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ABSTRACT
Background. Radiation exposure of the thorax is associated with a greatly increased risk
of cardiac morbidity and mortality even after several decades of advancement in the
field. Although many studies have demonstrated the damaging influence of ionizing
radiation on cardiac fibroblast (CF) structure and function, myocardial fibrosis, the
molecular mechanism behind this damage is not well understood. miR-21, a small
microRNA, promotes the activation of CFs, leading to cardiac fibrosis. miR-21 is
overexpressed after irradiation; however, the relationship between increased miR-
21 and myocardial fibrosis after irradiation is unclear. This study was conducted to
investigate gene expression after radiation-induced CF damage and the role of miR-21
in this process in rats.
Methods. We sequenced irradiated rat CFs and performed weighted correlation
network analysis (WGCNA) combined with differentially expressed gene (DEG)
analysis to observe the effect on the expression profile of CF genes after radiation.
Results. DEG analysis showed that the degree of gene changes increased with the
radiation dose. WGCNA revealed three module eigengenes (MEs) associated with
8.5-Gy-radiation—the Yellow, Brown, Blue modules. The three module eigengenes
were related to apoptosis, G2/M phase, and cell death and S phase, respectively.
By blocking with the cardiac fibrosis miRNA miR-21, we found that miR-21 was
associated with G2/M blockade in the cell cycle and was mainly involved in regulating
extracellular matrix-related genes, includingGrem1, Clu,Gdf15, Ccl7, and Cxcl1. Stem-
loop quantitative real-time PCR was performed to verify the expression of these genes.
Five genes showed higher expression after 8.5 Gy-radiation in CFs. The target genes of
miR-21 predicted online wereGdf15 and Rsad2, which showedmuch higher expression
after treatment with antagomir-miR-21 in 8.5-Gy-irradiated CFs. Thus, miR-21 may
play the role of fibrosis andG2/Mblockade in regulatingGrem1,Clu,Gdf15,Ccl7,Cxcl1,
and Rsad2 post-irradiation.
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INTRODUCTION
Clinical studies have demonstrated that heart disease-related mortality risk is increased by
radiation therapy of cancer (Hancock, Tucker & Hoppe, 1993; Van Leeuwen & Ng, 2016).
Although currently used regimens lead to lower cardiovascular toxicity compared to
traditional regimens (Rademaker et al., 2008), cardiotoxicity may still occur, leading to
radiation-induced heart disease (RIHD) (Boero et al., 2016). Overall changes in the gene
expression profile may be one of the mechanisms of RIHD because ionizing radiation of
tissues and organs can damage key macromolecules such as DNA, proteins, and alter the
gene expression profiles of heart cells (Freeman et al., 2014). However, few studies have
evaluated RIHD in detail at the molecular level.

miR-21 plays an important role in heart disease (Kura et al., 2020), and was known
as an active gene in cardiac fibroblast (CF) and fibrosis (Thum et al., 2008). In primary
cultured CFs, inhibition of miR-21 expression reduces collagen and extracellular matrix
molecule genes expression, which are highly expressed during cardiac fibrosis (Thum et
al., 2008). Inhibition of miR-21 can alleviated cardiac fibrosis by NF-κB/ miR-21 / SMAD7
pathway (Li et al., 2020), miR-21/ Jagged1 pathway (Zhou et al., 2018), miR-21/ Sprouty
1 pathway (Adam et al., 2012). Elevation of miR-21 not only promotes the expression of
extracellular matrix genes, but also promotes proliferation and the transition of rat CFs
into myofibroblasts (Zhou et al., 2018). These effects are involved in radioactive myocardial
pathology (Wang et al., 2019).

We have shown that miR-21 expression in the rat heart is increased after radiation
exposure (Ma et al., 2019), resulting in various pathological changes in the heart (Ma,
Zhao & Li, 2019). CF account for 85% of heart cells (Moore-Morris et al., 2014), perform
important functions, and are more sensitive to ionizing radiation than cardiomyocytes.
However, how the increased miR-21 in CFs after radiation affects gene changes and
participates in the development of radioactive heart disease is unclear. In the present study,
we combined the weighted correlation network analysis (WGCNA) (Langfelder & Horvath,
2008) method with DEG analysis to examine changes in the gene expression profiles of
primary CFs after irradiation, particularly following interference with miR-21 expression.

MATERIALS & METHODS
Experiment design
We performed WGCNA and DEG analysis of gene expression in X-ray-irradiated CFs.
Because the degree of influence of irradiation on cells varies with the X-ray dose (Zhao
et al., 2019), we used two doses: 1 Gy and 8.5 Gy. The cells were divided into a control
group (un-irradiated, 0 Gy), 1 Gy group, and 8.5 Gy group. Additionally, to investigate
which genes were regulated by miR-21 after radiation, interference of miR-21 in CFs was
performed. Groups were defined as the anti-miR-21 group, anti-miR-21+1-Gy group, and
anti-miR-21+8.5-Gy group. These six groups of cells were sequenced.
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Figure 1 Effect of interference with miR-21 after radiation. (A–I) Cell fractions from rat hearts stained
with DAPI and antibodies against prolyl 4-hydroxylase (P4HB), Vimentin and ACTN2. Scale bar, 20 µm.
(J–K) miR-21 expression in primary cardiac fibroblasts (CFs) isolated from neonatal rat hearts after X-ray
irradiation at different time points. ∗p < 0.05 vs controls. Data are presented as mean± S.E. Statistics:
Two-tailed Student’s t -test. The experiment was repeated three times. (L–Q) Percentage apoptotic CFs af-
ter treatment with miR-21 antagonists (anti-miR-21) and irradiation (1Gy or 8.5Gy). (R–W) Cell cycle of
CFs after treatment with miR-21 antagonists and irradiated with X-ray (1Gy or 8.5Gy).

Full-size DOI: 10.7717/peerj.10502/fig-1

Each group was subjected toWGCNA and DEG analysis separately. The identified DEGs
were compared with the module eigengenes (MEs) from WGCNA, and consensus genes
from the MEs with DEGs (|log2FC| ≥ 1, adjusted p-value ≤ 0.05) were selected. Each
group of consensus genes is referred to as a cluster; forinstance, in a consensus process,
the same gene between DEGs in the 8.5-Gy group compared to 0-Gy group and in the
brown module was denoted as the 8.5 vs 0-Gy cluster (Supplemental Information 1). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to
analyze the functions of these genes.

Furthermore, the role ofmiR-21 after radiation was investigated; we chose new identified
consensus genes (new-pick genes) in the target cluster showing significant down-regulation,
and the expression level was attenuated in the anti-21+X-ray cluster according to log2FC
(X-ray cluster)-log2FC (anti-miR21+X-ray cluster) >1 (Supplemental Information 1).
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Culture and isolation of cardiac fibroblasts (CFs) and cardiomyocytes
(CMs)
Healthy new born Wistar rats (days 0–2) purchased from Laboratory animal Center of
Gansu University of Chinese Medicine. Parent rats were raised in the Laboratory center
in a comfortable room with a 12 h dark/12 h light cycle and free access to food and
water. Every sacrificed newborn rat comes from the same parents above. Cultivation of
CFs and cardiomyocytes (CM) from new-born rats were cultured as described previously
with some modifications (Thum et al., 2008). Briefly, rats were sacrificed after isoflurane
(2%) inhalation and cervical dislocation. Primary cardiac fibroblasts and cardiomyocytes
were separated from 4-6 mice cardiac tissue each time. The collected cells were plated
in MEM-F12 containing vitamin B12, NaHCO3, and 10% fetal calf serum. The cultures
contained mostly primary cardiac fibroblasts, as >95% of cells were stained with antibodies
for fibroblast-specific antigen prolyl-4-hydroxylase (P4HB, ab137110, Abcam, Cambridge,
UK) and Anti-Vimentin antibody (ab92547, Abcam, Cambridge, UK), and >95% of cells
were negative for the cardiomyocyte-specific marker α2-actinin (ACTN2, clone EA-53,
Sigma) (Figs. 1A–1I). We cared for the animals and sacrificed the rats in strict accordance
with animal welfare laws and regulations and animal welfare ethics requirements. This
study was approved by the Ethical Committee (the certificate number: GZY2018-115, Date:
03-05-2018) of Gansu University of Chinese Medicine in Lan Zhou, China.

RNA isolation and gene expression
Total RNA containing small RNA was extracted using the miRVanaTM RNA Isolation Kit
AM1561 (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions.
RNAs were transcribed to cDNA using the SuperScriptTM III Reverse Transcriptase kit
(Invitrogen).Stem-loop quantitative real-time PCR (sqRT-PCR) assay was performed to
validate the miRNA, Q-PCR was conducted to detect mRNA expression levels using the
following conditions: 95 ◦C for 5 min, 35 cycles of 95 ◦C for 15 s, 60 ◦C for 30 or 60 s,
and 72 ◦C for 20 s. The relative expression level of miRNA/mRNA was normalized to
U6/glyceraldehyde 3-phosphate dehydrogenase and fold-change in the miRNA/mRNA
level was calculated with the 2-44Ct method. Each sample was analyzed in triplicate. All
primers were obtained from RiboBio (Guangzhou RiboBio Co., Guangzhou, China).

Assay for transfection, apoptosis, and cell cycle
Rat CFs were transfected with antagomir of miR-21 (100nM, RiboBio) using HiPerFect
Transfection Reagent (Cat No./ID:301705, Qiagen, Hilden, Germany). The percentage of
CFs undergoing apoptosis was determined by staining with annexin V (Annexin V: FITC
Apoptosis Detection Kit I, 556547, BD Biosciences, Franklin Lakes, NJ, USA) followed by
fluorescence-activated cell sorting analysis. The cell cycle were evaluated by propidium
iodide (PI) staining.

Ionizing radiation treatment
Irradiation of cell cultures containing 1×106 log phase cells was performed with a precision
X-RAY irradiator (X-RAD 225, Precision X-ray, North Branford, CT, USA) at a dose rate of
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2 Gy/min. Doses of 1 Gy and 8.5 Gy were administered at room temperature, and control
cells were sham-irradiated.

Illumina sequencing
Next-generation sequencing was performed with the Illumina NovaSeq6000 instrument
(San Diego, CA, USA) at Beijing CapitalBio Technology Company (Beijing, China).
Normalized gene expression values were calculated using the expected number of fragments
per kilobase of transcript sequence per millions base pairs sequenced (FPKM) method
(Mortazavi et al., 2008).

WGCNA construction
Gene hierarchical cluster networkwas constructed using theWGCNARpackage (Langfelder
& Horvath, 2008) and visualized in a dendrogram. All samples were clustered, and outlier
samples (cutHeight = 3000) were excluded from data analysis (Fig. 2A). A β-soft power
threshold of 10 was selected to ensure that the network satisfied a scale-free topology (R2

> 0.9) based on the linear regression model fitting index obtained from the functions
’pickSoftThreshold’ operation (Figs. 2B–2C). Coexpression modules were detected using
the function ‘blockwiseModules’ with default settings and modified parameters (power,
10; minModuleSize, 50; mergeCutHeight, 0.25). The grey modules indicate nonsense areas.
Based on each module eigengene, correlation analysis was performed to identify modules
that were significantly associated with the measured traits (apoptosis and cell cycle).

Identification of differentially expressed genes
‘DESeq2’ package in R was used to identify DEGs (Love, Huber & Anders, 2014). To control
the false discovery rate, p-values were adjusted. Values of |log2FC|≥ 1 and padj ≤ 0.05
were considered as different.

Bio-function enrichment analysis
The Database for Annotation, Visualization and Integrated Discovery (DAVID) (DennisJr
et al., 2003) was used to perform GO function and KEGG pathway enrichment analysis.
The GO terms of biological processes (BP), cellular components (CC), and molecular
functions (MF) were assessed. A p-value <0.05 was considered to indicate a significant
difference for the GO terms and KEGG pathways.

UpSet veen analysis
An UpSet veen map was constructed using online omicshare soft ( http://www.omicshare.
com/tools/Home/Soft/getsoft).

Identification of protein–protein interaction networks
The online Search Tool for the Retrieval of Interacting Genes (STRING database,
Version11.0; http://string-db.org/) was used to build a protein-protein interaction (PPI)
network (Szklarczyk et al., 2019) (threshold of > 0.4).

Statistical analysis
All experimental data statistical analyses were carried out using GraphPad Prism software
(version 7.0; GraphPad, Inc., La Jolla, CA, USA), and the data are expressed as the mean
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Figure 2 WGCNA of CFs in different groups. (A) Dendrogram depicting hierarchical clustering to de-
tect outlier samples (8.5-Gy-3 is an outlier sample). (B–C) Scale independence and mean connectivity
were used for soft threshold selection in WGCNA. (D) Hierarchical cluster trees showing co-expression
modules identified by WGCNA.

Full-size DOI: 10.7717/peerj.10502/fig-2

± standard error of mean. Statistical differences between two groups were calculated by
two-tailed Student’s t -test, and p< 0.05 was considered significant.

RESULTS
Upregulation of miR-21 in irradiated CFs
The sqRT-PCR results revealed upregulation ofmiR-21 in irradiatedCFs, which persistently
increased up to 7 days after 8.5 Gy irradiation (Fig. 1K); however, miR-21 expression did
not increase with increasing radiation intensity. In addition, there weremore apoptotic cells
after irradiation, which increased with irradiation intensity, compared to non-irradiated
control cells. Importantly, many more apoptotic cells were observed after interference of
miR-21 with irradiation (Figs. 1L–1Q). Cell cycle analysis showed that X-rays can stall
cells in the G2/M phase; however, this effect was strongly attenuated by treatment with
the miR-21 inhibitor (Figs. 1R–1W). These results indicate that miR-21 has an important
function in CFs.
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Data processing and construction of weighted coexpression network
and identification of key modules
To explore the co-expression patterns of CFs genes after irradiation, RNA-seq FPKM data
from 18 samples were evaluated with the WGCNA package (Langfelder & Horvath, 2008)
(Fig. 2). Results from the 8.5-Gy-3 sample were outliers and thus were excluded (Fig. 2A).
We found 24 differentMEs according to their degree of connectivity (Fig. 2D). The number
of genes contained in each module is shown in Supplemental Information 2.

To analyze the expression of ME in each group, module genes of 17 samples were
analyzed. We drew heat maps of gene expression (Fig. 3A). In the Brown module, gene
expression was down-regulated after irradiation and severely down-regulated in the 8.5-Gy
group but increased in the anti-21 and anti-21+1-Gy groups. In the 8.5-Gy+anti21 group,
gene expression was down-regulated compared to in the anti-21 group but up-regulated
compared to in the 8.5-Gy group. These results indicate that the Brownmodule has a central
module relationship withmiR-21. The Yellow and Turquoise modules showed the opposite
gene expression pattern as the Brown module; after irradiation, gene up-regulation in the
Turquoise module was intensified after interference with miR-21 (Fig. 3A, Figs. 4A–4C).

Features (apoptosis and cell cycle) relationship with modules and
identification of key modules
To clarify the relationship between apoptosis and cell cycle with the modules, 24 different
MEs were analyzed and a heat map was generated (Figs. 2D, 3E). Three modules showed
notable results (Figs. 3B–3D). Brownmodule showed a significant negative correlation with
G2/M phase, with a correlation index of −0.96 (p = 2×10−9); Yellow module, associated
with late apoptosis, exhibited a correlation index of 0.80 (p = 1×10−4); and Turquoise
module which is related to cell death and S phase showed a correlation index of 0.86 (p =
9×10−6; p = 1×10−5).

Correlation between modules and identification of key modules
Among the 24 different MEs, interaction associations were analyzed, and a tree map was
constructed (Fig. 3F). The results showed that modules were independent of each other.

DEGs and consensus DEGs in target modules
To identify the key genes in MEs, we performed DEG analysis and evaluated consensus
genes showing differential expression within different modules. DEGs (Supplemental
Information 3) in the 1-Gy, 8.5-Gy, 1-Gy+anti21, and 8.5-Gy+anti21 (vs 0-Gy) groups
were used to identify genes within the three WGCNA modules (Brown, Yellow, and
Turquoise) (Figs. 4A–4C). After each module and DEGs were screened and filtered, the
consensus genes were used to draw an UpSet veen map (Figs. 4D–4F). Subsequently,
we selected 1-Gy vs 0-Gy cluster genes and 8.5-Gy vs 0-Gy cluster genes from the three
modules for GO and KEGG analysis.

GO functional analysis of X-ray irradiated CFs
In the consensus study, we performed GO enrichment analysis of the consensus genes
following evaluation with the DAVID web-based search tool. The enrichment is shown in
Table 1 and (Figs. 5–7).
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Figure 3 WGCNA analysize for module-trait relationships andModule expression pattern.Matrix
showing module-trait relationships (MTRs) for CFs of different groups (A) and for (E) cell apoptosis and
cell cycle. (A) Each row corresponds to a module. Each column corresponds to a sample result. (E) Each
row corresponds to a module. Each column corresponds to a phenotype result. The MTRs are colored
based on their correlation: red indicates a strong positive correlation and blue indicates a strong negative
correlation. Module expression pattern (B–D) and clustering of module eigengenes (F). (B) Heat map rep-
resents the expression of genes where each row represents a gene and each column represents a sample.
The red color in the heat map represents up-regulated genes, whereas the green color represents the down-
regulated gene; the bar charts represents the eigengene profiles; the color of the bar chart represents the
color of related modules. (D) Dendrogram depicting hierarchical clustering of module eigengenes. The re-
lationships among the modules are shown in the dendrogram. An increased predictive power of the main
effects on module expression in the dendrogram (closer clustering).

Full-size DOI: 10.7717/peerj.10502/fig-3

In the Brownmodule, among BP, the cluster of 8.5Gy vs 0Gy was significantly associated
with cell division, including chromosome segregation and mitotic nuclear division, and
with DNA replication, including DNA replication and DNA replication initiation (Fig. 5A).
In CC enrichment analysis, the terms nucleus, nucleoplasm, kinetochore, and cytoplasm
were enriched (Fig. 5B). In MF analysis, the 8.5Gy vs 0Gy clusters were significantly
associated with biomacromolecule binding, including chromatin binding, ATP binding,
nucleotide binding, poly(A) RNA binding, and so on (Fig. 5C). However, in the 1Gy vs 0Gy
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Figure 4 Trend of Consensus of DEGwithMEs. (A–C) Bar chart of consensus genes from DEGs with
three modules. (D–F) UpSet veen map showing the number of expressed genes detected in brown, yel-
low, and turquoise module consensus with DEGs among different groups. Black dots denote the number
of unique genes in target module or DEGs groups; point-line connections represent the number of genes
shared by two or more DEGs groups or target module.

Full-size DOI: 10.7717/peerj.10502/fig-4

clusters, only the nuclear envelope integral membrane protein 1 gene was up-regulated,
and thus GO and KEGG analysis were not performed.

For genes in the Yellow module, among the BP, the 1Gy vs 0Gy cluster was
significantly associated with the cellular response to organic substance, skeletal muscle
cell differentiation, response to insulin, and negative regulation of apoptotic process
(Fig. 6A). In the cluster of 8.5Gy vs 0Gy, the same results were observed as in the 1Gy vs
0Gy cluster, which were associated with cellular response to organic substance, negative
regulation of apoptotic process, and mainly enriched in muscle contraction (Fig. 6E). In
CC enrichment analysis, terms related to not only the nucleus but also the extracellular
space were enriched in the 1Gy vs 0Gy cluster (Fig. 6B). The extracellular matrix was also
enriched in the 8.5Gy vs 0Gy cluster, which is closely related to cellular fibrosis (Fig. 6F).
In MF analysis, the 1Gy vs 0Gy cluster was significantly associated with transcriptional
activity, RNA polymerase II core promoter proximal region sequence-specific binding,
and transcription regulatory region DNA binding (Fig. 6C), whereas the 8.5Gy vs 0Gy
cluster was also significantly associated with transcriptional activity, RNA polymerase II
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Table 1 GO and KEGG pathway enrichment analysis.

Module Cluster GO Term enrichment KEGG enrichment

BP: cell division with DNA replication
CC: nucleus, nucleoplasm, kinetochore, cytoplasmBrown 8.5Gy vs 0Gy

MF: biomacromolecule binding

Cell cycle, DNA replication,
spliceosome, and DNA repair

BP: organic substance, skeletal muscle cell differentiation,
response to insulin, negative regulation of apoptotic process

CC: nucleus, but also the extracellular spaceYellow 1Gy vs 0Gy

MF: transcriptional activity, RNA polymerase II core
promoter proximal region sequence-specific binding,
transcription regulatory region DNA binding

HTLV-1 infection

BP: cellular response to organic substance, negative
regulation of apoptotic process, muscle contraction
CC: the extracellular matrixYellow 8.5Gy vs 0Gy

MF: transcriptional activity, RNA polymerase II core
promoter proximal region sequence-specific binding,
protein heterodimerization activity

P53 signalling pathway, HTLV-1
infection, viral carcinogenesis, and
MAPK signalling pathway

BP: cellular response to interferon-gamma, chemokine-
mediated signalling pathway
CC: extracellular spaceTurquoise 8.5Gy vs 0Gy

MF: chemokine activity, CCR2 chemokine receptor binding

Chemokine signalling pathway

BP: microtubule-based movement, chromosome
segregation, cell division, in regulation of the G2/M
transition in the mitotic cell cycle
CC: midbody, chromosome, centromeric region,
cytoplasm.Brown

(anti-21+8.5Gy
vs 0Gy) vs (down
in 8.5Gy vs 0Gy)
(log>1) MF: microtubule binding, protein kinase binding,

microtubule motor activity, ATP binding.

Cell cycle

core promoter proximal region sequence-specific binding, and protein heterodimerization
activity (Fig. 6G).

For genes in the Turquoise module, among the BP, the 8.5Gy vs 0Gy cluster was mainly
enriched in cellular response to interferon-gamma and chemokine-mediated signalling
pathway (Fig. 7A). In CC enrichment analysis, terms related to the extracellular space
were enriched in 8.5Gy vs 0Gy (Fig. 7B). In MF analysis, our results showed that 8.5Gy vs
0Gy were significantly associated with chemokine activity and CCR2 chemokine receptor
binding (Fig. 7C).However, in the 1Gy vs 0Gy cluster, only the BTGanti-proliferation factor
2 gene was up-regulated and chromosome 14 open reading frame 132 (D430019H16Rik)
was down-regulated.

KEGG pathway analysis
KEGG pathway maps of biological functions were obtained from the DAVID web-based
search tool (Huangda, Sherman & Lempicki, 2009). In WGCNA, the Yellow and Brown
modules showed a greater correlation with apoptosis, cell cycle, and cellular fibrosis
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Figure 5 GO and KEGG pathway enrichment analysis of DEGs and Brownmodule. (A–D) GO and
KEGG pathway enrichment analysis of cluster of 8.5-Gy vs 0-Gy DEGs and Brown module. (E–H) New-
pick genes for down-regulation8.5-Gy vs 0-Gy cluster and up-regulation.

Full-size DOI: 10.7717/peerj.10502/fig-5

Figure 6 GO and KEGG pathway enrichment analysis of DEGs and Yrownmodule. (A–D) GO and
KEGG pathway enrichment analysis of consensus of 1-Gy vs 0-Gy DEGs and Yellow module. (E–H) GO
and KEGG pathway enrichment analysis of consensus of 8.5-Gy vs 0-Gy DEGs and Yellow module. From
left to right, GO biological process (first), cellular component (second), molecular function (third), and
KEGG pathway (fourth). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs,
differentially expressed genes.

Full-size DOI: 10.7717/peerj.10502/fig-6

compared to the other modules. We performed KEGG analysis to explore differences in
the pathways in each cluster, See Table 1 and (Figs. 5D, 6D, 6H, 7D).

In the Brown module, the 8.5Gy vs 0Gy cluster was mainly enriched in the cell cycle,
DNA replication, spliceosome, and DNA repair (Fig. 5D). In the Yellow module, the
8.5Gy vs 0Gy cluster was significantly associated with the P53 signalling pathway, HTLV-1
infection, viral carcinogenesis, and MAPK signalling pathway (Fig. 6H), and the 1Gy vs
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Figure 7 GO and KEGG pathway enrichment analysis of DEGs and Turquoise module. (A–D) GO and
KEGG pathway enrichment analysis of consensus of 8.5-Gy vs 0-Gy DEGs and Turquoise module. From
left to right, GO biological process (first), cellular component (second), molecular function (third), and
KEGG pathway (fourth). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs,
differentially expressed genes.

Full-size DOI: 10.7717/peerj.10502/fig-7

0Gy cluster was significantly associated with HTLV-1 infection (Fig. 6D). In the Turquoise
module, the 8.5Gy vs 0Gy cluster was significantly associated with the chemokine signalling
pathway (Fig. 7D).

GO functional analysis and KEGG analysis of CFs after anti-miR-21
treatment and irradiation
We observed the response of cells to radiation after interfering with miR-21. As shown
in Figs. 5E–5H in the Brown module, after 8.5 Gy irradiation (compared to 0 Gy), some
genes were down-regulated; whereas, after 8.5Gy irradiation and interference miR-21
(compared to 0 Gy), only a slight decreased in the genes involved in the former group
was observed. We selected these genes for GO and KEGG analysis (Table 1). BP analysis
showed that functional genes were mainly concentrated in microtubule-based movement,
chromosome segregation, and cell division, and were involved in regulation of the G2/M
transition in the mitotic cell cycle, which agrees with our cell cycle results. CC analysis
showed that functional genes were mainly centralized in the midbody, chromosome,
centromeric region, and cytoplasm. MF analysis demonstrated that functional genes were
mainly concentrated in microtubule binding, protein kinase binding, microtubule motor
activity, and ATP binding. KEGG analysis clearly revealed that these genes were associated
with the cell cycle.

PPI network analysis
To further investigate the function of the cluster genes at the protein level, we constructed
a PPI network of the clusters (Figs. 8A–8E). Genes and GO terms of clusters of three
modules; see Table 2 and Figs. 8A–8E. We further explored which genes and biological
processes were being regulated by miR-21 elevation post-irradiation. Our study suggested
that compared to the control (0 Gy), the Brown module gene was mainly down-regulated
in irradiated cells, and there was a higher probability that the Brown module contained the
target gene of miR-21 (Table 3).

Experimental validations
For the preliminary verification of the fibrosis of CFs after irradiation, the expression levels
ofGrem1,Clu,Gdf15,Ccl7, andCxcl1were determined. The Q-PCR results showed that the
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Figure 8 Consensus of DEG-WGCNAmodule network, PPI network and hub genes. (A) 8.5-Gy vs 0-
Gy with Brown module (degree>20) network. Red cycle represent BP GO term (GO:0007049, cell cycle);
green circles represent MF GO term (GO:0000775, chromosome centromeric region) and blue circles rep-
resent CC GO term (GO:0051301, cell division). (B) 1-Gy vs 0-Gy group with Yellow module (degree>2)
network. Red cycle represent BP GO term (GO:0035914, skeletal muscle cell differentiation); green circles
represent MF GO term (GO:0008134 transcription factor binding) and blue circles represent CC GO term
(GO:0005634 nucleus). (C) 8.5-Gy vs 0-Gy with Yellow module (degree>2) network. Red cycle represents
BP GO term (GO:0010941, regulation of cell death); green circles represent MF GO term (GO:0005515,
protein binding) and blue circles represent CC GO term (GO:0005615, extracellular space). (D) 8.5-Gy vs
0-Gy with Turquoise module (degree>2) network. Red cycle represent BP GO term (GO:0048522, posi-
tive regulation of cellular proliferation); green circles represent MF GO term (GO:0008009, chemokine ac-
tivity) and blue circles represent CC GO term (GO:0005615, extracellular space). (E) Cluster of 8.5-Gy vs
0-Gy group and 8.5-Gy+anti21 vs 0-Gy with Brown module network. Red circle represents BP GO term
(GO:0051301, cell division); green circles represent MF GO term (GO:0007049, cell cycle) and blue cir-
cles represent CC GO term (GO:0099513, polymeric cytoskeletal fibre); purple circles represent reactome
pathways (RNO-68886). (F) Relative expression of Grem1, Clu, Gdf15, Ccl7, and Cxcl1 after 8.5Gy irradi-
ation of CFs. (G) Relative expression of Gdf15 and Rsad2 after 8.5Gy irradiation and anti-21 of CFs. PPI,
protein-protein interaction; DEGs, differentially expressed genes. ∗p < 0.05 vs controls. Data are pre-
sented as mean± S.E. Statistics: Two-tailed Student’s t -test. The experiment was repeated three times.

Full-size DOI: 10.7717/peerj.10502/fig-8

mRNA expression levels of Grem1, Clu, Gdf15, Ccl7, and Cxcl1 were significantly increased
in the 8.5-Gy group in contrast to the controls (0 Gy) (Fig. 8F), showing 2.300 ± 0.073-,
1.630 ± 0.159-, 2.616 ± 0.149-, 3.225 ± 0.138-, and 2.115 ± 0.085-fold higher expression,
respectively. We also validated the genes predicted online (Gdf15, Rsad2) as miR-21 targets
(Fig. 8G). The results showed that the expression of these two genes was increased by 2.616
± 0.149- and 2.115 ± 0.085-fold after irradiation, and increased by 5.207 ± 0.111- and
49.853 ± 0.058-fold after interference miR-21 and following radiation (P < 0.05).
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Table 2 Names of three module genes of PPI network based on the STRING database.

Module Degree Cluster GO term Gene
number

Genes

BP (GO:0007049, cell cycle) 30 Mis18a, Cenpt, Ska3,
Kif18b, Cdca3, Birc5,
Cep55, Ska1, Kif2c,
Cenpw, Knstrn, Ccnf,
Brca1, Uhrf1, Plk4,
Plk1, Cdc20, Nuf2,
Cdca8, Spc25, Aurkb,
Cdk1, Pttg1, Cdkn3,
Ns5atp9,Mcm6, E2f8,
Stmn1, E2f7, Kifc1

MF (GO:0000775 chromosome centromeric region) 7 Kif18b, Birc5, Ska1,
Kif2c, Plk1, Kifc1,
Stmn1Brown >20 8.5Gy vs 0Gy

CC (GO:0051301 cell division) 15 Mis18a, Cenpt, Cenpi,
Birc5, Cenpn, Ska1,
Cenpw, Knstrn, Kif2c,
Nuf2, Bub1, Cdca8,
Plk1, Aurkb, Spc25

BP (GO:0010941, regulation of cell death) 8 Ccng1, Gdf15, Egr1,
Fos, Dusp1, Clu,Mgmt,
Grem1

MF (GO:0005515, protein binding) 9 Gdf15, Egr1, Fos,
Dusp1, Egr2, Clu, Stc1,
Ephx1, Grem1Yellow >2 8.5Gy vs 0Gy

CC (GO:0005615, extracellular space) 4 Gdf15, Clu, Stc1,
Grem1

BP (GO:0048522, positive regulation of cellular
proliferation)

17 Aldh3a1, Ptprn, C6,
Gda, Star, Hmga1,
Esm1, Gadd45a,
Hmox1, F3, Vcam1,
Cxcl1, Ccl2, Pf4, Ccl7,
Avpr1a, Esm1

MF (GO:0008009, chemokine activity) 4 Cxcl1, Ccl2, Pf4, Ccl7Turquoise >2 8.5Gy vs 0Gy

CC (GO:0005615, extracellular space) 8 C6, Cpz, F3, Vcam1,
Cxcl1, Ccl2, Pf4, Ccl7

BP (GO:0035914, skeletal muscle cell differentiation) 2 Fos, Egr2
MF (GO:0008134, transcription factor binding) 3 Fos, Egr2, Egr1Yellow >2 1Gy vs 0Gy

CC (GO:0005634, nucleus) 3 Fos, Egr2, Egr1

DISCUSSION
Studies have shown that a broad range of cardiomyopathy, myocardial fibrosis disorders
such as structure, phenotype, and gene expression profile are known to be causally
associated with exposure to ionizing radiation (Boerma, Bart & Wondergem, 2002; Salata
et al., 2014). This study was conducted to evaluate changes in the gene expression profile
of CFs after radiation exposure, particularly the role of miR-21 in this process.
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Table 3 Newly selected genes as potential targets of miR-21 in irradiation CFs.

Module Cluster GO Term/Function Gene
number

Genes

BP (GO :0051301, cell division) 4 Stmn1, Cdca3, Kif2c, and Cdk1
MF (GO :0007049, cell cycle) 5 Uhrf1, Stmn1, Cdca3, Kif2c, Cdk1
CC (GO:0099513, polymeric cytoskeletal fibre) 4 Lmnb1, Stmn1, Kif2c, Cdk1

Brown
8.5Gy vs 0Gy consen-
sus with 8.5+anti-21 vs
0Gy

KEGG:reactome pathways (RNO-68886) and mitotic M
stage (mainly for G2/M period conversion function)

7 Ncaph, Cdk1, Kif23, Cenpe,
Cenpf, Bub1b, Sgol2

We found that myocardial fibroblasts undergo apoptosis and cycle changes after
radiation, the degree of which increase with increasing radiation intensity. In DEG analysis,
changes in the gene expression profile of CFs after radiation exposure at low and high doses
were detected. Boerma, Bart & Wondergem (2002) demonstrated that genes in CFs are
down-regulated more frequently by genechip assay after ionizing radiation, and the degree
of changes in gene expression is positively correlated with the radiation dose, which is in
agreement with our results. To better understand the relationship between widely altered
gene groups, we combined WGCNA and DEG analysis, and found three MEs showing
significant changes in expression.

Myocardial fibroblasts were arrested in G2/M phase after irradiation, but the number
of cells in G2/M phase decreased significantly after interference with miR-21, suggesting
that miR-21 was more responsive to stress after irradiation. This may be a self-protective
response of cells by blocking G2/M phase but may also cause cell apoptosis. To specifically
identify which genes are affected by miR-21, we searched for Brown module genes, which
show lower cell expression after irradiation (possibly because of elevated miR-21). We
predicted that among Brown module genes, if genes decreased in the irradiation group
compared to in the non-irradiation group are increased after anti-miR-21 treatment, the
genes may be affected by miR-21. Through GO and KEGG analysis, we found that the
genes are mainly involved in cell differentiation and cycle. The genes involved in G2/M
transformation are Cenpf and Cna2. However, according to an online prediction website,
these two genes are not the targets of miR-21. How these genes are related to and function
with miR-21 required further analysis.

We also selected Rsad2 and Gdf15 (Ek et al., 2016) as candidate genes predicted as target
genes of miR-21 by bioinformatic algorithms. Our study suggested that the expression of
Rsad2 andGdf15were up-regulated whenmiR-21 expression was decreased with anmiR-21
inhibitor in 8.5-Gy irradiated cells. The target genes in irradiated CFs may be regulated by
various ways, and thus, the down-regulation of target gene expression caused by miR-21
was neutralized viamultiple pathways. Therefore, the hub target genes specifically regulated
by miR-21 require further experimental analysis and are the focus of our future studies.

Radiation is known to cause fibrosis of the heart. Importantly, we found that some
genes in the Yellow or Turquoise gene modules were over-expressed after irradiation, GO
analysis showed that these genes were involved in extracellular space and extracellular
matrix. We also selected several genes showing obvious differences (|log2|>2, p< 0.05) in
the sequencing results for Q-PCR verification. These genes were Grem1, Clu, Gdf15, Ccl7,
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and Cxcl1, all of which showed increased expression to varying degrees, which is consistent
with the sequencing results. Because the extracellular space and extracellular matrix may
play an important role in the occurrence of cell fibrosis, we predicted that changes in these
genes are related to fibrosis of the heart after radiation.Grem1 is a candidate gene responsible
for in vitro cardiomyogenic differentiation (Kami et al., 2008).Mueller et al. (2013) studied
214 patients with non-ischemic heart failure and found that the expression of Grem1 was
significantly associated with the degree of myocardial fibrosis and was an independent
predictor of poor prognosis in patients with non-ischemic heart failure. In transgenic mice,
Grem1 was found to regulate anti-fibrotic chemokine production and led to fibrosis (Koli
et al., 2016). Clusterin (Clu) is a molecular chaperone that protects cellular proteins (Li et
al., 2011) and is thought to promote survival by reducing oxidative stress (Park, Mathis
& Lee, 2014), and can be induced in myocarditis and numerous inflammatory injuries
(McLaughlin et al., 2000). Clu-deficient mice exhibited cardiac function impairment and
severe myocardial scarring (McLaughlin et al., 2000). Circulating Clu levels are associated
with left ventricular remodelling after myocardial infarction (Turkieh et al., 2018). Clu also
has a potential anti-atherosclerotic effect by inducing cholesterol export from macrophage
foam cells upon repeated ischemia/reperfusion injury (Gelissen et al., 1998). Growth
differentiation factor 15 (Gdf15) is a heart-derived hormone (Wang et al., 2017), also known
asMIC-1, and is a member of the transforming growth factor-β (TGF-β) superfamily. This
protein is thought to be associated with heart failure, all-cause mortality (Wiklund et
al., 2010), atherosclerosis, and metabolism (Emmerson et al., 2017). Gdf15 is considered
as a novel antihypertrophic regulatory factor in the heart (Xu et al., 2006), which can
elicit SMAD2/3 and then antihypertrophic effects. Additionally, overexpression Smad7
(target gene of miR-21) reversed the antihypertrophic effects of Gdf15 (Xu et al., 2006),
suggesting that increased miR-21 after irradiation inhibits its target gene Smad7, promotes
cardiac hypertrophy, and thereby neutralizes the anti-hypertrophic effect of elevated
Gdf15. It has been shown that local targeting of miR-21 have potential therapeutic utility
in mitigating radiation-induced lung fibrosis (Kwon et al., 2016). Therefore, Gdf15 both
as a target of miR-21 and as a fibrosis factor showing its potential ability for treatment of
cardiac fibrosis after radiation. Our study showed that Gdf15 expression was higher after
interference with the expression of miR-21 in irradiated CFs, indicating that Gdf15-related
anti-fibrosis was inhibited by miR-21. As a member of the chemokine family, Ccl7 plays
an important role in cardiac hypertrophy. The expression of chemokine mRNA in the left
ventricular hypertrophy model showed that Ccl7 expression was increased sharply in the
early inflammatory phase and returned to baseline in the hypertrophic phase (Nemska et
al., 2016). One of the primary functions of Ccl7 is to mobilize and promote monocyte
migration from the bone marrow to inflamed tissue (Tsou et al., 2007). Another study
showed that circulating B cells produce the chemokine Ccl7 in myocardial infarction,
which in turn damages the heart (Kim & Luster, 2013; Zouggari et al., 2013), and thus Ccl7/
Mcp-3 is involved in impairing cardiac function as a virulence factor. Cxcl1 as potent
neutrophil chemoattractant also plays an important role in a CF ischemia-reperfusion
model (Lafontant et al., 2006) and contributes to neointima formation in the blood vessel
walls (Yu et al., 2016). Therefore, these two chemokines may be virulence factors in cardiac
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damage. We will further explore the effects of these gene expression changes on the cell
phenotype.

CONCLUSIONS
In conclusion, our results indicate that miR-21 may play major role in promoting
fibrosis and G2/M blockade by regulating Grem1, Clu, Gdf15, Ccl7, Cxcl1 and Rsad2 after
irradiation. The pathophysiological role of miR-21, and the potential for manipulating
miR-21 to achieve therapeutic effects, should be further explored in RIHD (Supplemental
Information 4). We only sequenced primary cells in vitro. In our further studies we will
perform single-cell sequencing of rat hearts after irradiation, which may provide more
detailed information.
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