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Inflammasomes are large multiprotein complexes localized in the cytoplasm of the cell. They are responsible for

the maturation of pro-inflammatory cytokines such as interleukin-1b (IL-1b) and IL-18 as well as for the

activation of inflammatory cell death, the so-called pyroptosis. Inflammasomes assemble in response to cellular

infection, cellular stress, or tissue damage; promote inflammatory responses and are of great importance in

regulating the innate immune system in chronic inflammatory diseases such as periodontitis and several chronic

systemic diseases. In addition to sensing cellular integrity, inflammasomes are involved in the homeostatic

mutualism between the indigenous microbiota and the host. There are several types of inflammasomes of which

NLRP3 is best characterized in microbial pathogenesis. Many opportunistic bacteria try to evade the innate

immune system in order to survive in the host cells. One of these is the periodontopathogen Porphyromonas

gingivalis which has been shown to have several mechanisms of modulating innate immunity by limiting the

activation of the NLRP3 inflammasome. Among them, ATP-/P2X7- signaling is recently associated not only

with periodontitis but also with development of several systemic diseases. The present paper reviews multiple

mechanisms through which P. gingivalis can modify innate immunity by affecting inflammasome activity.
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T
he innate immune system is the first line of de-

fense against microbial pathogens. It is initiated

by genome-encoded pattern recognition receptors

(PRRs) that respond to invading microorganisms. PRRs

recognize microbial pathogen-associated molecular pat-

terns (PAMPs). This leads to activation of host defense

pathways to clear the infection (1). In addition to micro-

bial components, the receptors can respond to danger-

associated molecular patterns (DAMPs) derived from

the host (ATP, DNA, cholesterol crystals). Also envi-

ronmental irritants such as asbestos, silica, alum, and

nanoparticles can stimulate inflammasome-driven inflam-

mation (2, 3). In the detection of pathogens, toll-like

receptors (TLRs) are of crucial importance. They recog-

nize distinct PAMPs and participate in the first line of

defense against invading pathogens, playing a signifi-

cant role in inflammation and immune cell regulation.

Other well characterized evolutionary conserved PRRs

involved in innate immune defense are retinoic acid-

inducible gene-I (RIG-I) receptors, C-type lectin recep-

tors (CLRs), and nucleotide-binding domain (NOD)-like

receptors (4, 5). All these receptors are expressed by

several cell types such as macrophages, neutrophils,

monocytes, and epithelial cells (6).

The activation of PRRs and their post-receptor sig-

naling can stimulate recruitment of the so-called in-

flammasome complexes (1, 3, 6�15). Inflammasome is

a relatively new concept introduced by Tschopp et al. in

2002 (7). Later, Tschopp also introduced the concept

of metabolic syndrome that senses metabolic stress and

contributes to the metabolic syndrome associated with

obesity and type 2 diabetes (16).

The aims of the present paper are to give a brief

description of inflammasome compositions and functions

and to systematically review how Porphyromonas gingivalis,

a putative keystone pathogen in chronic periodontitis (17),
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well known for its way to manipulate the innate immune

system (18), may carry out/modulate inflammasome

activation in chronic periodontitis and certain other

chronic systemic infections. The role of inflammasome

and danger molecule signaling in the oral cavity was

recently reviewed by Yilmaz and Lee (6).

Inflammasomes
Inflammasomes are multiprotein complexes localized

within the cytoplasm of the cell. They are engaged in

the maturation of pro-inflammatory cytokines such as

interleukin-1b (IL1-b) and interleukin-18 (IL-18) (19).

After infection or cellular stress, inflammasomes are

assembled, activated, and involved in host defense and

in the pathophysiology of diseases (20). Inflammasomes

follow canonical or non-canonical pathways. A typical

functional canonical inflammasome complex consists of

a nucleotide-binding leucine-rich repeat (NLR) protein,

an adaptor molecule apoptosis-associated speck-like

protein containing a caspase activation and recruitment

domain (ASC) and procaspase-1 (21). A typical non-

canonical inflammasome is the one activating caspase-11,

which so far is an understudied pro-inflammatory

caspase (22).

A unique scaffolding protein (NLR) dictates the for-

mation of inflammasomes. Mutations in members of the

NLR family have been linked to various inflammatory

diseases consistent with the fact that these molecules play

an important role in host�pathogen interactions and the

inflammatory response (23). Each inflammasome con-

tains a unique sensor protein of the NLR superfamily or

the PYRIN and HIN-200 domain-containing (PYHIN)

superfamily (10). In NLRs, signaling is exerted by cas-

pase activation and the so-called caspase activation and

recruitment domains (CARDs). These can recruit caspase-1

directly or by PYRIN domains recruiting caspase-1 via

the CARD-PYRIN-containing adaptor protein ASC (10).

The adaptor protein mediates a critical step in innate

immune signaling by bridging the interaction between

the pathogen recognition receptors and caspase-1 in

inflammasome complexes (24).

Inflammasomes have a critical role in initiating innate

immune responses, particularly by acting as platforms for

activation of the inflammatory caspase proteases. Among

these, caspase-1 initiates innate immune responses by

specifically cleaving of pro-IL-1b and pro-IL-18 and

mediates their maturations and release (10). These cyto-

kines promote recruitment of phagocytes, angiogenesis,

epithelial cell repair, and regulation of cytokines and

chemokine production by other immune cells at the site

of infection or injury (reviewed by Hao et al. (25)).

Inflammasomes also take part in the host defense

independent of their classic cytokine targets IL-1b and

IL-18.

Caspase-1 and 11 can start a rapid and inflammatory

form of cell death, the so-called pyroptosis. They are

distinct from caspases classically involved in apoptosis.

Pyroptosis, a program of cellular self-destruction that is

intrinsically inflammatory, results from osmotic pressure

created by caspase-1-dependent formation of membrane

pores (26, 27) and is associated with rapid release

of cytosolic contents. This process can restrict intracel-

lular replication of invasive bacterial pathogens (28) and

probably acts in synergy with the recruitment of neu-

trophils by IL-1b to restrict replication of bacteria

in vivo (10).

Inflammasomes sense cellular integrity and tissue

health. When cell homeostasis is disrupted, inflammation

is caused by the release of cytokines. A large amount of

infectious and noxious insults can assemble these special

structures. Thus inflammasomes may have a role in

bacterial, parasitic, fungal, and viral infections (29).

Inflammasomes also sense products and endogenous

signals that indicate loss of cellular homeostasis (10, 15)

and can be active both in periodontitis and several

systemic diseases (6, 30).

Several distinct inflammasomes have currently been

described, each of which is activated by unique stimuli

(Fig. 1). Inflammasomes such as NLRP1 (nucleotide-

binding domain-like receptor protein) inflammasome1,

NLRP3, NLRP4, NLRP6, NLRP/NLRP12, and AIM2

(Absent In Melanoma 2) have been recognized acting in

the host defense against intracellularly invading patho-

gens. Some inflammasomes are particularly well char-

acterized for their role in bacterial recognition such as

NLRC4, NLRP3, and AIM2 (Fig. 1). Also there may be

more paths to IL-1b and IL-18 generation than via

caspase-1 (1). It is likely that other caspase-1-dependent

effector cytokines are produced by other proteases during

infection (31). Several pathogens have been found to

develop strategies to counteract inflammasomes (the

so-called pathogenic stealth mechanisms) (32). Thus,

Staphylococcus aureus can modify its cell wall peptido-

glycan to prevent degradation by lysozymes through

peptidoglycan O-acetyl transferase A which also strongly

suppresses inflammasome activation and inflammation

in vitro and in vivo (33).

While inflammasome activation is important to host

defense, excessive inflammasome activation can be detri-

mental to health. Inflammasome hyperactivation is re-

cently proposed to be the basis for autoinflammatory

disease pathogenesis, whereas inflammasome regulated

activity is central for appropriate host defense and protec-

tion from sepsis (16). Accordingly, there is need for a

balance between resolution of infection and excessive

inflammation (1). It should also be kept in mind that

several pathogenic bacteria, for example, Yersinia pestis,

Salmonella, and Listeria monocytogenes activate mul-

tiple inflammasomes demonstrating redundancy of
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2
(page number not for citation purpose)

Citation: Journal of Oral Microbiology 2016, 8: 30385 - http://dx.doi.org/10.3402/jom.v8.30385

http://www.journaloforalmicrobiology.net/index.php/jom/article/view/30385
http://dx.doi.org/10.3402/jom.v8.30385


inflammatory receptors in vitro and in vivo (34, 35). It is

also possible that several NLRs, AIM2s, and caspases

co-operate during infections (1), which may be necessary

for optimal responses to be obtained.

In inflammasome-mediated cytokine release, a multi-

step activation pathway is followed. First, there is an NF-

kB-dependent upregulation of the inactive pro-forms

of IL-1b and IL-18 and of some NLRs like NLRP3;

thereafter, activation of the NLR or AIM2, and inflam-

masome formation occurs (1). Some cells have simpler

activation pathways because they have higher basal levels

of the pro-forms of IL-1b and IL-18.

Interestingly, inflammasomes are also involved in the

homeostatic mutualism between host and commensals. In

the intestine, one inflammasome function is to control the

composition of the microbiota (36). The NLCP4 inflam-

masome, expressed by intestinal phagocytes in particular,

plays a major role to discriminate between commensal

and pathogenic microbes and initiate a harmful res-

ponse to the latter (37). Thus, inflammasomes may have a

variety of roles regulating homeostasis in the intestinal

tract and microbial ecology preventing the emergence of

pathobionts (25, 38). Inflammasome-deficient mice ex-

hibited an aberrant microbial community that triggered

an enhanced inflammatory reaction in the intestine (39).

This microbial dysbiosis affected the physiology and

pathophysiology both locally in the intestine and sys-

temically and might contribute to the pathogenesis of

intestinal bowel disease (10).

The NLRP3 inflammasome

NLRP3 is part of one of the best-studied inflammasome

complexes. It consists of the NLRP3 scaffold, the ASC

adaptor, and procaspase-1 (3). Two steps are required to

activate the NLRP3 inflammasome (25). The first step is

initiated by microbial ligands or endogenous cytokines

and is needed to induce upregulation of NLRP3 protein

expression (2, 40). NF-rB activation and reactive oxygen

species (ROS) are required for this step. The second step

is activation of NLRP3 by microbial stimuli or endo-

genous molecules (25). NLRP3 is activated by several

microbial-derived ligands, including toxins (20, 37). The

endogenous signals triggering NLRP3 activation include

the danger signal ATP, fatty acids, particulate matter,

necrosis, and necroptosis (reviewed by Hao et al. (25)).

Also K� efflux, lysosome function, endoplasmic reticu-

lum (ER) stress, intracellular calcium, ubiquitination,

microRNAs, and particularly ROS have been proposed

(reviewed by Abais et al. (19)) (Fig. 2). ROS may serve

a ‘kindling’ or triggering factor for activation of the

NLRP3 inflammasome as well as ‘bonfire’ or ‘effector’

molecules leading to pathological processes (19).

In monocytes and dendritic cells, TLR stimulation is

adequate to induce caspase-1 activation and IL-1b produc-

tion but not in macrophages (reviewed by Hao et al. (25)).

Fig. 1. Major inflammasomes with known stimulators. In NLPR1 muramyl dipeptide and Bacillus anthracis lethal toxin can

directly cause caspase-5 processing. NLRC4 activation is mostly related to components of Gram-negative bacteria. In AIM2,

double-stranded DNA (dsDNA) binds to the HIN200 domain and requires ASC for processing of caspase-1. Also, NLPR3

requires ASC and caspase-1. It is activated in response to both exogenous and endogenous danger signals. (From ref. 19 with

permission.)

Modulation of inflammasome activity

Citation: Journal of Oral Microbiology 2016, 8: 30385 - http://dx.doi.org/10.3402/jom.v8.30385 3
(page number not for citation purpose)

http://www.journaloforalmicrobiology.net/index.php/jom/article/view/30385
http://dx.doi.org/10.3402/jom.v8.30385


In human monocytes, TLR stimulation promotes extra-

cellular release of ATP which in turn stimulates the

purinergic receptor P2X7 needed for activation of the

NLRP3 inflammasome. In dendritic cells, however, NLRP3

activation is independent of P2X7 (41). This implies that

in some cell types TLR can activate the NLRP3 in-

flammasome independent of extracellular mediators such

as ATP. All NLRP3s have a unique sensor protein of the

NLR or the PYHIN superfamily. These proteins seem to

possess numerous mechanisms for sensing bacteria and

initiating immune mechanisms (10).

The AIM2 inflammasome

AIM2 is a cytosolic binding receptor for double-stranded

DNA (1). It is known to form an inflammasome and

activate caspase-1 when bacteria and viruses are present

(42�44). AIM2 consists of an N-terminal pyrin domain

and a C-terminal DNA-binding HIN200 domain. It is

the only known HIN200 domain-containing protein with

capacity to mature IL-1b and IL-18 through interactions

with ASC and caspase-1 (42). The AIM2 inflammasome

is particularly important in the defense against intracel-

lular bacterial and viral pathogens (43, 44).

Fig. 2. Activation of the NLRP3 inflammasome as a two-step mechanism. Primary signals come from activation of toll-like

receptors (TLRs) which are responsible for the upregulation of NLRP3 and pro-interleukin-1b (IL-1b) in an NF-kB-dependent

manner. Secondary signals come from several pathways: K� efflux via P2X7 receptor activation via ATPe coupling, endoplasmic

reticulum (ER) stress, mitochondrial dysfunction, NADPH oxidase, frustrated phagocytosis, and lysosomal rupture pathways. All

these primary and secondary signals converge in the production of reactive oxygen species (ROS). (From ref. 19 with permission.)
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P. gingivalis

Synergy

Several opportunistic pathogens have been shown to

develop different mechanisms to inhibit inflammasome

activation and function. Similarly, P. gingivalis, a proposed

keystone organism in chronic periodontitis (17), has been

found to manipulate innate immunity via a number of

mechanisms (18). This bacterium has been postulated to

suppress inflammasome activation as a mechanism for its

low immunostimulatory activity and pathogenic synergy

with other periodontal bacteria that are shown to be more

immunogenic (45). P. gingivalis can also suppress inflam-

masome activation by Fusobacterium nucleatum and this

may be a contribution from P. gingivalis to the synergy

between the two periodontal bacteria (46�49). This

specific inhibition appears to affect IL-1b and IL-18

processing and cell death in macrophages of both man

and mouse. While F. nucleatum activated IL-1b proces-

sing through the NLRP3 inflammasome, P. gingivalis�
mediated repression was not related to lowered levels of

inflammasome components (45). P. gingivalis infection

also influences endocytosis by preferentially suppressing

endocytic pathways toward inflammasome activation.

This represents a new mechanism of pathogen-mediated

inflammasome inhibition (45). It should also be noted

that although P. gingivalis inhibits an activation path-

way that can kill the microrganism; this may not be the

integral part of a general immune suppression strategy as

P. gingivalis harnesses acute sustained inflammation that

is relatively harmless to the bacterium. Indeed, period-

ontitis-associated bacteria could benefit from a nutrition-

ally favorable inflammatory environment created by P.

gingivalis (50).

Nucleoside-diphosphate kinase

P. gingivalis uses its extracellularly secreted nucleoside-

diphosphate kinase homologue (NDK) (51) to inhibit

innate immune responses due to stimulation by extracel-

lular ATP (ATPe) (52). ATPe acts as a danger signal that

can alert the immune system about a present infection.

ATPe binds to P2X7 receptors (see below) and activates an

inflammasome and caspase-1. Infection of gingival epithe-

lial cells (GECs) resulted in inhibition of ATP-induced

caspase-1 activation (52). ndk-deficient P. gingivalis was

less effective in limiting ATP-mediated caspase-1 activa-

tion and secretion of IL-1b from infected cells. NDK

therefore seems to play an important role in inhibiting

P2X7-dependent inflammasome activation. The conse-

quent inhibition of P2X7-mediated apoptosis and exten-

sion of the viability of GECs could make P. gingivalis

survive for extended periods of time in the gingival

epithelium and contribute to disease when other host and

bacterial factors participate in tissue destruction. NDK

also reduced ATPe-mediated plasma membrane permea-

bilization of host cells in a dose-dependent manner (53).

In GECs, NDK of P. gingivalis promoted intracellular

persistence by inhibiting ATP-induced ROS via P2X7

receptor/NADPH oxidase signaling (54). This implied

that GECs produced significant amounts of ROS in

response to ATPe and that this depended on P2X7-

signaling coupled with membrane-bound NADP oxidase

and the mitochondrial respiratory chain. This novel sig-

naling cascade may contribute to successful tissue per-

sistence of this major pathogen.

Also, the secreted multi-functional effector molecule,

NDK from P. gingivalis attenuated release of the high-

mobility group protein B1 (HMGB1) (52). HMGB1 is a

pro-inflammatory danger signal associated with chroma-

tin in healthy cells. Lack of NDK reduced significantly

the inhibition of ATP-dependent inflammasome activa-

tion and the release of pro-inflammatory cytokines in

GECs (52). The findings suggested that NDK could play

a significant role in the inhibition of P2X7 -dependent

inflammasome activation and HMGB1-release from

infected GECs.

The P2X7 and P2X4 receptors
The P2X7 purinergic cell surface receptor, which is

expressed on a variety of immune cells, including macro-

phages, functions as a second signal for assembly of the

NLRP3 inflammasome (55). Purinergic signaling is

essential for the release of IL-1b from cells infected

with P. gingivalis (56). In macrophages P2X7 has a dual

role, as it was critical not only for ATPe-induced IL-1b
secretion in vitro but also for intracellular pro-IL-1b
processing (57). These findings also applied to the in vivo

situation since the P2X7 receptor expression was upregu-

lated in a P. gingivalis oral infection model. Further, the

P2X7 receptor and NLRP3 transcription were found to

be modulated in human chronic periodontitis (57), sug-

gesting that the P2X7 receptor also has a role in period-

ontal immunopathogenesis. The ability of P. gingivalis to

modulate ATP-/P2X7-signaling, to secrete NDK during

infection in primary GECs, and its expression of other

virulence factors, for example, gingipains and fimbriae,

and promotion of peripheral artery disease (PAD) may

link this bacterium to periodontitis and other systemic

diseases such as rheumatoid arthritis, diabetes, obesity,

multiple sclerosis, and pancreatic and kidney diseases

(58, 59). Interestingly, gingipains may also affect inflam-

masome activation. Jung et al. (60) recently showed that

the simultaneous protease action of Kgp and Rgps atten-

uates the caspase-1 activating potential of P. gingivalis in

macrophages.

It is well known that infection of GECs with P.

gingivalis requires an exogenous danger signal such as

ATPe for activation of an inflammasome and caspase-1.

This again will induce secretion of IL-1b. Generation
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of ROS is also stimulated by ATPe. However, the

mechanism of ROS generation and the role of purinergic

receptors in inflammasome activation were not very clear

until Hung et al. (61) demonstrated that the purinergic

receptor P2X4 is assembled with P2X7 and its associated

pore, pannexin-1. ROS production was induced by ATPe

through a complex containing P2X4, P2X7, and pannexin-1.

The P2X7-mediated ROS production can activate the

NLPR3 inflammasome and caspase-1. Activation by

P2X4 alone induced generation of ROS but not inflam-

masome activation. Depletion or inhibition of P2X4,

P2X7, or the pannexin complex markedly blocked IL-1b
secretion in P. gingivalis-infected GECs after ATPe treat-

ment (61). Accordingly, ROS is produced by stimulation

of the P2X4/P2X7/pannexin-1 complex. This also means

that P2X4 acts as a positive regulator of inflammasome

activation during infection with P. gingivalis.

A2a adenosine receptor

Danger signals (DS) are molecules like adenosine that

exert extracellular signaling derived from autocrine and/

or paracrine secretions during inflammation and chronic

diseases. Adenosine, which is a metabolite of ATP, has

so far been little appreciated as a component of the innate

immune system (62). ATPe is produced through a num-

ber of enzymatic reactions in normal, stressed, or infected

tissues (63). It has recently been shown that P. gingivalis

can use A2A adenosine receptor�coupled DS adenosine

signaling as a means to proliferate and survive in primary

GECs, possibly by down-regulating the pro-inflammatory

response (62). P. gingivalis reduces extracellular nucleo-

tide concentrations of ATP and thereby acts as a gen-

erator of adenosine which stimulates the bacterium’s

growth in primary GECs. This may be another anti-

inflammatory immune response exerted by P. gingivalis to

promote its survival in the oral mucosa.

Phosphatidylserine

During Chlamydia infection of human epithelial, en-

dothelial, granulocyte, or monocytic cells, phosphatidyl-

serine (PS) is translocated from the inner to the outer

leaflet and becomes exposed to the external side of the

cell (64). PS exposure is an early marker of apoptosis

associated with pro-inflammatory triggering of comple-

ment activation (65, 66). Yilmaz et al. (67) found that P.

gingivalis after establishing itself in the nutritionally rich

cytosol of the host cell can protect the infected cell from

the host immune defense by reducing the inflammatory

response after inducing transient externalization of PS.

This would allow multiplication of P. gingivalis inside

cells while protecting them from cytotoxic reactions

of the immune system. It was also suggested that the

bacterium blocks mitochondrion-dependent apoptosis to

upkeep its intracellular lifestyle. This may permit success-

ful spreading of P. gingivalis to adjacent and deeper host

tissues.

Inflammasome activity in P. gingivalis�induced

periodontal disease and defense

GECs are important parts of the immune response to

periodontal bacteria. They express a functional NLRP3

inflammasome (68). Much higher levels of inflamma-

some components were found in the gingival tissues from

patients with chronic periodontitis than from healthy

controls (14). It therefore seems reasonable to consider

the inflammasome as an operational part of innate im-

munity against periodontitis.

While supragingival biofilm, causing gingivitis, in-

creased the expression of caspase-1, ASC, AIM2, IL-

1b, and IL-18 in gingival fibroblasts, subgingival biofilm,

promoting periodontitis, enhanced caspase-1, ASC,

AIM2, IL-1b, and IL-18 gene expression at lower

concentrations, followed by their downregulation at

higher concentrations (69). The authors proposed that

high concentrations of bacterial virulence factors in sites

with affluent immune mechanisms such as the biofilm-

tissue interface can down-regulate host defense barriers,

while the lower bacterial concentrations deeper in period-

ontal tissues can have a stimulatory effect on inflamma-

tory responses.

When using a 10-species subgingival biofilm with P.

gingivalis present, Belibasakis et al. (70) found a reduc-

tion in NLRP3 and IL-1b expression in human gingival

fibroblasts after challenge for 6 h. The AIM2 expression

was not affected. After exclusion of P. gingivalis from the

biofilm, a partial rescue of NLRP3 and IL-1b-expression

occurred. It was suggested that subgingival biofilms

down-regulate NLRP3 and IL-1b expression partly due

to P. gingivalis and that this dampening of the host innate

immune responses may favor persistence and survival of

biofilm species in periodontal tissues.

It has been recently shown that fimbriae of P. gingivalis

inhibit ATPe-induced IL-1b secretion through the

P2X7 receptor in macrophages (56). Ramos-Junior

et al. (57), however, found that NLRP3 is necessary for

ATPe-induced IL-1b secretion as well as for caspase-1

activation irrespective of P. gingivalis fimbriae. Although

IL-1b secretion from P. gingivalis�infected macrophages

depended on NLRP3, its adaptor protein ASC, or

caspase-1, the cleavage of intracellular IL-1b to the

mature form occurred independently of NLRP3, its

adaptor protein ASC, or caspase-1.

P. gingivalis dampened ATPe-induced IL-1b secretion

in macrophages by means of its fimbriae in a purinergic

P2X7 receptor-dependent manner (56). In this study,

the immune subversion of P. gingivalis was connected

with the ability of fimbriae to reduce ATPe-induced

macrophage secretion of IL-1b via P2X7 activation. The

authors held that this could be another molecular action

of subversion of the immune system by P. gingivalis.

In THP-1 (leukemic monocytic) cells, P. gingivalis�
induced IL-1b secretion and inflammatory cell death
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through activation of caspase-1 (14). IL-1b secretion and

pyroptic cell death required both NLRP3 and AIM2

inflammasome activation via TLR2 and TLR4 signaling.

The activation of the former was mediated by ATP

release, the P2X7 receptor, and lysosomal damage (14).

These authors also suggested that P. gingivalis�induced

NLRP3 activation depends on ATP release, K� efflux,

and cathepsin B.

Underacylated lipopolysaccharide

P. gingivalis can use lipid A phosphatase to alter the lipid

A composition of its lipopolysaccharide (LPS). This

organism may therefore modulate the immune response

by expressing an underacylated LPS (71�73). This LPS

could bind but not activate caspase-11 (human caspase-

4,5) which results in host cell lysis and reduces sur-

vival of bacteria (72, 74). Caspase-4 can be of specific

importance to mucosal immunity since caspase-4 expres-

sion level and ability to become activated as a response

to infection differ markedly from that of caspase-5.

Caspase-4 has been suggested to provide key non-

redundant discernment into rapid sensing and clearance

of bacteria at mucosal tissues (21).

Atherosclerosis

There is mounting evidence that P. gingivalis can invade

cardiovascular cells and tissues causing inflammation

(75). The NLRP3 inflammasome has been suggested to

have an important role in developing vascular inflam-

mation and atherosclerosis (76, 77). In hyperlipidemic

animals, P. gingivalis accelerated atherosclerosis (78). Wild-

type challenge of apolipoprotein E�deficient, sponta-

neously hyperlipidemic (Apoeshl) mice with P. gingivalis

increased IL-1b, IL-18, and TNF-a production in peri-

toneal macrophages and gingival or aortic gene expres-

sion of the NOD-like receptor family, NLRP3, IL-1b,

pro-IL-18 and pro-caspase-1 (78). Fimbriae were found to

bring increased tissue invasiveness and pro-inflammatory

ability to P. gingivalis. It was also demonstrated that

P. gingivalis activates innate immune cells through the

NLRP3 inflammasome compared with a KDP136 (gingipain-

null) or a KDP150 (FimA-deficient) mutant.

Inflammation-related induction of AIM2 in vascular

cells and atherosclerotic lesions has suggested a role for

AIM2 in vascular pathogenesis where increased AIM2

expression was seen around the necrotic core of athero-

sclerotic carotid lesions and in the vasa vasorum of

neovasculature of aortic aneurysms (79). The NLRP3

inflammasome and AIM2 may thus have important roles

in both P. gingivalis�induced periodontal disease and

atherosclerosis through sustained inflammation.

Recently, the CD36/scavenger receptor (SR)-B2 was sug-

gested to play a role at multiple points in P. gingivalis�
mediated enhanced atherosclerosis in a mouse model

(80). The study suggested that activation of the inflam-

masome by P. gingivalis is mediated by CD36/SR-B2 and

TLR2 which cause systemic release of pro-atherosclerotic

IL-1b and macrophage pyroptosis. Systemic IL-1b acti-

vates vascular macrophages naı̈ve to P. gingivalis to

secrete IL-1b and promotes CD36-mediated uptake of

oxLDL and increased formation of foam cells. The

presence of oxLDL could inhibit P. gingivalis/P. gingivalis

LPS-inflammasome activation and pyroptosis, which

would allow greater atherosclerotic plaque to develop.

TLR-CD36-/SR-B2-mediated IL-1b generation may thus

be important to increase atherosclerotic lesions. Of note

is also that cytoplasmic LPS sensing in human cells

activates the non-canonical caspase-4-dependent inflam-

masome. This is a new mechanism of inflammasome

activation where direct LPS-binding results in caspase

oligomerization and activation leading to induction of

IL-1b secretion and pyroptosis (81).

Alzheimer’s disease

P. gingivalis may be an important pathogen in Alzhei-

mer’s disease (AD) contributing to brain inflammation

(82). NLRP3 has been reported in microglial cells that

responded to infection and initiation of neuro-degeneration

in an Alzheimer’s disease model (83). Furthermore,

TLR2 and NLRP3 were recently found to co-operate to

recognize a functional bacterial amyloid, curli fibers, in

the plaques of brains in AD patients (84). Heneka et al.

(85) found a strongly activated caspase-1 expression in

human mild cognitive impairment and AD brains which

suggested a role for the inflammasome in brain degen-

erative disease. AD brain deposits activated the NLRP3

inflammasome in microglial cells in vitro and in vivo

which could lead to progression of AD (85�88). This

suggested a role for the inflammasome in this neurode-

generative disease.

Non-alcoholic steatohepatitis

P. gingivalis seems to be a critical risk factor for pro-

gression of non-alcoholic steatohepatitis (NASH) through

upregulation of the P. gingivalis-LPS-TLR2-pathway and

by stimulating inflammasomes (89). These authors found

that P. gingivalis exacerbated steatohepatitis induced by

diet via induction of inflammasomes and inflammatory

cytokines in the liver of mice. P. gingivalis was also

demonstrated for the first time in the liver of NASH

patients. It was suggested that dental infection with P.

gingivalis promotes progression of NASH.

Squamous cell carcinoma

A close association has been found between P. gingivalis

and squamous cell carcinoma (90). The fact that P.

gingivalis modulates ATP-/P2X7-signaling; secretes the

anti-apoptotic enzyme, NDK, during infection of primary

OECs; and expresses other virulence factors, such as

fimbriae, gingipains, and PAD, that may be potential

etiologic links to orodigestive cancers and other chronic

diseases (58, 59). Of note is also that IL-1b promotes
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malignant transformation of tumor aggressiveness in oral

cancer (91).

Rheumatoid arthritis

Periodontitis is more prevalent in patients with rheuma-

toid arthritis (RA) than in those without (92). RA is also

prevalent in patients with periodontitis (93). Besides,

there is improvement in RA after periodontal treatment

and in periodontitis after treatment of RA (94, 95).

Furthermore, DNA from a variety of oral bacteria,

including P. gingivalis, has been detected in synovial fluid

of active RA (96). Bostanci et al. (97) found a positive

correlation between NLRP3 and expression of IL-1b and

IL-18 in periodontitis, and upregulated levels of NLRP3,

AIM2, and caspase-1 have been detected in gingival

tissues of patients with periodontitis (14). Probably, P.

gingivalis manipulates the host inflammatory responses

to be able to survive and prevail within infected period-

ontal tissues (97), which it may achieve by limiting or

controlling the activation of the NLRP3 inflammasome.

It seems reasonable to expect similar effects in distant

sites, for example, in the joints of rheumatic patients

where P. gingivalis can be present.

Concluding remarks
Inflammasomes represent a relatively new concept in

innate immunity. There is great variation in inflamma-

somes and the mechanisms by which they detect and resist

pathogens. Many interactions between inflammasomes

and the innate immune system are still unknown. It is

becoming clear that the inflammasome and its constitu-

ents are likely crucial in the initiation of periodontal

disease and several chronic systemic diseases associated

with periodontitis. Nevertheless, it may be difficult to

intervene in inflammasome actions for the purpose of

treating disease since interfering with key parts in the

complex may have serious local and systemic effects. The

ubiquitous distribution and importance of inflammasome

activation in many peripheral processes adds to this

limitation. There are still not fully understood roles of all

players in the inflammasome complex where anti-inflam-

matory therapies might not be sufficient to treat the roots

of the disease. Knowledge about inflammasomes has

mainly been retrieved from murine systems. The applic-

ability of some of these results to human cells is unclear

because gene products differ between species, and the

specificity of ligands is not always conserved. P. gingivalis

has a number of ways for suppressing innate immunity

and inflammasome activity. Although this subversion

probably is important for periodontitis and some related

systemic diseases, it remains to see if other parts of the oral

microbiota can behave in a similar way and if this sub-

version can affect players other than F. nucleatum in the

dental biofilm. Efforts should also be made to see how

inflammasomes can affect the ecology of the dental plaque

microbiota.
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‘TRIGGER’) and ÖY acknowledges funding through a

NIDCR grant R01DE016593.

References

1. Vladimer GI, Marty-Roix R, Ghosh S, Weng D, Lien E.

Inflammasomes and host defenses against bacterial infections.

Curr Opin Microbiol 2013; 16: 23�31. doi: http://dx.doi.org/10.
1016/j.mib.2012.11008
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