idea that chromatin structure at DSBs is influenced by Set2 and H3K36me. Because NuA4 

drives, in large part, H4 acetylation at DSBs, the altered H4 acetylation seen in set2Δ cells 

may have been due to altered NuA4 activity (a result also consistent with the finding that 

NuA4 function is partially depended on H3K36me42).

Given the observed changes in H4 acetylation, we next looked at Htz1, an H2A histone 

variant that is deposited at DSBs by the SWR1 complex, which recognizes acetylated 

histones43, 44, 45. Consistent with published literature, Htz1 levels decreased in the vicinity 

of the DSB in WT cells (Fig. 5C)2. In contrast, there was more retention of both Htz1 and 

H3 around the same DSB in set2Δ cells (Figs. 5C and Supplementary Fig. 5B). The level of 

Htz1 was not altered globally (Supplementary Figure 5F). Aberrant retention of Htz1-

containing nucleosomes around the DSB reduces the available biochemical pool of substrate 

for Tel1 (i.e., H2A) and this may provide a molecular basis for the defects in the DNA 

damage checkpoint that is observed in the absence of Set2 (i.e., reduced γ-H2A.X) (Figs. 3 

and 6), although we formally do not rule out an abrogated activation of Tel1 as a molecular 

explanation. However, a similar antagonistic relationship has been observed in the case of 

ino80Δ (chromatin remodeling complex required for removing Htz1 from chromatin), where 

increased retention of Htz1 reduces γ-H2A.X 31.

Given the critical role nucleosomal architecture plays in DSB response and the known role 

of FACT, a major regulator of nucleosome structure, in cellular resistance to DSBs in 

mammalian cells46, we next investigated if SET2 functionally interacts with the FACT 

complex. Interestingly, the Spt16 subunit of FACT regulates H2A.X exchange at DSBs in 

human cells, indicating that FACT regulates nucleosome dynamics at DSBs. In yeast, 

mutants of Spt16 (e.g., spt16-11) are sensitive to replication stress and high temperature and 

significantly, are suppressed by deletion of SET247, 48. We therefore reasoned that FACT 

mutants may be sensitive to genotoxic agents and this genotoxic sensitivity would be 

suppressed by set2Δ. As shown in Supplementary Fig. 5C, we found that the spt16-11 allele 

was extremely sensitive to phleomycin at permissive temperature. Consistent with the idea 

that Set2 opposes the action of FACT function48, deletion of SET2 suppressed, albeit 

partially, the DSB sensitivity of the spt16-11 strain. These data suggest the intriguing 

possibility that Set2 and FACT have opposing effects on nucleosomal dynamics at DSBs.

Set2 regulates DSB repair in the context of transcription

We next asked what the functional consequence of losing Set2 and H3K36me would be on 

DNA repair and repair pathway choice. Our data show that loss of Set2/H3K36me results in 

aberrant retention of Htz1-containing nucleosomes at DSBs, suggesting an unstable 

nucleosome architecture around these regions since Htz1-containing nucleosomes result in 

less stable nucleosomes49. Importantly, a recent study showed that Htz1-containing 

nucleosomes aid in Exo1-dependent end-resection50. We therefore used the input DNA from 
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our cycling cells and monitored the loss of input DNA (as a surrogate readout of end 

resection). We did not detect any difference in the rate of input DNA loss compared to that 

of set2Δ cells (Supplementary Fig. 5D). However, end-resection is heavily influenced by the 

cell cycle (G1 vs. G2/M), and smaller differences in resection kinetics may not become 

apparent in cycling cells. Therefore, we arrested cells in G1 by α-factor and monitored the 

loss of input DNA. In WT cells, we did not see any significant loss in input DNA, but, in 

set2Δ cells, the input DNA was rapidly lost, suggesting that set2Δ cells show faster end-

processing in G1-arrested cells – a time when resection is normally suppressed (Fig. 5D). 

We confirmed this by monitoring the enrichment of single-strand DNA binding protein, 

RPA, in G1-arrested cells. We observed that even within 30 minutes after DSB induction, 

there is more RPA around a DSB in a set2Δ as compared to WT (Supplementary Fig. 6A 

and 6B). This effect is likely a direct consequence of having more Htz1-containing 

nucleosomes in a set2Δ as well as reduced γ-H2A.X, which is known to be inhibitory to 

resection37.

One prediction from this observation would be that Set2 should regulate non-homologous 

end-joining (NHEJ), and in the absence of Set2, one should see lower end-joining 

efficiency. A canonical assay used to monitor the efficiency of end-joining is the calculation 

of the ratio of colony numbers obtained after transformation of linearized plasmids to that 

obtained from transforming a circular plasmid (i.e., re-ligation efficiency). Using a plasmid 

where we generated a blunt-end cut in the plasmid multiple cloning site, we observed that 

there was no difference in the re-ligation efficiency between WT and set2Δ strains (Fig. 6A). 

However, since Set2 functions in the context of transcription units, we hypothesized that the 

function of Set2 in DNA repair would be more evident if our cut site was in the context of a 

gene body. We therefore carried out the plasmid religation assay again, but in this case, with 

the cut site within the LacZ gene body. Strikingly, we observed a significant increase in 

plasmid re-ligation efficiency in set2Δ strains (Fig. 6B). We take these results to mean that 

although Set2 regulates pathway choice with a likely preference towards promoting NHEJ, 

the loss of Set2 does not completely ablate this function – hence, some plasmid would be re-

ligated that would then serve as a template for ensuing HR as the balance has been tilted to 

this pathway. Importantly, HR is a canonical mechanism of repair in transcription units51, 52, 

which would further exacerbate the set2Δ phenotype resulting in more re-ligation.

We next asked if this increased re-ligation efficiency is indeed a consequence of more 

recombination events, presumably due to transcription51. To answer that question, we 

deleted RAD51 in set2Δ and monitored the re-ligation efficiency. Consistent with the idea 

proposed above, we observed that the increase in plasmid re-ligation efficiency in a set2Δ 

was suppressed by deletion of RAD51 (Fig. 6B), indicating that set2Δ cells exhibit increased 

HR. To investigate if this effect was specific for the type of DSB induced, we used another 

restriction enzyme (SacI) that creates staggered ends, again in the context of transcription. 

Even in this context, we observed higher plasmid re-ligation efficiency in set2Δ strains 

(Supplementary Fig. 6C). This phenotype of set2Δ is reminiscent of rsc and sth1 mutants, 

where linearization of the plasmid by digestion in a transcription unit resulted in higher re-

ligation efficiency than wild-type cells53. Although the precise mechanism of increased re-
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ligation efficiency is not yet understood, these results reinforce the idea that Set2/H3K36me 

plays an important role in DSB repair, especially in the context of transcription.

Discussion

In this article, we provide genetic and biochemical evidence that Set2, and its methylation at 

H3K36, functions at an early step after DSB and plays a role in DSB repair. Specifically, we 

find Set2/H3K36me is critical for proper DSB checkpoint activation and impinges on 

pathway choice – results that can be linked to its function with elongating RNAPII. The role 

of Set2/H3K36me in DDR and repair is likely to maintain appropriate chromatin structure at 

break sites, which impinges on the molecular events that occur during DNA repair.

Our data provide a temporal picture of how Set2 and H3K36me might modulate chromatin 

structure after a DSB. Using time-course immunoblotting and ChIP, we found that loss of 

Set2 leads to reduced γ-H2A.X, increased acetylation of H4 and aberrant retention of H3 

and Htz1 at break sites. We propose that this altered chromatin architecture underlies the 

increased end-resection observed in G1-arrested cells, suggesting that HR is activated 

sooner in set2Δ at G1. Additionally, we found that loss of Set2 leads to increased HR, when 

a DSB is in the gene body. Future experiments will be required to determine if H3K36me3 

or H3K36me2 plays an important role in recruiting any DSB repair factors to control repair 

pathway choice, in a cell-cycle and/or transcription-dependent manner. Although 

H3K36me2 affects Ku70-80 recruitment to DSB in human cells54, such recruitment appears 

not to occur in cycling yeast cells as we did not see any significant alterations in Ku80 

recruitment in set2Δ (Supplementary Fig. 5E).

We found that Set2 and RNAPII are programmed for destruction after DSBs in a 

proteasome-dependent manner, which correlates with a transition of H3K36me3 to 

H3K36me2 (Figs. 4 and Supplementary Figure 4). Although the function of this transition in 

DSB repair is not yet known, we hypothesize that this methyl-state transition after DSB 

functions to ensure a chromatin structure that is temporally ‘tunable’ for DSB repair. We 

speculate that the fine-tuning of chromatin structure via H3K36me states would come from 

the ability of these different methyl states to activate/regulate functions of HATs and 

HDACs55.

With regards to Htz1, the dynamic level of Htz1 around a DSB is critical for multiple steps 

in the response to DSB. Intriguingly, both in vivo and in vitro, H3K36me3 and Htz1 are 

mutually exclusive56, 57; hence, one function of an early increase in H3K36me3 at sites of 

DSBs could be to prevent Htz1 deposition, thereby allowing more H2A (H2A and Htz1 

being mutually exclusive in chromatin) to be phosphorylated to form γ-H2A.X domains. 

Consistent with this idea, we observed increases in Htz1 and lower γ-H2A.X in a set2Δ 

(Figs. 3 and 5).

Our study found that Set2’s function in DDR and repair is dependent on its association with 

elongating RNAPII (Fig. 1). Consistent with this, we observed that when a DSB is in the 

context of transcription, deletion of SET2 leads to an increase in HR events (Fig. 6). This 

result might be explained by the fact that Set2 loss tips the balance away from NHEJ to HR, 
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which can be a preferred mechanism for break site repair in transcription units. We speculate 

that Set2-dependent chromatin compaction in G1 aids in preventing HR events, which 

would further prevent inappropriate recombination events that would arise in genes at this 

point in the cell cycle. It is also interesting to note that Set2/H3K36me is correlated with 

transcription rates and gene lengths15 – which might fine-tune the appropriate type of repair 

that would occur in genes undergoing distinct rates of transcription.

The dependence of Set2/H3K36me for proper repair in gene bodies provides further 

evidence for an RNAPII–dependent DNA damage sensing mechanism. Lindsey-Boltz and 

Sancar postulated the existence of such a DNA damage ‘sensor’ due to the extremely slow 

off-rate of RNAPII on DNA58. Consistent with this idea, studies (including these herein) 

have found RNAPII at sites of DSB in yeast (and mammals)19 and NuA4 and other 

chromatin modifiers that associate and function at DSBs are also associated with RNAPII2. 

In mammalian cells, DSB induces local chromatin silencing if the DSB is in a gene body. 

We surmise that the transcription machinery can be “co-opted” by the DNA repair and 

signaling machinery to sense DNA damage and then use the already available chromatin 

modifiers (ATP-dependent remodelers/histone variants) to access and repair the damage, 

followed by restoration of the chromatin structure. This scenario would be especially useful 

during gene transcription induced R-loop formation, which can result in single or double-

strand breaks59. Interestingly, both transcription and DSBs result in fairly identical mitotic 

recombination events52, making the possibility of RNAPII as a ‘constitutive DSB sensor’ 

even more plausible58. Given the stochastic nature of transcription60, using the transcription 

apparatus as a sensor for DNA damage can be a useful strategy for cells to rapidly respond 

to exogenous or endogenous genomic insults. Consistent with this model, a recent paper by 

the Legube group61 shows that transcription units preferentially shunt the DSB to HR 

dependent pathways. This phenomenon also was dependent upon the presence of the 

mammalian Set2 homolog, SETD2, and presence of H3K36me3. We speculate that the DSB 

repair machinery can utilize the context-dependent chromatin environment to access and 

repair the DSB and maintain genome integrity.

Finally, the conservation of H3K36me across different species lends credibility to the idea 

that H3K36me is also important for DSB repair and damage response in other organisms. 

Indeed, Tim Humphrey’s group has discovered that the S. pombe Set2 also regulates 

pathway choice, because deletion of SET2 alters the balance between NHEJ and HR62. 

Interestingly, they find that Gcn5 acetylates H3K3663 when Set2 is absent, and this activity 

leads to increased HR by presumably making the chromatin more accessible to the HR 

pathway. Additionally, Fnu et al. showed that H3K36me2 catalyzed by SETMAR/Metnase, 

which is not a canonical H3K36 methyltransferase, is critical for NHEJ in human cells54. 

Taken together, we propose Set2 as a key player in the DNA repair pathway that likely 

impinges on genome stability. As human SETD264 is mutated in a variety of cancers65, we 

speculate that SETD2 has a conserved role in DNA repair that would explain its connection 

to human disease.
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Materials and Methods

Yeast Strains and Plasmids

All strains, unless otherwise stated, were in the BY4741 background. The strain for GAL-

inducible Homothallic endonuclease (HO endonuclease; JKM179) was obtained from James 

Haber, Brandeis University and subsequent gene deletions (SET2 and YKU70) were 

performed by gene replacement using the PCR tool kit.

Plasmids expressing SET2 from its own promoter were obtained from Scott Briggs (Purdue 

University) and the H199L mutation was made in full length SET2 by site directed 

mutagenesis (Quikchange, Stratagene).

DNA damage Sensitivity Assays

Cultures grown overnight were diluted to an OD600 of 0.25, 5-fold serially diluted, and 

spotted on plates with or without relevant drugs. For UV experiments, cells were spotted on 

control plates and exposed to a range of UV dosage (from 20-60J/m2 in Stratagene cross-

linker P1800, rad4Δ served as a positive control for sensitivity to UV). For GAL-inducible 

DSB, overnight grown cells were serially diluted (starting ODs of between 2 and 5) as 

indicated above and spotted on Sc-Ura plates containing either 2% dextrose or 2% galactose. 

Pictures were taken after 2-4 days. For liquid culture experiments, log phase cultures were 

exposed to phleomycin (250 μg/mL except for Fig. 3b, wherein 50 μg/mL was used to test 

whether the phenotype was due to a high concentration of phleomycin) for indicated times, 

and then extracts were prepared by SUMEB method. About 5 O.D equivalent of cells were 

taken and lysed by bead beating using the lysis buffer containing (1% SDS, 8M Urea, 10mM 

MOPS, pH 6.8, 10mM EDTA, 0.01% bromophenol blue). 200 μL of buffer with 200 μL 

equivalent of glass beads were used to lyse the cells. Bead beating was done for 6-8 minutes, 

intermittently, and the extracts were centrifuged, to clarify, and boiled at 95 °C for 5 minutes 

before loading the SDS-PAGE gel.

Whole Cell Protein Extract and Immunoblots—Asynchronously grown mid-log 

(0.6-0.8 OD) phase cultures were lysed by SUMEB using glass beads, as mentioned above. 

For histones, 15% SDS-PAGE gels were run using Laemmli buffer. For Set2, RNA 

Polymerase II and Rad53 blots, 8% SDS-PAGE gels were run. Gels were transferred using a 

semi-dry Hoeffer apparatus at 45mA/gel (constant current setting), 50V for 1.5 hours. For 

RNA Polymerase II, the Hoeffer setting was 55mA/gel (constant current setting), 50V for 

1.5hours. Primary antibodies were incubated in 5% milk over night and secondary 

antibodies were incubated in 5% milk for an hour. The immunoblots were developed using 

ECL-Prime from Amersham. An un-cropped version of major immunoblots can be found in 

the Supplementary Figure 7. Antibodies: H3K36me1 (ab9048; 1:1000); H3K36me2 (active 

motif 39255; 1:1000 and 4μL for ChIP), H3K36me3 (ab9050; 1:10, 000 and 3μL for ChIP), 

C-terminal H3 (EpiCypher 13-0001; 1:2500 and 2μL for ChIP), Set2 (raised in lab; 1:5000 

or 1:10,000 and 5μL for ChIP), Rad53 (obtained from Daniel Durocher, Canada; 1:2000 (for 

Figure 3A66) and Abcam 104232; 1:2000 (for all other Rad53 blots), H2AS129ph (Active 

Motif 39271; 1:1000 and 2μL for ChIP), H2A (Active Motif 39235; 1:25,000 and 2μL for 

ChIP), G6PDH (Sigma; 1:100,000), Ser2pCTD (1:100, gift from Dirk Eick, LMU– Munich, 
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Germany), Rpb1 (Santa Cruz, yN-18, 1:1000), anti-Myc (9E10, 1:2500), 4H8 against RNA 

Polymerase II (Active Motif; 1:10,000 and 4 μL for ChIP). Rabbit (Amersham, Donkey anti-

Rabbit), Goat and Rat (both Jackson ImmunoResearch Laboratories) secondary antibodies 

was used at 1:10,000. RPA antibody (2μL for about 1mg of chromatin) from Valerie Borde 

(Insitut Pasteur, Paris) was used for ChIP in Supplementary Figure 6.

ChIP

JKM179 and derivatives thereof were grown over night in YPD and the saturated culture 

was used to start a fresh culture in YEP lactate, pH 5.5 (SC-Ura plus 2% Sucrose for figure 

5D) at an OD600 of 0.1 and grown at 30°C till the OD600 reached 0.8-1.0. Galactose was 

added to a final concentration of 2% to induce the expression of homothallic endonuclease 

(HO) (at t=0 hour). Samples were collected at required time-points and fixed with 1% (final 

concentration) formaldehyde. Cells were lysed using 300mM FA lysis buffer (containing 

protease inhibitor cocktail). The lysed cells were sonicated (30% output, 6 pulses 6 times; 

90% duty cycle) and clarified by centrifuging at full speed for 15 minutes. Immuno-

precipitations were set-up, overnight, with desired amount of proteins and antibodies 

(antibody amounts have been listed above). Protein G-sepharose beads (100 μL 1:10 diluted 

beads per 400 μL immunoprecipitation reaction) were added to the immuno-precipitation 

reactions and the reactions were allowed to incubate for one hour. Subsequent washes were 

done in 1.4 mL of 300mM FA Lysis buffer, 500mM FA-lysis buffer and LiCl solution 

(250mM LiCl, 10mM Tris, 0.5% each of NP-40 and sodium deoxycholate and 1mM 

EDTA). The immunoprecipitates were resuspended in TE, pH 8.0 and was treated with 

RNase for 30 minutes. The immunoprecipitates were then washed with TE pH 8.0 and 

elution buffer was used to elute the DNA (15 minutes incubation in elution buffer followed 

by centrifugation at 3000 rpm for two minutes). The eluates were kept at 65°C overnight to 

carry out the de-crosslinking step and PCR purification kit (Qiagen) was used to extract the 

DNA. Details of PCR conditions, primer locations and analysis methodologies can be found 

in the supplementary methods.

Immunoprecipitation

Immunoprecipitation for Set2-FLAG was performed in accordance with manufacturer’s 

protocol (SIGMA, catalog no. A2220), using the 300mM FA-lysis buffer used for ChIP 

experiments.

MG-132 experiment

Cells were grown in media containing proline as a nitrogen source overnight. The following 

morning, a fresh culture was started at OD 0.5 with 0.003% SDS and grown for 3 hours 

before treatment with MG-132 (75 μM) for another 30 minutes. Subsequently, phleomycin 

(250 μg/mL) was added and samples were obtained at indicated times and western blotting 

were done as described above.

Plasmid Religation Assay

About 3-5 μg of circular plasmids were digested by indicated restriction enzymes. Running 

the digested plasmids on gels and performing routine gel extraction confirmed their 
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linearization. Subsequently, 100ng of linearized or circularized plasmids were transformed 

into indicated strains (LiAc/PEG method), in parallel. The colonies were counted on Sc-Ura 

plates after 2-3 days. Three independent transformation reactions were carried out.

Statistical Analysis

For arriving at the p-values in all the relevant experiments (ChIP assays and the plasmid re-

ligation assay), we carried out unpaired Student’s t-test in Microsoft Excel. The explanations 

for the error bars are mentioned in the corresponding figure legends with relevant n-values. 

p < 0.05 was considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank James Haber (Brandeis University) for JKM179 strain and valuable suggestions, Daniel Durocher 
(University of Toronto) for Rad53 antibody used in parts of Fig. 3, Marcus Smolka (Cornell University) for 
suggesting the Abcam Rad53 antibody (used in parts of Fig. 3), Ugur Yavuzer (Bilkent University, Turkey; for the 
plasmids used in Figure 6B and Supplementary Figure 6C), Katsunori Sugimoto (University of Medicine and 
Dentistry New Jersey; for the ADH4-HO strain used in Supplementary Figure 1A), Valerie Borde (Institut Curie, 
Paris) for the RPA antibody and suggestions for RPA chip and Scott Briggs for the full-length and the SRIΔ SET2 
plasmid. We thank Timothy Humphrey (Oxford University) for communicating results prior to publication. We are 
thankful to Jean Cook, Lindsay Faircloth Rizzardi, Zu-Wen Sun, Howard Fried and members of the Strahl lab, 
especially Raghuvar Dronamraju (for helpful suggestions) and Stephen McDaniel (for some of the unpublished 
strains). This work was funded by a NIH grant to B.D.S (GM068088).

References

1. Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009; 361:1475–1485. [PubMed: 
19812404] 

2. Papamichos-Chronakis M, Peterson CL. Chromatin and the genome integrity network. Nat Rev 
Genet. 2013; 14:62–75. [PubMed: 23247436] 

3. Azvolinsky A, Giresi PG, Lieb JD, Zakian VA. Highly transcribed RNA polymerase II genes are 
impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell. 2009; 34:722–
734. [PubMed: 19560424] 

4. Bermejo R, Lai MS, Foiani M. Preventing replication stress to maintain genome stability: resolving 
conflicts between replication and transcription. Mol Cell. 2012; 45:710–718. [PubMed: 22464441] 

5. Keogh MC, et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive 
Rpd3 complex. Cell. 2005; 123:593–605. [PubMed: 16286008] 

6. Strahl BD, et al. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates 
transcriptional repression. Mol Cell Biol. 2002; 22:1298–1306. [PubMed: 11839797] 

7. Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD. A novel domain in Set2 
mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript 
elongation. Mol Cell Biol. 2005; 25:3305–3316. [PubMed: 15798214] 

8. Xiao T, et al. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes 
Dev. 2003; 17:654–663. [PubMed: 12629047] 

9. Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at histone H3. Nat Rev 
Mol Cell Biol. 2012; 13:115–126. [PubMed: 22266761] 

10. Li B, Howe L, Anderson S, Yates JR 3rd, Workman JL. The Set2 histone methyltransferase 
functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol 
Chem. 2003; 278:8897–8903. [PubMed: 12511561] 

Jha and Strahl Page 13

Nat Commun. Author manuscript; available in PMC 2014 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. Carrozza MJ, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by 
Rpd3S to suppress spurious intragenic transcription. Cell. 2005; 123:581–592. [PubMed: 
16286007] 

12. Joshi AA, Struhl K. Eaf3 chromodomain interaction with methylated H3-K36 links histone 
deacetylation to Pol II elongation. Mol Cell. 2005; 20:971–978. [PubMed: 16364921] 

13. Govind CK, et al. Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for 
methylation-dependent deacetylation of ORF nucleosomes. Mol Cell. 2010; 39:234–246. 
[PubMed: 20670892] 

14. Smolle M, et al. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during 
transcription by preventing histone exchange. Nat Struct Mol Biol. 2012; 19:884–892. [PubMed: 
22922743] 

15. Venkatesh S, et al. Set2 methylation of histone H3 lysine 36 suppresses histone exchange on 
transcribed genes. Nature. 2012; 489:452–455. [PubMed: 22914091] 

16. Moore JK, Haber JE. Cell cycle and genetic requirements of two pathways of nonhomologous end-
joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol. 1996; 
16:2164–2173. [PubMed: 8628283] 

17. Winsor TS, Bartkowiak B, Bennett CB, Greenleaf AL. A DNA damage response system associated 
with the phosphoCTD of elongating RNA polymerase II. PLoS One. 2013; 8:e60909. [PubMed: 
23613755] 

18. Youdell ML, et al. Roles for Ctk1 and Spt6 in regulating the different methylation states of histone 
H3 lysine 36. Mol Cell Biol. 2008; 28:4915–4926. [PubMed: 18541663] 

19. Tsukuda T, Fleming AB, Nickoloff JA, Osley MA. Chromatin remodelling at a DNA double-
strand break site in Saccharomyces cerevisiae. Nature. 2005; 438:379–383. [PubMed: 16292314] 

20. Bandyopadhyay S, et al. Rewiring of genetic networks in response to DNA damage. Science. 2010; 
330:1385–1389. [PubMed: 21127252] 

21. Guenole A, et al. Dissection of DNA damage responses using multiconditional genetic interaction 
maps. Mol Cell. 2013; 49:346–358. [PubMed: 23273983] 

22. Tompa R, Madhani HD. Histone H3 lysine 36 methylation antagonizes silencing in Saccharomyces 
cerevisiae independently of the Rpd3S histone deacetylase complex. Genetics. 2007; 175:585–
593. [PubMed: 17179083] 

23. Lenstra TL, et al. The specificity and topology of chromatin interaction pathways in yeast. Mol 
Cell. 2011; 42:536–549. [PubMed: 21596317] 

24. Shroff R, et al. Distribution and dynamics of chromatin modification induced by a defined DNA 
double-strand break. Curr Biol. 2004; 14:1703–1711. [PubMed: 15458641] 

25. Keogh MC, et al. A phosphatase complex that dephosphorylates gammaH2AX regulates DNA 
damage checkpoint recovery. Nature. 2006; 439:497–501. [PubMed: 16299494] 

26. Tamburini BA, Tyler JK. Localized histone acetylation and deacetylation triggered by the 
homologous recombination pathway of double-strand DNA repair. Mol Cell Biol. 2005; 25:4903–
4913. [PubMed: 15923609] 

27. Lin YY, et al. A comprehensive synthetic genetic interaction network governing yeast histone 
acetylation and deacetylation. Genes Dev. 2008; 22:2062–2074. [PubMed: 18676811] 

28. Warmerdam DO, Kanaar R. Dealing with DNA damage: relationships between checkpoint and 
repair pathways. Mutat Res. 2010; 704:2–11. [PubMed: 20006736] 

29. Kalocsay M, Hiller NJ, Jentsch S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-
dependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell. 
2009; 33:335–343. [PubMed: 19217407] 

30. Lazzaro F, et al. Histone methyltransferase Dot1 and Rad9 inhibit singlestranded DNA 
accumulation at DSBs and uncapped telomeres. Embo J. 2008; 27:1502–1512. [PubMed: 
18418382] 

31. Papamichos-Chronakis M, Krebs JE, Peterson CL. Interplay between Ino80 and Swr1 chromatin 
remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. 
Genes & development. 2006; 20:2437–2449. [PubMed: 16951256] 

Jha and Strahl Page 14

Nat Commun. Author manuscript; available in PMC 2014 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. van Attikum H, Fritsch O, Gasser SM. Distinct roles for SWR1 and INO80 chromatin remodeling 
complexes at chromosomal double-strand breaks. Embo J. 2007; 26:4113–4125. [PubMed: 
17762868] 

33. Wysocki R, Javaheri A, Allard S, Sha F, Cote J, Kron SJ. Role of Dot1-dependent histone H3 
methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol. 2005; 
25:8430–8443. [PubMed: 16166626] 

34. Grenon M, et al. Docking onto chromatin via the Saccharomyces cerevisiae Rad9 Tudor domain. 
Yeast. 2007; 24:105–119. [PubMed: 17243194] 

35. Huyen Y, et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. 
Nature. 2004; 432:406–411. [PubMed: 15525939] 

36. Costelloe T, et al. The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA 
end resection. Nature. 2012; 489:581–584. [PubMed: 22960744] 

37. Chen X, et al. The Fun30 nucleosome remodeller promotes resection of DNA double-strand break 
ends. Nature. 2012; 489:576–580. [PubMed: 22960743] 

38. Jazayeri A, McAinsh AD, Jackson SP. Saccharomyces cerevisiae Sin3p facilitates DNA double-
strand break repair. Proc Natl Acad Sci U S A. 2004; 101:1644–1649. [PubMed: 14711989] 

39. Bird AW, et al. Acetylation of histone H4 by Esa1 is required for DNA doublestrand break repair. 
Nature. 2002; 419:411–415. [PubMed: 12353039] 

40. Miller KM, et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote 
DNA nonhomologous end-joining. Nat Struct Mol Biol. 2010; 17:1144–1151. [PubMed: 
20802485] 

41. Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev 
Genet. 2011; 45:247–271. [PubMed: 21910633] 

42. Ginsburg DS, Govind CK, Hinnebusch AG. NuA4 lysine acetyltransferase Esa1 is targeted to 
coding regions and stimulates transcription elongation with Gcn5. Mol Cell Biol. 2009; 29:6473–
6487. [PubMed: 19822662] 

43. Altaf M, et al. NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly 
stimulates incorporation of H2A.Z by the SWR1 complex. J Biol Chem. 2010; 285:15966–15977. 
[PubMed: 20332092] 

44. Raisner RM, et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in 
euchromatin. Cell. 2005; 123:233–248. [PubMed: 16239142] 

45. Zhang H, Roberts DN, Cairns BR. Genome-wide dynamics of Htz1, a histone H2A variant that 
poises repressed/basal promoters for activation through histone loss. Cell. 2005; 123:219–231. 
[PubMed: 16239141] 

46. Heo K, et al. FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of 
H2AX and ADP-ribosylation of Spt16. Mol Cell. 2008; 30:86–97. [PubMed: 18406329] 

47. Formosa T, et al. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause 
dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. 
Genetics. 2002; 162:1557–1571. [PubMed: 12524332] 

48. Biswas D, et al. A role for Chd1 and Set2 in negatively regulating DNA replication in 
Saccharomyces cerevisiae. Genetics. 2008; 178:649–659. [PubMed: 18245327] 

49. Jin C, Felsenfeld G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes 
Dev. 2007; 21:1519–1529. [PubMed: 17575053] 

50. Adkins NL, Niu H, Sung P, Peterson CL. Nucleosome dynamics regulates DNA processing. Nat 
Struct Mol Biol. 2013; 20:836–842. [PubMed: 23728291] 

51. Aguilera A. The connection between transcription and genomic instability. Embo J. 2002; 21:195–
201. [PubMed: 11823412] 

52. Gonzalez-Barrera S, Garcia-Rubio M, Aguilera A. Transcription and doublestrand breaks induce 
similar mitotic recombination events in Saccharomyces cerevisiae. Genetics. 2002; 162:603–614. 
[PubMed: 12399375] 

53. Chai B, Huang J, Cairns BR, Laurent BC. Distinct roles for the RSC and Swi/Snf ATP-dependent 
chromatin remodelers in DNA double-strand break repair. Genes Dev. 2005; 19:1656–1661. 
[PubMed: 16024655] 

Jha and Strahl Page 15

Nat Commun. Author manuscript; available in PMC 2014 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



54. Fnu S, et al. Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-
joining. Proc Natl Acad Sci U S A. 2011; 108:540–545. [PubMed: 21187428] 

55. Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct 
Mol Biol. 2013; 20:259–266. [PubMed: 23463310] 

56. Chen J, Miller A, Kirchmaier AL, Irudayaraj JM. Single-molecule tools elucidate H2A.Z 
nucleosome composition. J Cell Sci. 2012; 125:2954–2964. [PubMed: 22393239] 

57. Li B, et al. Preferential occupancy of histone variant H2AZ at inactive promoters influences local 
histone modifications and chromatin remodeling. Proc Natl Acad Sci U S A. 2005; 102:18385–
18390. [PubMed: 16344463] 

58. Lindsey-Boltz LA, Sancar A. RNA polymerase: the most specific damage recognition protein in 
cellular responses to DNA damage? Proceedings of the National Academy of Sciences of the 
United States of America. 2007; 104:13213–13214. [PubMed: 17684092] 

59. Bermejo R, et al. The replication checkpoint protects fork stability by releasing transcribed genes 
from nuclear pores. Cell. 2011; 146:233–246. [PubMed: 21784245] 

60. Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its 
consequences. Cell. 2008; 135:216–226. [PubMed: 18957198] 

61. Aymard F, et al. Transcriptionally active chromatin recruits homologous recombination at DNA 
double-strand breaks. Nat Struct Mol Biol. 2014; 21:366–374. [PubMed: 24658350] 

62. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice. 
Nat Commun. 2014 P. 

63. Morris SA, et al. Identification of histone H3 lysine 36 acetylation as a highly conserved histone 
modification. J Biol Chem. 2007; 282:7632–7640. [PubMed: 17189264] 

64. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of 
alternative splicing by histone modifications. Science. 2010; 327:996–1000. [PubMed: 20133523] 

65. Lawrence MS, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. 
Nature. 2014; 505:495–501. [PubMed: 24390350] 

66. Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D. Saccharomyces cerevisiae 
Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr Biol. 2005; 15:1364–1375. [PubMed: 
16085488] 

Jha and Strahl Page 16

Nat Commun. Author manuscript; available in PMC 2014 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 1. Methylation by Set2 at H3K36 and RNAPII–Set2 interaction is required for cellular 
resistance against double strand break (DSB)
Five-fold serial dilutions of over-night cultures (grown either in YPD or appropriate 

selection medium for plasmids) were spotted on indicated plates and pictures were taken 

after 2-4 days. For immunoblots, log phase cultures were used for preparing whole cell 

lysates as described in Experimental Procedures. (A) A set2Δ strain is sensitive to 

phleomycin but not to hydroxyurea and UV. (B) Sensitivity of set2Δ to DSB can be rescued 

by wild-type SET2 but not by a catalytically dead (SET2H199L) mutant. (C) set2Δ is sensitive 

to persistent Homothallic (HO) endonuclease-mediated DSB in the “donorless” strain 

JKM179. Schematic of the “donorless” strain is shown where the Gal-induced DSB is in the 

MAT locus of chromosome III. This strain has the HML and the HMR deleted and hence the 

DSB can be repaired only by NHEJ. (D) Rescue of set2Δ sensitivity to persistent DSB by 

wild-type SET2 but not by a catalytically dead (SET2H199L) or the SRIΔ mutant. (E) 

H3K36A phenocopies set2Δ on phleomycin. (F) Immunoblots showing the expression from 

the constructs used in Figs 1B and 1D. All the experiments were replicated at least three 

times.
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Fig 2. Genetic interaction of SET2 with representative DNA damage response and repair genes
Representative DNA damage response and repair genes were selected from the Open 

Biosystems gene knockout collection and were verified by either phenotypic analysis or 

PCRs (using primers specific for the gene deletion) or both. Subsequent double mutants 

were made by gene replacement. (A) Qualitative representation of genetic interactions (on 

MMS) of SET2 with DNA damage response and repair genes. Genes have been clustered 

together, manually, based on their annotated function in the Saccharomyces Genome 

Database (SGD). Black lines represent no genetic interaction, red lines indicate synthetic 

sick, and green lines indicate same pathway interaction. The entire screen was repeated 

twice. (B) Serial dilutions of representative strains show that set2Δ is sick with rad51Δ and 

asf1Δ while the set2Δ is epistatic to both dot1Δ and yku70Δ on phleomycin. Individual 

spotting assays were done in triplicate plates (at once) and the set of triplicates were 

repeated twice.
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Fig 3. DNA damage signaling is attenuated in set2Δ
Log-phase cells were exposed to phleomycin for indicated times and whole cell extract was 

prepared (see Methods). (A) Diminution in Rad53 hyper-phosphorylation at indicated time-

periods in a set2Δ after phleomycin treatment. The antibody to Rad53 is against the entire 

protein and G6PDH is used as a loading control. (B) Abrogated γ-H2A.X activation in set2Δ 

after phleomycin (50 μg/mL) treatment for two hours. (C) Time-course showing the 

activation of γ-H2A.X after phleomycin treatment. Quantification (H2AS129ph/H2A) of the 

Western blot is shown below. (D) Activation of Rad53 was monitored after phleomycin 

treatment in WT and set2Δ. Quantification (Rad53/G6PDH) of the Western blot is shown 

below, which reveals abrogated DNA damage checkpoint activation in set2Δ (plotted as a 

semi-log plot). (E) H3K36A mutant cells also show abrogated DNA damage checkpoint 

activation as monitored by Rad53 activation kinetics. Representative western blots, from at 

least 3 biological replicates), are presented.
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Fig 4. Temporal regulation of H3K36me3 and H3K36me2 correlates with proteasome-mediated 
degradation of Set2
Immunoblots showing the levels of (A) H3K36me3 and (B) H3K36me2 after DSB induction 

by phleomycin. Exponentially growing yeast cells were exposed to phleomycin for indicated 

times and whole cell extract was prepared. (C) H3K36me3 is transiently induced near the 

site of DSB (assessed by ChIP at 0.2 kb), at early time-points. The error bars represent ± 

s.e.m from two different biological replicates. n.m. represents ‘not measurable’ (D) 

H3K36me2 is induced near the site of DSB (assessed by ChIP at 0.2 kb), at later time points. 

The error bars represent ± s.e.m from two different biological replicates. n.m. represents ‘not 

measurable’ (* represents p <0.05 for 4C and 4D). (E) Preferential enrichment of Set2 near 

DSB (assessed by ChIP at 0.2kb from DSB). n.m. represents not measurable (*** represents 

p<0.01). (F) Time course experiment after phleomycin treatment for Set2 (FLAG-Set2), 

Ser2pCTD (elongating RNA Polymerase II) and Rpb1 (largest subunit of RNAPII). G6PDH 

is used as loading control.
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Fig 5. Set2 regulates chromatin remodeling after DSB induction
(A) Reduced γ-H2A.X levels in set2Δ by chip. (** represents p<0.03; error bars show ± 

s.e.m. from two independent biological replicates) (B) Altered kinetics of H4Ac4 at 0.2 kb 

from the DSB in set2Δ at indicated time points (** represents p <0.03 and *** represents 

p<0.01; error bars show ± s.e.m. from two independent biological replicates) (C) Increased 

Htz1 levels at 0.2 kb from the DSB in set2Δ (error bars represent mean ± s.d. from two 

independent biological replicates). (D) Increased loss of input DNA in set2Δ in G1-arrested 

cells at 1kb away from the DSB. (** represents p <0.03 and *** represents p<0.01; error 

bars show ± s.e.m. from two independent biological replicates).
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Fig 6. Set2 primarily functions in DSB repair in the context of a transcribing unit
(A) Linearized (SmaI) or circularized pRS316 plasmids were transformed, in parallel, into 

the indicated strains and colony numbers were counted after 2-3 days on Sc-Ura plates. 

Religation frequency was calculated as the ratio of the number of colonies obtained from 

linearized plasmid to the number colonies obtained from circularized plasmid, with the value 

for WT strain normalized to 1.0. yku70Δ is the positive control for the assay. (B) Linearized 

(SmaI) or circularized pGV255-live plasmids were transformed, in parallel, into indicated 

strains and number of colonies were counted after 2-3 days on Sc-Ura plates. Religation 

frequency was calculated as above. (** represents p< 0.02; error bars represent standard 

deviation from 3 different independent transformation experiments). (C) A simplified model 

depicting a function of Set2 and H3K36me in regulating DNA damage response and repair. 

Immediately after DSB (shown as ‘lightning bolt’), Set2-dependent H3K36me3 becomes 

enriched around the DSB. Increased H3K36me3 ensures a de-acetylated chromatin structure 

to prevent inappropriate DNA transactions especially in the context of a transcription unit, 

which we propose is important for maintaining the genomic integrity of transcribing units. 

Consistent with this model, loss of Set2/H3K36me leads to abrogated DNA damage 

signaling activation, altered chromatin structure, and inappropriate repair.
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