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Abstract 

Background: Epidemiological, virological and pathogenetic characteristics of SARS-CoV-2 infection are under 
evaluation. A better understanding of the pathophysiology associated with COVID-19 is crucial to improve treatment 
modalities and to develop effective prevention strategies. Transcriptomic and proteomic data on the host response 
against SARS-CoV-2 still have anecdotic character; currently available data from other coronavirus infections are there-
fore a key source of information.

Methods: We investigated selected molecular aspects of three human coronavirus (HCoV) infections, namely SARS-
CoV, MERS-CoV and HCoV-229E, through a network based-approach. A functional analysis of HCoV–host interactome 
was carried out in order to provide a theoretic host–pathogen interaction model for HCoV infections and in order to 
translate the results in prediction for SARS-CoV-2 pathogenesis. The 3D model of S-glycoprotein of SARS-CoV-2 was 
compared to the structure of the corresponding SARS-CoV, HCoV-229E and MERS-CoV S-glycoprotein. SARS-CoV, 
MERS-CoV, HCoV-229E and the host interactome were inferred through published protein–protein interactions (PPI) 
as well as gene co-expression, triggered by HCoV S-glycoprotein in host cells.

Results: Although the amino acid sequences of the S-glycoprotein were found to be different between the various 
HCoV, the structures showed high similarity, but the best 3D structural overlap shared by SARS-CoV and SARS-CoV-2, 
consistent with the shared ACE2 predicted receptor. The host interactome, linked to the S-glycoprotein of SARS-CoV 
and MERS-CoV, mainly highlighted innate immunity pathway components, such as Toll Like receptors, cytokines and 
chemokines.

Conclusions: In this paper, we developed a network-based model with the aim to define molecular aspects of 
pathogenic phenotypes in HCoV infections. The resulting pattern may facilitate the process of structure-guided phar-
maceutical and diagnostic research with the prospect to identify potential new biological targets.
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Background
In December 2019, a novel coronavirus (SARS-CoV-2) 
was first identified as a zoonotic pathogen of humans 
in Wuhan, China, causing a respiratory infection 
with associated bilateral interstitial pneumonia. The 
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disease caused by SARS-CoV-2 was named by the 
World Health Organization as COVID-19 and it has 
been classified as a global pandemic since it has spread 
rapidly to all continents. As of May 20, 2020, there have 
been 4.889.287 confirmed COVID-19 cases worldwide 
with 322.457 deaths reported to the WHO [1]. Whilst 
clinical and epidemiological data on COVID-19 have 
become readily available, information on the pathogen-
esis of the SARS-CoV-2 infection has not been forth-
coming [2]. The transcriptomic and proteomic data on 
host response against SARS-CoV-2 is scanty and not 
effective therapeutics and vaccines for COVID-19 are 
available yet.

Coronaviruses (CoVs) typically affect the respiratory 
tract of mammals, including humans, and lead to mild 
to severe respiratory tract infections [3]. Many emerg-
ing HCoV infections have spilled-over from animal res-
ervoirs, such as HCoV-OC43 and HCoV-229E which 
cause mild diseases such as common colds [4, 5]. During 
the past 2 decades, two highly pathogenic HCoVs, severe 
acute respiratory syndrome coronavirus (SARS-CoV) and 
Middle East respiratory syndrome coronavirus (MERS-
CoV), have led to global epidemics with high morbid-
ity and mortality [6]. In this period, a large amount of 
experimental data associated with the two infections has 
allowed to better understand molecular mechanism(s) of 
coronavirus infection, and enhance pathways for devel-
oping new drugs, diagnostics and vaccines and identi-
fication of host factors stimulating (proviral factors) or 
restricting (antiviral factors) infection remains poorly 
understood [7]. Structures of many proteins of SARS-
CoV and MERS-CoV, and biological interactions with 
other viral and host proteins have been widely explored; 
through experimental testing of small molecule inhibi-
tors with anti-viral effects [8, 9]. ACE2, expressed in type 
2 alveolar cells in the lung, has been identified as recep-
tor of SARS-CoV and SARS-CoV-2, while dipeptidyl 
peptidase DPP4 was identified as the specific receptor for 
MERS-CoV [10, 11].

The investigation of structural genomics and inter-
actomics of SARS-CoV-2 can be implemented through 
systematical mapping of protein–protein interactions 
(PPI) between SARS-CoV-2 and human host, and an 
integrated bioinformatics approach [12, 13]. Structural 
analysis of specific SARS-CoV-2 proteins, in particular 
Spike glycoproteins (S-glycoproteins), and their interac-
tions with human proteins, can guide the identification of 
the putative functional sites and help to better define the 
pathologic phenotype of the infection. This functional 
interaction analysis between the host and other HCoVs, 
combined with an evolutionary sequence analysis of 
SARS-CoV-2, can be used to guide new treatment and 
prevention interventions.

We investigated here biologically and clinically relevant 
molecular targets of three human coronaviruses (HCoV) 
infections using a network based approach. A functional 
analysis of HCoV–host interactome was carried out in 
order to provide a theoretic host–pathogen interaction 
model for HCoV infections, and to predict viable mod-
els for SARS-CoV-2 pathogenesis. Three HCoV caus-
ing respiratory diseases were used as the model targets, 
namely: SARS-CoV, that shares with SARS-CoV-2 a 
strong genetic similarity, including MERS-CoV, and 
HCoV-229E.

Methods
Comparative reconstruction of S‑glycoprotein in HCoVs
The reconstruction of virus–host interactome was car-
ried out using the RWR algorithm to explore the human 
PPI network and the multilayer PPI platform enriched 
with gene expression data sets. 259 sequences of CoVs, 
infecting different animal hosts (Additional file  1: 
Table S1), were downloaded by GSAID and NCBI data-
base in order to evaluate the variability in the S gene. 
SARS-CoV, HCoV-229E and MERS-CoV and other CoV 
full genome sequence groups were aligned with MAFFT 
[14], synonymous and non-synonymous mutations, and 
amino acid similarity were calculated using the SSE pro-
gram with a sliding windows of 250 nucleotides and a 
pass of 25 nu [15]. A homology model was built for the 
amino acid sequences of the S-glycoprotein, derived from 
the full genome sequence obtained at “SARS-CoV-2/
INMI1/human/2020/ITA” (MT066156.1). The Swiss pdb 
server was used to construct three-dimensional mod-
els for the S-glycoprotein of SARS-CoV-2 [16]. Among 
proteins with a 3D structure, the best match with the 
“SARS-CoV-2/INMI1/human/2020/ITA” sequence was 
the 6VSB.1, that was evaluated considering the iden-
tity of two amino acid sequences and the QMEN value 
included in Swiss pdb server. The model of a single chain 
was overlapped with the three-dimensional structure 
of S-glycoprotein single chain belonging to SARS-CoV 
(5WRG), HCoV-229E (6U7H.1) and MERS-CoV (5X59), 
using Chimera 1.14 [17]. In order to better evaluate the 
conservation of the sequence in each site, all sequences 
were aligned with MAFFT and the topology of all struc-
tures were compared. The detailed description of the 
reconstruction of S-glycoprotein structure is reported in 
Additional file 2.

PPI and gene co‑expression network
Network analysis, based on protein–protein interactions 
and gene expression data, was performed in order to view 
all possible virus–host protein interactions during the 
HCoV infections. Since the SARS-CoV-2 genome exhibits 
substantial similarity to the SARS-CoV genome [18] and 
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subsequently also the proteome [19], we hypothesized 
that several molecular interactions that were observed 
in the SARS-CoV interactome will be preserved in the 
SARS-CoV-2 interactome. Virus–host interactomes 
(SARS-CoV, MERS-CoV, HCoV-229E) were inferred 
through published PPI data, using two publicly accessi-
ble databases (STRING Viruses and VirHostNet), as well 
as published scientific reports with a focus on virus–host 
interactions [20–22]. As a next step, the virus–host PPI 
list, extracted in this first step, was merged with addi-
tional PPI databases, i.e. BioGrid, InnateDB-All, IMEx, 
IntAct, MatrixDB, MBInfo, MINT, Reactome, Reactome-
FIs, UniProt, VirHostNet, BioData, CCSB Interactome 
Database, using R packages PSICQUIC and biomaRt [23, 
24]. In total, a large PPI interaction database was assem-
bled, including 13,020 nodes and 71,496 interactions.

The gene expression data set was built from the Pro-
tein Atlas database, using tissue and cell line data [25]. To 
identify the most likely interactions, and to obtain func-
tional information, Random walk with restart (RWR), a 
state-of-the-art guilt-by-association approach by R pack-
age RandomWalkRestartMH [26] was used. It allows to 
establish a proximity network from a given protein (seed), 
to study its functions, based on the premise that nodes 
related to similar functions tend to lie close to each other 
in the network. For each node, a score was computed as 
measure of proximity to the seed protein. S-glycoproteins 
of SARS-CoV, MERS-CoV and HCoV-229E were used as 
seed in the application of the RWR algorithm.

Functional enrichment analysis
To evaluate functional pathways of proteins involved in 
host response, gene enrichment analysis was performed, 
using Kyoto Encyclopedia of Genes and Genomes 
(KEGG) human pathways and Gene Ontology databases. 
Network representation from the gene enrichment anal-
ysis was performed using ShinyGO v0.61 [27]. The sta-
tistical significance was obtained, calculating the False 
Discovery Rate (FDR).

Results
Structure of S‑glycoprotein CoVs
To evaluate the diversity along the full genome, pairwise 
distance was calculated on 259 HCoV genomes. Diversity 
was distributed along the entire CoV genome, with the 
most conserved region located in Orf1ab, as expected, 
while the spike gene region exhibited a rather high diver-
sity (Additional file 2: Figure S1), due to key role of the 
S-glycoprotein during viral entry in specific hosts [28].

Consequently, the analysis was focused on the S-gly-
coprotein, as a key virus component involved in host 
interaction [29]. A 3D model of S-glycoprotein of the 
SARS-CoV-2 sequence (MT066156.1) was built on the 

sequence obtained at Laboratory of Virology, National 
Institute for Infectious Diseases “L. Spallanzani” IRCCS, 
using Swiss pdb viewer server (Additional file  2: Figure 
S2a, b). The SARS-CoV-2 S-glycoprotein structure was 
then compared to other HCoVs as shown in Additional 
file  2: Figure S2. The S-glycoprotein structures of the 
various HCoV were very similar overall. In particular, a 
strong similarity was shown in the RBD (nCov: residues 
319–591) [30], and this was most evident for the compar-
ison between SARS-CoV-2 and SARS-CoV, which share 
the same cell receptor (ACE2). The amino acid differ-
ences among the S-glycoproteins of the selected HCoVs 
(SARS-CoV-2, MERS-CoV, SARS-CoV, HCoV-229E) 
are shown in Additional file 2: Figure S3, where a lower 
topology similarity was observed with HCoV-229E S-gly-
coprotein, which binds a different host receptor.

Overall, the pattern arising from such comparison was 
consistent with specific host receptors, as well as with 
different host reservoirs and ancestry [31].

Human CoV and host interactome
An interactome map was built to highlight biological 
connections among S-glycoprotein and the human pro-
teome. Using the analysis pipeline described in the meth-
ods, a large PPI interaction database was assembled, 
including 13,020 nodes and 71,496 interactions between 
human host and the three selected viruses (SARS-CoV, 
MERS-CoV and HCoV-229E).

The interactome reconstruction was obtained with the 
RWR analysis, finding 200 closest proteins to seed, or 
S-glycoproteins of HCoV-229E, SARS-CoV and MERS-
CoV (Additional file  2: Figures  S4–S6). In Additional 
file 1: Tables S2–S4, lists of genes selected by RWR algo-
rithm for HCoV-229E, SARS-CoV and MERS-CoV, along 
with proximity score were reported. In order to further 
dissect the S-glycoprotein-host interactions, enrichment 
analysis was carried out with Reactome and KEGG data-
bases. Reactome pathway enrichment analysis revealed 
biological pathways of DNA repair, transcription and 
gene regulation for the HCoV-229E S-glycoprotein, with 
high significance (FDR < 0.01%). KEGG pathway enrich-
ment analysis revealed ubiquitin mediated proteolysis 
as the most significant pathway (FDR < 0.01%), as well 
as cellular proliferation pathways, associated with other 
viral infections (Hepatitis B, measles, Epstein–Barr virus 
infection and Human T-cell leukemia virus 1 infection) 
as well as with carcinogenesis (Fig.  1). Next, the RWR 
algorithm was applied to a multilayer network built on 
the PPI interactome and on the Gene Coexpression 
(COEX) network, again with S-glycoprotein of HCoV-
229E as seed. The results highlighted a set of genes that 
are connected in both PPI and COEX analysis, including 
ANPEP, RAD18, APEX, POLH, APEX1, TERF2, RAD51, 
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CDC7, USP7, XRCC5, RAD18, FEN1, PCNA, all associ-
ated to the GO biological process category of DNA repair 
(FDR < 0.0001%) (Fig.  2). The same analyses were con-
ducted for SARS-CoV and MERS-CoV.

The Reactome pathway enrichment analysis for the 
SARS-CoV revealed S-glycoprotein connection with 
early activation of innate immune system, such as the 
Toll Like Receptor Cascade and TGF-β, with a strong 
significance (FDR < 0.0001%), while the KEGG pathway 
enrichment analysis revealed an association with cellular 

proliferation, TGF-β and other infection-related path-
ways (FDR < 0.0001%) (Fig. 3). The PPI-COEX multilayer 
analysis highlighted a set of genes that are connected in 
both PPI and COEX analysis, i.e.CLEC4G, CLEC4M, 
CD209, ACE2, RPSA, all associated to the GO biologi-
cal process category of SARS-CoV entry into host cell 
(FDR < 0.01%) (Fig.  4). In MERS-CoV, the Reactome 
pathway enrichment analysis showed a strong associa-
tion with membrane signals activated by GPCR ligand 
binding (FDR < 0.0001%), and chemokine/chemokine 
receptor pathways. Consistent results were obtained with 
KEGG pathway enrichment, that highlighted cytokine–
cytokine receptor and chemokine signalling pathways 
(FDR < 0.0001%) (Fig.  5). Finally, PPI-COEX multilayer 
analysis evidenced, for both PPI and COEX, CCR4, 
CXCL2, CXCL10, CXCL9, PF4, PF4V1, CCL11, CXCL11, 
XCL1, CXCR4 and CXCL14, all genes identified by the 
GO biological processes involved in the chemokine cas-
cade (FDR < 0.0001%), in line with the results obtained 
with enrichment analyses (Fig. 6).

Discussion
In‑depth comparative analysis of S‑glycoprotein
We applied network analysis, based on protein–pro-
tein interactions and gene expression data, in order to 
describe the interactome of the coronavirus S-glycopro-
tein and host proteins, with the aim to better understand 
SARS-CoV-2 pathogenesis. A preliminary structural 
analysis was conducted on the S-glycoprotein of SARS-
CoV-2 as compared to the other 3 HCoV, using the 
S-glycoprotein as a model to shed light on the host–path-
ogen interaction in the dynamic process of SARS-CoV-2 

Fig. 1 KEGG human pathway and Reactome pathways enrichment analysis for 200 proteins identified by RWR algorithm using S-glycoprotein of 
HCoV-229E

Fig. 2 PPI-COEX multilayer analysis, based on human PPI interactome 
and COEX network, with top 50 closest proteins/genes identified by 
RWR, using S-glycoprotein of HCoV-229E. Edges in blue represent 
protein-protein interactions, while red edges are coexpressions
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infection. Although the amino acid sequences of the 
S-glycoprotein were different between the various 
HCoVs, the structural analysis exhibited high similarity; 
the best 3D structural overlap was found for SARS-CoV 

and SARS-CoV-2, consistent with the shared ACE2 pre-
dicted receptor.

Of note, the newly discovered SARS-CoV-2 genome 
has revealed differences between SARS-CoV-2 and 
SARS or SARS-like coronaviruses [31]. Although no 
amino acid substitutions were present in the recep-
tor-binding motifs, that directly interact with human 
receptor ACE2 protein in SARS-CoV, six mutations 
occurred in the other region of the RBD [31, 32] were 
identified. On the other hand, the genomic comparative 
analysis highlighted the strong diversity in the S gene 
among CoV in different hosts, confirming the biologi-
cally vital role of the S-glycoprotein as a key factor in 
viral entry in cross-species transmission events [28].

In addition, the comparative 3D structural data may 
facilitate the definition of already known antibody 
epitopes in the S-glycoprotein of other coronaviruses, 
it will also be useful in rational vaccine design and in 
gauging anti-virus directed immune responses after 
vaccination [30]. In fact, S-glycoprotein remains an 
important target for vaccines and drugs previously 
evaluated in SARS and MERS, while a neutralizing 
antibody targeting the S-glycoprotein protein could 
provide passive immunity. The host interactome, 
linked to S-glycoprotein of SARS-CoV and MERS-CoV, 
mainly highlighted innate immunity pathway com-
ponents, such as Toll Like receptors, cytokines and 
chemokines. The 3D structural analysis confirmed that 

Fig. 3 KEGG human pathway and Reactome pathways enrichment analyses for 200 proteins identified by RWR algorithm using S-glycoprotein of 
SARS-CoV

Fig. 4 PPI-COEX multilayer analysis based on human PPI interactome 
and COEX network, with top 50 closest proteins/genes identified 
by RWR, using S-glycoprotein of SARS-CoV. Edges in blue represent 
protein-protein interactions, while red edges are coexpressions
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we established that S-glycoprotein of SARS-CoV-2 has 
strong similarity in the 3D structure with SARS-CoV 
[18].

Host interactome in all three HCoV infections
The reconstruction of virus–host interactome was car-
ried out using RWR algorithm to explore the human PPI 
network and studying PPI and COEX multilayer. The 
PPI network topology of host interactome in all three 

infections indicated the presence of several hub proteins. 
In the HCoV-229E–host interactome hub position was 
hold by RAD18 and APEX, which play an important role 
in DNA repair due to UV damage in phase S [33].

For the SARS-CoV interactome, the gene hubs were 
identified in ACE2, CLEC4G and CD209, which are 
known interactors with S-glycoprotein of SARS-CoV [34, 
35].

In fact, two independent mechanisms were described 
as trigger of SARS-CoV infection: proteolytic cleavage of 
ACE2 and cleavage of S-glycoprotein. The latter activates 
the glycoprotein for cathepsin L-independent host cell 
entry. Activated the S-glycoprotein by cathepsin L mech-
anism in host cell entry was reported in many infections 
of CoV, such as HCoV-229E and SARS-CoV [36, 37]. A 
recent study speculated that this interaction will be pre-
served in SARS-CoV-2 [19], but might be disrupted of a 
substantial number of mutations in the receptor binding 
site of S gene will occur. Likewise, the S-glycoprotein in 
SARS-CoV-2 is expected to interact with type II trans-
membrane protease (TMPRSS2) and probably is involved 
in inhibition of antibody-mediated neutralization [38, 
39]. It is rather unexpected that, for this virus, no intra-
cellular pathways were highlighted by the multilayer 
analysis, suggesting that this field is still open to further 
investigation.

In MERS-CoV infection a gene hub role was described 
for DPP4, which is known to regulate cytokine levels 
through catalytic cleavage [40]. Immune cell—recruit-
ing chemokines and cytokines, such as IP-10/CXCL-
10, MCP-1/CCL-2, MIP-1α/CCL-3, RANTES/CCL-5, 
can be strongly induced by MERS-CoV, showing higher 
inducibility in human monocyte—derived macrophages 

Fig. 5 KEGG human pathway and Reactome pathways enrichment for 200 proteins identified by RWR algorithm using S-glycoprotein of MERS-CoV

Fig. 6 PPI-COEX multilayer analysis based on human PPI interactome 
and COEX network, with top 50 closest proteins/genes identified 
by RWR, using S-glycoprotein of MERS-CoV. Edges in blue represent 
protein-protein interactions, while red edges indicate coexpressions
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by MERS-CoV as compared to than SARS-CoV infec-
tion [41]. The cellular proliferation pathways, involved 
immediately after virus entry, were described in all three 
models, resulting consistent with inhibiting activity on 
cell proliferation and cytotoxic effect due to HCoV infec-
tions [42, 43]. Finally, biological pathways, revealed by 
enrichment analysis in over all models, supported early 
activation of innate immune system, as Toll Like recep-
tor Cascade and TGF-β for SARS-CoV, or chemokine and 
cytokine pathways and infection-related pathways for 
MERS-CoV, with a strong significance for both.

Pathogenic model for HCoV infections
We constructed a host molecular interactome with SARS-
CoV, MERS-CoV and HCoV-229E in patients with can-
cer, assuming that most of these interactions, especially 
for SARS-CoV, are shared with SARS-CoV-2. A network-
based methodology, along with guilt-by-association algo-
rithm (RWR), was applied to define the pathological model 
of COVID-19 and provide a treatment of SARS-CoV-2, 
using existing transcriptomic and proteomic information.

Based on the main pathways identified by the network-
based interactome analysis, the following issues require 
focus further study:
First, The predicted receptor for SARS-CoV-2 has been 

inferred to be ACE-2, i.e. the same used by SARS-CoV, 
based on the high similarity of the S-glycoprotein of the 
two viruses, and this is the basis for hypothesizing to 
use SARS-CoV as a model for virus–host interactome in 
COVID-19;
Second, Mitogen activated protein kinase (MAPK) is 

a major cell signalling pathway that is known to be acti-
vated by diverse groups of viruses, and plays an impor-
tant role in cellular response to viral infections. MAPK 
interacting kinase 1 (MNK1) has been shown to regulate 
both cap-dependent and internal ribosomal entry sites 
(IRES)-mediated mRNA translation;
Third, The identification of the MAPK pathway in 

SARS-CoV model is highly consistent with in vivo model, 
where P38 MAPK was found increased in the lungs of 
mice infected with SARS-CoV [44];
Fourth, The identification of the TGF-β pathway in 

S-glycoprotein-induced interactome for SARS-CoV of 
particular interest, due to the previous evidence that this 
virus, and in particular its protease, triggered the TGF-β 
through the p38 MAPK/STAT3 pathway in alveolar basal 
epithelial cells [45, 46];
Fifth, Innate immune pathways were identified in S-gly-

coprotein-induced models of SARS-CoV and MERS-CoV, 
as Toll Like receptor, cytokine and chemokine.

Every described pathway can be matched with clinical 
aspects, the data presented in this report may therefore 

aid to design a ‘blue print’ for SARS-CoV-2 associated 
pathogenicity.

The severity and the clinical picture of SARS-CoV and 
MERS-CoV infections could be related to the activation 
of exaggerated immune mechanism, causing uncon-
trolled inflammation [47]; however, the role of strong 
immune response in SARS-CoV-2 infection severity is 
still uncertain.

However, we may consider that host kinases link mul-
tiple signalling pathways in response to a broad array 
of stimuli, including viral infections. TGF-β, produced 
during the inflammatory phase by macrophages, is an 
important mediator of fibroblast activation and tissue 
repair. High levels of systemic inflammatory cytokines/
chemokines has been widely reported for MERS-CoV 
infections [48–50], correlating with immunopathology 
and massive pulmonary infiltration into the lungs [51]. 
Also the HCoV-229E infection can be described with 
this distance model, although this infection was not asso-
ciated with a severe respiratory disease. In fact, HCoV-
229E is responsible for mild upper respiratory tract 
infections, such as common colds, with only occasional 
spreading to the lower respiratory tract, but it interacts 
with dendritic cells in the upper respiratory tract, induc-
ing a cytopathic effect [52].

Conclusions
In conclusion, we developed a network-based model, 
which could be the framework for structure-guided 
research process and for the pathogenetic evaluation of 
specific clinical outcome. Accurate structural 3D protein 
models and their interaction with host receptor proteins 
can allow to build a more detailed theoretical disease 
model for each HCoV infection, and support the drawing 
of a disease model for COVID-19. Our analyses suggests 
it is important to carry out in silico experiments and sim-
ulations through specific algorithms.

Limitations to our study
A single protein, namely S-glycoprotein was used as seed, 
therefore the highlighted interactions were limited to 
those connected with this unique viral protein. However, 
this is a proof of concept study, from which it appears 
that a similar approach may be used to study other viral 
proteins interacting with host cell pathways.

Another limitation is that the pathway analysis did 
not consider tissue and cell type diversity. Finally, the 
low threshold established for the number of nodes 
found by RWR (200) limited the reconstruction of the 
entire pathways. However, this was a software-imposed 
threshold.
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In summary, the interactome analysis aided to guide 
the design of novel models of SARS-CoV pathogenicity.
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top 200 closest proteins identified by RWR, using S-glycoprotein of SARS-
CoV. Figure S6. MERS-CoV–host interactome resulting from RWR applied 
to the top 200 closest proteins identified by RWR, using S-glycoprotein of 
MERS-CoV.
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