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Analysis of population structure in natural populations using genetic data is a common practice in ecological and evolution-
ary studies. With large genomic data sets of populations now appearing more frequently across the taxonomic spectrum, it is
becoming increasingly possible to reveal many hierarchical levels of structure, including fine-scale genetic clusters. To an-
alyze these data sets, methods need to be appropriately suited to the challenges of extracting multilevel structure from
whole-genome data. Here, we present a network-based approach for constructing population structure representations
from genetic data. The use of community-detection algorithms from network theory generates a natural hierarchical per-
spective on the representation that the method produces. The method is computationally efficient, and it requires relatively
few assumptions regarding the biological processes that underlie the data. We show the approach by analyzing population
structure in the model plant species Arabidopsis thaliana and in human populations. These examples illustrate how network-
based approaches for population structure analysis are well-suited to extracting valuable ecological and evolutionary infor-

mation in the era of large genomic data sets.
[Supplemental material is available for this article.]

Population structure is ubiquitous in natural populations, and the
ability to detect it from information on genetic variation has been
instrumental to our understanding of evolution and ecology. By
studying population structure, researchers can investigate process-
es of gene flow and migration, quantify the evolutionary impacts
of fragmentation and movement barriers, inform decisions con-
cerning the conservation and management of populations, and in-
terpret selection signals found in genomic studies. Currently,
population structure analysis is an essential element in the toolkit
of evolutionary biologists, conservation biologists, and ecologists,
both for exploratory data analysis and for hypothesis testing
(Guillot et al. 2009; Allendorf et al. 2010; Novembre and Peter
2016).

As genome sequencing technology advances, large-scale
whole-genome sequencing is becoming possible not only for de-
scribing genetic variation among species, but also for reporting
similarities and differences among individuals within populations.
Data sets describing genome-wide sequence variation for multiple
conspecific individuals are emerging (e.g., Li et al. 2008; The 1000
Genomes Project Consortium 2015; The 1001 Genomes Consor-
tium 2016; Martin et al. 2018; Armstrong et al. 2019), and a surge
of whole-genome population data sets is expected in the coming
years. Whole-genome population structure analysis presents the
promise of high-resolution population structure inference, such
as multiple hierarchical levels and detection of fine-scale structure.
However, the era of large genomic data sets also introduces chal-
lenges for extracting and interpreting population structure at a ge-
nomic scale, as well as significant computational difficulties.

Methods such as F-statistics (Excoffier et al. 1992; Holsinger
and Weir 2009), principal components analysis (PCA) and other
representations of data sets using techniques of multivariate anal-
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ysis (Menozzi et al. 1978; Jombart et al. 2009), tree-based inference
(Bowcock et al. 1994; Pickrell and Pritchard 2012), and
STRUCTURE-like methods (Pritchard et al. 2000; Alexander et al.
2009), have been exceedingly successful in enabling inference of
population structure from genetic data. Each type of method has
distinctive features and disadvantages. F-statistics (e.g., Fst) are eas-
ily communicated summary statistics for measuring genetic differ-
entiation in hierarchically defined population structures, but they
require putative groupings of individuals before data analysis.
Multivariate analysis methods such as PCA do not require a prior
grouping of individuals into populations, but they do require visu-
al interpretation or post-analysis clustering to place individuals
into clusters, and they do not naturally represent hierarchical
structure. Tree-based hierarchical analyses depict evolutionary
relationships between individuals or putatively defined groups
(e.g., neighbor-joining, TreeMix) (Bowcock et al. 1994; Pickrell
and Pritchard 2012); a limitation is that rigid tree-based represen-
tations might poorly depict the data when evolution has been
particularly non-tree-like. STRUCTURE-like methods cluster indi-
viduals into groups based on a predefined model inherent to the
analysis. Like multivariate analyses, they have the feature that
they do not require prior assignment of individuals into groups,
and they have the limitation that a hierarchical representation is
not intrinsic to the approach. Multiple hierarchical levels can be
explored in STRUCTURE-like methods by repeatedly clustering in-
dividuals using models with different numbers of assumed clusters
or subsets of the data. Although hierarchical structure is often ob-
served, identification of multiple hierarchical levels depends on
the nature of the structure in the data and is not integral to the
method. We are unaware of any population structure inference
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Network-based population structure analysis

method that clusters individuals into groups without placing indi-
viduals into populations before the analysis, and that as a feature
intrinsic to the method detects and represents multiple hierarchi-
cal levels in a flexible form.

In recent years, network approaches have been introduced to
model and analyze population structure (Dyer and Nason 2004;
Rozenfeld et al. 2008; Greenbaum et al. 2016; Greenbaum and
Fefferman 2017; Han et al. 2017; Kuismin et al. 2017). In net-
work-based population structure inference, the genetic relation-
ships between individuals within the populations are formulated
as a network, incorporating the many complexities that result
from evolutionary processes in natural populations, with few
prior assumptions regarding the biological processes involved in
generating these relationships. The resulting mathematical con-
struct, the network, is then subjected to analyses developed in
network science (Newman 2010) to identify topological character-
istics that can be interpreted as population structure. Network ap-
proaches have shown promise in the detail with which population
structure can be described and in computational efficiency
(Greenbaum et al. 2016).

Here, we describe a network-based population structure infer-
ence approach that allows for efficient clustering of individuals
based on genetic information and that produces hierarchical pop-
ulation structure diagrams. Cluster representations containing
many clusters at different levels in a hierarchy can then assist in
evaluation and interpretation of the significance of the population
structure detected. We provide examples of analyses of population
structure in two large well-studied genomic data sets, Arabidopsis
thaliana (Durvasula et al. 2017) and humans (Li et al. 2008), em-
phasizing the applicability of our approach for studying ecology
and evolution.

Results

Detecting hierarchical population structure using networks

The problem of detecting population structure from genetic data
has a particular emphasis on the hierarchical nature of many nat-
ural population structures. To use networks to detect population
structure, we first formulate genotype data as a genetic-similarity
network, with individuals as nodes and inter-individual genetic
similarities as edges. To construct a genetic-similarity network,
we use a frequency-weighted allele-sharing similarity measure
(Greenbaum et al. 2016), with the weighting scheme designed to
increase the contribution assigned to shared rare alleles. Con-
structing pairwise genetic-similarity networks for large numbers
of loci is a computationally intensive process; however, it is also
highly parallelizable and can therefore be completed in reasonable
time with the readily available computation clusters available to-
day, even for whole-genome data sets (see “Computational effi-
ciency” in Methods).

In our approach, the problem of detecting population
structure—groups of individuals sharing common evolutionary
histories—is equated with the problem of detecting dense sub-
networks within the genetic-similarity network. In other words,
we identify groups of individuals that are highly interconnected.
In network science, such dense groups are termed “communities,”
and many community-detection methods have been developed in
recent years (Newman 2002, 2006; Fortunato 2010).

The genetic-similarity network summarizes genetic variation
from across the entire genome. However, the network is expected
to be extremely dense, with most pairs connected, because any two

individuals, even if belonging to distinct subpopulations, are ex-
pected to share some alleles inherited from distant common ances-
tors. This property adds much noise to any signal of structure,
potentially decreasing the ability to detect fine-scale structure. In
particular, fine-scale population structure is characterized by
smaller groups of individuals that share a more recent genetic his-
tory within the group than do larger groups representing coarser-
scale structure. Therefore, genetic similarity within fine-scale
clusters, which are expected to contain only strong genetic similar-
ities, is expected to be higher than that in coarser clusters, which
are expected to contain weaker but nontrivial network connec-
tions. Consequently, we explore population structure across
many hierarchical scales by iteratively pruning weak edges from
the network and applying community-detection procedures
(Fig. 1). By removing weak edges from a coarse cluster, the popula-
tion structure signals characteristic of fine-scale clusters within the
coarser cluster become distinguishable, and another hierarchical
level can be revealed. The resulting set of clusters can be described
as a tree-like hierarchy of nested clusters, which we term a “popu-
lation structure tree” (PST). In a PST, the root cluster contains all
individuals, the leaf clusters describe the finest-scale structure,
and the clusters represented by internal nodes describe intermedi-
ate levels of clustering (Fig. 1). The internal clusters overlap with
clusters emerging from them as “descendants,” whereas all the
leaf clusters are nonoverlapping. Note that in PSTs, no assump-
tions are made regarding the evolutionary processes that give rise
to the hierarchical structure, and the branches need not represent
groups that have evolved in isolation.

PST visualization

An important aspect of interpreting population structure analyses
is visualization of the outputs. We visualize population structure
on geographic maps using a coloring scheme designed to reflect
the topology of the inferred PST. We start with a color interval
(e.g., “rainbow colors”), and assign it to one of the clusters, which
becomes the root cluster for that coloring. Our coloring scheme
seeks to describe the topology of the branch connecting the select-
ed root cluster and the leaves. For the selected root cluster, each
daughter cluster—a cluster emerging from a parent cluster through
the edge-pruning and community-detection process—inherits an
equal fraction of the color interval, in no particular order. This pro-
cess of transmission of color intervals to daughter clusters is then
repeated until the leaves of the hierarchy are reached on all branch-
es. Each cluster is then assigned a color that corresponds to the
midpoint of its assigned color interval. The scheme results in a col-
oring of a branch of the PST, such that closer clusters in the hierar-
chy, within and between hierarchical levels, are assigned closer
colors on the initial color interval (for examples, see Figs. 2-5).

Once the clusters are assigned colors, each individual is as-
signed a color corresponding to the finest-scale cluster to which
it is assigned. On a geographic map of the region of interest,
each individual is placed in its geographic sampling position and
colored with its assigned color. This step results in a map reflecting
the topology of a particular branch of the PST. By selecting dif-
ferent root clusters and repeating the process, different geographic
regions and different levels of structure can be emphasized (e.g.,
Figs. 3, 5).

Population structure tree in Arabidopsis thaliana

Understanding the population structure of the model plant
species A. thaliana has been of great interest both for explaining
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lations are distinct from Eurasian popula-
tions (Durvasula et al. 2017). In North
America, the population has been found
to be relatively unstructured (Jorgensen
and Mauricio 2004; Hagmann et al.
2015; The 1001 Genomes Consortium
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2016).

Here, we analyzed worldwide popu-
lation structure of A. thaliana using our
network-based method, to better under-
stand hierarchical levels and fine-scale
structure in this model species. We stud-
ied 1135 individuals (accessions) from
Eurasia and North America (The 1001
Genomes Consortium 2016), and 79 in-
dividuals from Africa (Durvasula et al.
2017), with the combined data set con-
taining 1214 individuals and 2,367,560
SNPs.

We detected a highly hierarchical
population structure, with 247 (overlap-
ping) clusters overall and 96 fine-scale
(nonoverlapping) leaf clusters at the tips
of the hierarchy (Fig. 2A). The topology
of the inferred PST is highly unbalanced,
with one main branch consisting of a sin-
gle cluster (left main branch in Fig. 2A),
and the other main branch containing
246 clusters (right main branch in Fig.
2A). All individuals in the single-cluster
left main branch are from North America,

C Population structure
tree (PST)

(1)
@G

relationships.

patterns of natural variation and for correctly interpreting sig-
natures of selection and association inferred from genome-wide as-
sociation studies (Sharbel et al. 2000; Jorgensen and Mauricio 2004;
Nordborg et al. 2005; Bakker et al. 2006; Francois et al. 2008; Platt
et al. 2010; Provart et al. 2016; The 1001 Genomes Consortium
2016; Durvasula et al. 2017; Lee et al. 2017). Within Eurasia, popu-
lation structure has been characterized in one study by nine clusters
—the group of highly differentiated individuals found primarily in
theIberian Peninsula, and eight other clusters, broadly correspond-
ing to north Sweden, south Sweden, the Iberian Peninsula, Asia,
Germany, Italy/Balkans/Caucasus, west Europe, and central
Europe (The 1001 Genomes Consortium 2016). Recently, evidence
provided by samples from Africa has suggested that African popu-

Figure 1. Schematic representation of a network-based construction of a population structure tree
(PST) from genomic data. (A) For each SNP, an inter-individual genetic-similarity network (adjacency ma-
trix) is constructed using a frequency-weighted allele-sharing genetic-similarity measure (Equation 1). To
produce a genome-wide genetic-similarity matrix, the mean over all loci is taken. (B) Weak edges are
pruned from the matrix, by setting low matrix entries to 0 until a community structure emerges, as de-
tected using network community-detection algorithms. Each community (numbered submatrices) is
then analyzed independently in a similar manner. Notice that finer-scale clusters are characterized by
darker matrices, indicating structures characterized by higher genetic similarities. (C) The analysis is sum-
marized as a PST diagram, summarizing the hierarchical levels of population structure and their

representing 71% of the North American
sampled population (89 of 125). The
right main branch consists of two sub-
branches, one representing European
individuals (Fig. 2B) and the other repre-
senting African, Asian, and northern
Swedish individuals, and some Iberian
individuals designated as “relicts” by pre-
vious studies (Fig. 2C; The 1001 Genomes
Consortium 2016; Durvasula et al. 2017;
Lee et al. 2017). Population structure in
the primary European branch shows rela-
tively continuous genetic differentiation
over space, as evidenced by the fact that
geographically close samples are closely
positioned in the PST topology (Fig. 2B).
In the primarily non-European branch,
population structure is more discontinu-
ous geographically, with a large “gap” between the Asian, Iberian,
and northern Swedish branches (Fig. 2C). However, looking at fine-
scale population structure in Africa and Iberia (Fig. 3F,G) and in
Asia (Supplemental Fig. S1), population structure appears to be
more geographically continuous within these smaller branches.
Note that in north Sweden, the sampled area was too small to exam-
ine geographic patterns of differentiation within the region.

The separation, at a high hierarchical level, between the
European branch and the African, Asian, and northern Swedish
branches could reflect an ancestral split between these groups
(Durvasula et al. 2017), but how these spatially distant populations
are related, and why a geographic gap exists in the primarily non-
European branch, remain to be investigated. Alternatively, the
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Broad-scale population structure of A. thaliana. (A) The inferred population structure tree (PST). Each element in the hierarchy represents a

cluster of individuals, and each cluster contains those clusters below it in the hierarchy. The root element represents the entire sample of 1214 individuals.
In colored dashed lines, the main regions corresponding to sampling locations are indicated (with the labels defined post hoc). (B) Visualization of the
branch corresponding to most European sampling locations. Each cluster is assigned a color such that “closer” colors represent closer clusters in the
PST. On the map, each individual is placed at its sampling location and colored according to the finest-scale cluster to which it was assigned.
(C) Visualization of the branch corresponding to Africa, Asia, North Sweden, and some samples in the Iberian Peninsula.

split partitioning these three groups from the European group may
reflect strong genetic similarity within the European branch, rath-
er than genetic similarity between these three groups. Therefore,
further study of the population in north Sweden, and increased
geographic sampling in Africa and Asia, could help explain these
patterns (e.g., Hsu et al. 2019). The continuous differentiation,

across hierarchical scales, in the European branch accords with
past studies of this geographic region (Sharbel et al. 2000;
Nordborg et al. 2005; Francois et al. 2008; The 1001 Genomes
Consortium 2016).

Structure can also be ascertained at a very fine scale by exam-
ining branches close to the tips of the hierarchy. In the Iberian
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Figure 3. Fine-scale population structure of A. thaliana in the Iberian Peninsula and Morocco. On each map, a branch of the inferred PST from Figure 2 is
visualized. Adjacent to each map is the PST colored in the same manner as in the map. A-E show subbranches of the primarily European branch (blue branch
in Fig. 2A), and F and G show subbranches of the primarily non-European branch (orange branch in Fig. 2A). (A) Branch corresponding to most of the
Iberian population (Iberian Peninsula branch in Fig. 2B). (B) Branch corresponding to the western part of the Iberian Peninsula, with differentiation along
a north-south gradient. (C) Branch corresponding to the northeastern part of the peninsula, with differentiation along an east-west gradient. (D) Branch
corresponding to a small area in the center of the peninsula. () Branch corresponding to north Spain, with a differentiated subbranch along the northeast
coast. (F) Branch not belonging to the primary European branch in Figure 2A, corresponding to the Iberian Peninsula and Morocco. Population structure
extends on a north-south axis from Africa to Europe over the Strait of Gibraltar. (G) Branch corresponding to Morocco, showing fine-scale population struc-

ture in Morocco.

Peninsula, for example, genetic differentiation can be observed at
several scales (Fig. 3). At the broader scale (Fig. 3A), in the western
part of the peninsula, genetic differentiation is aligned along a
north-south gradient (Fig. 3B), whereas in the northeastern re-
gion, genetic differentiation more closely follows an east-west gra-
dient (Fig. 3C). Distinct groups, correlated with geography, can be
seen at fine spatial scales, such as along the northeastern coast (Fig.
3E), in the north (Fig. 3B), and in the central region (Fig. 3D). In
Morocco and the Iberian Peninsula, for those individuals belong-
ing to the primary non-European branch in Figure 2A, population
structure follows a north-south gradient, with clusters correspond-
ing to small and specific regions in Morocco (Fig. 3G) and to larger
regions in the Iberian Peninsula (Fig. 3F). In Asia, population struc-
ture corresponds to broad regions (e.g., Altai Mountains, central
Asia, Ural Mountains), but finer-scale patterns are also observed
within these regions (Supplemental Fig. S1).

The formation of such small-scale structure might be attribut-
able to small-scale landscape barriers and resistance to gene flow,
but also to adaptation of A. thaliana to specific local conditions
(Li et al. 2010; Fournier-Level et al. 2011; Horton et al. 2012). For
example, the branch corresponding to the coastal population in
northeastern Spain has been suggested to be locally adapted to
high salinity (Busoms et al. 2015). Selective sweeps suggesting sig-
nificant local adaptation have also been reported for the popula-
tion in north Sweden (Long et al. 2013; Huber et al. 2014). Such
events could have led to decreased fitness of hybrids and decreases
in effective migration, intensifying the differentiation of this pop-
ulation. This phenomenon could perhaps contribute to explain-
ing the nonintuitive placement of north Sweden in the PST,
separate from most European samples (Fig. 2C).

The single cluster associated with North America represents
most of the samples from that region. This lack of structure, which
accords with previous studies (Jergensen and Mauricio 2004; Platt
et al. 2010; Hagmann et al. 2015), could result from a founder ef-
fect followed by rapid expansion, producing a fairly homogeneous
but widespread population (Platt et al. 2010). However, 29% of the
North American samples are clustered within the European
branch: 20 in a UK/France cluster, 14 in a Central European cluster,
and two in a south Sweden/north-Europe cluster (Supplemental
Fig. S2). These samples include five of the six individuals sampled
along the western coast of North America. The clustering of North
America individuals in European clusters suggests a history more
complex than a single colonization event. Most individuals per-
haps descend from a founder population in the eastern United
States (Sharbel et al. 2000; Jorgensen and Mauricio 2004), but oth-
er migration events, possibly from western European sources,
might also have contributed to the population.

Population structure tree in humans

The Human Genome Diversity Project (HGDP), in collaboration
with Centre Etude Polymorphism Humain (CEPH), has collected
genomic samples from 52 human populations from across the
world, which is referred to as the “HGDP-CEPH Human Genome
Diversity Cell Line Panel” (Cann et al. 2002; Cavalli-Sforza 2005).
This set of populations is particularly well-suited as an example,
becauseit has served as a test set for a variety of population structure
methods (Corander et al. 2004, 2008; Corander and Marttinen
2006; Francois et al. 2006; Patterson et al. 2006; Nievergelt et al.
2007; Hubisz et al. 2009; Shringarpure and Xing 2009; Jombart
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Figure4. Population structure tree in humans. Closer colors represent closer clusters on the PST. (A) Main branches corresponding to continental groups
have been labeled based on assignment of individuals in the branches to population groups (labels defined post hoc). Maya and Pima individuals are found
in two subgroups, one within the Americas branch and one outside it. (B) Fine-scale structure revealed by the PST. Clusters or cluster groups in which a
majority (>50%) of individuals have a particular label or labels are circled and marked with the corresponding group labels. Under each label, detailed as-
signments are given in the format x/y(z%): (x) number of individuals with the marked label assigned to the cluster group; (y) number of individuals in the
data set with that label; (z) proportion of individuals with the marked labels among all individuals assigned to the cluster group. In the case of cluster groups
with more than one hierarchical level, the detailed assignments refer to the cluster at the highest hierarchical level in the cluster group. For non-leaf cluster
groups (marked with *), the proportion z is taken among all individuals in the cluster group, omitting all individuals in all descendant clusters assigned a
label different from the label of the cluster group. Labels in bold indicate clusters or cluster groups (not considering omitted individuals, if relevant) that

contain only individuals that have the marked labels (i.e., z=100%).

et al. 2010; Lawson and Falush 2012; Lawson et al. 2012; Pickrell
and Pritchard 2012; San Lucas et al. 2012; Loh et al. 2013; Frichot
et al. 2014; Raj et al. 2014; Gopalan et al. 2016; Granot et al. 2016;
Haoetal. 2016; Hunley et al. 2016; Zheng and Weir 2016). We gen-
erated a PST from 938 HGDP individuals, typed at 647,976 SNPs.
The PST consists of 108 clusters overall, and 57 leaf clusters
(Fig. 4). The main branches of the PST correspond to continen-
tal-level patterns of human groups, such as sub-Saharan Africa,
east Asia, and the Americas (Fig. 4A), recapitulating structure ob-
served with other methods in these samples (Rosenberg et al.
2002; Jakobsson et al. 2008; Li et al. 2008). Several populations, in-
cluding Cambodians, Melanesians, Papuans, and Yakut, are not
placed within any main continental branch (Fig. 4B). These posi-
tionings highlight persistent variability in the placement of these

populations; the Oceanians and the Yakut population generally
emerge as clusters in detailed analyses, but they have variable
placement in relation to the largest clusters in analyses with lower
clustering resolution.

Two Native American groups, Maya and Pima, are split into
two positions in the PST—one within the branch corresponding
to the Americas (four Maya and eight Pima individuals) (Fig. 4B),
and one outside any main continental group (14 Maya and six
Pima individuals) (Fig. 4B). This pattern may reflect previous
observations of apparent admixture in the Maya sample, with pos-
sible genetic contributions from east Asian and European popula-
tions (e.g., Rosenberg et al. 2002; Pickrell and Pritchard 2012). The
Pima sample has not previously been detected as an intercontinen-
tally admixed group; because our analysis is based on genetic
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Fine-scale human population structure. Shown is a visualization of the PST on a world map. Each open circle corresponds to one of the 52

groups of the HGDP data set; group coordinates from Rosenberg (2011) were used, but adjusted such that circles do not overlap (for group labels, see
Supplemental Fig. $3). Individuals were positioned randomly within their corresponding circles and colored according to the finest-scale cluster to which
they were assigned. To illustrate fine-scale structure at a local level, a variety of regions are shown in detail. (A) World map, with colors corresponding the
coloring of the entire PST, as in Figure 4. (B) Branch corresponding to Europe. (C) Branch corresponding to the Mediterranean region. (D) Branch corre-
sponding to northern China. (E) Branch corresponding to Japan and central and southern China. (F) Branch corresponding to central and southern China.
(G) Branch corresponding to Balochi, Brahui, and Makrani groups. (H) Branch corresponding to Burusho, Kalash, Pathan, and Sindhi groups. (/) Branch
corresponding to sub-Saharan Africa. In each inset, the branch has been re-colored according to an automatic coloring scheme, which assigns closer colors
to clusters positioned closer in the PST, except in Band G, where each cluster was assigned a color manually, irrespective of positioning in the PST.

similarity between individuals, and because the Maya and Pima
groups are genetically similar, the clustering of six Pima individu-
als outside the main branch of the Americas might reflect their
similarity to admixed Maya individuals, rather than admixture
in the Pima themselves.

The PST reveals fine-scale structure, which generally agrees
with previous analyses, but in some cases provides finer details
(Fig. 5A). Most groups can be associated with a single cluster or a
small cluster group in the PST (Fig. 4B). Detailed previous analyses
of the HGDP sample have been able to clearly separate groups par-
ticularly in the Americas and the Middle East, and to some extent in
sub-Saharan Africa (Jakobsson et al. 2008; Li et al. 2008). These
groups are also clearly separated in the PST (Figs. 4B, 5C,I). Fine-
scale structure has been more difficult to resolve in central/south
Asia, east Asia, Europe, and in some sub-Saharan African popula-

tions. Our network-based approach is able to identify finer-scale
structure for many groups in these regions. In central and western
Africa, Biaka, Mandenka, Mbuti, and Yoruba are each clustered to a
different leaf cluster, with each cluster consisting of individuals
from a single group (Figs. 4B, 5I). In Europe, we identified two Or-
cadian leaf clusters, containing all individuals from that group,
and a leaf cluster consisting of a subset of Basque individuals (Fig.
4B). At higher hierarchical levels, we identified a Basque and French
cluster (Figs. 4B, 5B). In central/south Asia, we identified leaf clus-
ters corresponding to many of the groups in the HGDP: Balochi,
Brahui, Burusho, Hazara, Kalash, and Makrani (Fig. 4B).

Non-leaf clusters also inform population structure, with clus-
ters corresponding to a Hazara and Uygur group; a Pathan and
Sindhi group; a Balochi, Brahui, and Makrani group; and a
Burusho, Kalash, Pathan, and Sindhi group (Figs. 4B, 5G,H). In
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east Asia, three northern Chinese groups are separated in the PST,
and the Hezhen and Orogen groups are each assigned a leaf cluster
(Figs. 4B, 5D). The Japanese, Lahu, and Yi groups are also clearly sep-
arated, and each is assigned a leaf cluster (Figs. 4B, SE). A cluster of
groups from China is separated into six clusters: Dai, Miao,
She and three clusters containing Han and Tujia individuals (Figs.
4B, 5F).

Because our coloring scheme differentiates between individu-
als assigned to leaf clusters and those that are not, it aids in observ-
ing groups that are not grouped exclusively in a leaf cluster. For
example, in the branch corresponding to northern China, eight
of the nine Daur individuals are assigned to a non-leaf cluster,
but not to the leaf clusters below it, whereas the Hezhen and
Orogen individuals are assigned to leaf clusters. Therefore, al-
though the Daur group is not characterized by any exclusive leaf
cluster, it can be visually differentiated from the other two popula-
tions in Figure 5D. Similarly, by subtracting individuals from leaf
clusters, an Italian and Tuscan grouping can be observed in
Figure 5B, and a Bantu (Kenya and southern Africa) grouping
can be observed in Figure 5I, although individuals from those
groups are not a majority in any specific cluster.

Comparing population structure trees

Large genomic data sets provide opportunities to conduct subsam-
pling analyses on the same data set, for example, to investigate pop-
ulation structure inferred from different genomic regions, or to
study the effect of different genome sequencing schemes. To inter-
pret such subsampling analyses, a coherent method for comparing
population structure outputs is needed. We therefore developed an
approach to compare different PSTs derived from the same data set.

The approach is based on normalized mutual information
(NMI), an information-theoretic measure that evaluates, for a
pair of variables, the amount of information gained about a vari-
able by observing a second variable. This measure can be adjusted
to apply to a set of hierarchical sets of clusters (Lancichinetti et al.
2009), such as PSTs. Given two PSTs derived from the same set of
individuals but not necessarily from the same similarity matrix,
the measure produces a score that ranges from O to 1, in which
higher scores indicate greater similarity between the PSTs (for de-
tails, see Methods). Notably, two PSTs might differ both in the to-
pological ordering of the clusters in the tree and in the assignment

of individuals to clusters, but they are still comparable using the
NMI measure.

Our implementation of the NMI measure is flexible in the
sense that it is possible to conduct comparisons not only between
two PSTs, but also between subsets of the PSTs. This type of com-
parison enables a focus on comparing certain features of the
PSTs. For example, the approach can compare specific branches
of interest, or only fine-scale leaf clusters, by considering in the
NMI comparisons only specified subsets of clusters (see Methods;
Supplemental Information).

Information gain by increased SNP coverage

We estimated the effect of increasing the number of loci used in
the inference of PSTs by comparing the PST inferred from an entire
data set with PSTs inferred from subsamples of the data set, using
the information-theoretic NMI measure. This step was accom-
plished by evaluating NMI between PSTs, one inferred from the
full data set (Figs. 2, 4), and one inferred from a subsample of the
data. We also computed NMI for fine-scale structure by examining
only the leaves of the hierarchies. For this purpose, without con-
sidering SNP positions, we randomly subsampled all SNPs to pro-
duce subsets of 0%-98% of the original data set, in increments
of 2%. For each frequency value, 100 random subsamples were tak-
en, and from each of these subsamples, a PST was inferred and
compared to the full-data PST.

The results (Fig. 6) indicate that information gain is rapid for
the first 50,000 SNPs, in both the A. thaliana and human data
sets. In A. thaliana, further SNP coverage results in only modest in-
formation gain, suggesting that most population structure is re-
vealed in this data set using about 100,000 SNPs (Fig. 6A). For the
human data set, more information was gained as SNP coverage con-
tinued to increase (Fig. 6B). These results, particularly for the A.
thaliana data set, are consistent with previous studies on lower-den-
sity genetic data that have shown that the resolution of population
structure detected tends to saturate when enough loci are included
in the analysis (e.g., Manel et al. 2002; Turakulov and Easteal 2003;
Rosenberg et al. 2005; Morin et al. 2009; Haasl and Payseur 2011;
Bryc et al. 2013); however, for the human data set, information
gain is not saturated even with several hundred thousand SNPs.
In both data sets, with increased SNP coverage, more information
is gained regarding fine-scale structure than about coarse-scale
structure. For example, increasing the
number of SNPs from 10% of the data
set (236,756 SNPs for A. thaliana and
64,797 SNPs for humans) to 90% SNP
coverage (2,130,804 SNPs for A. thaliana
and 583,173 SNPs for humans), increases
NMI by 3.7% for A. thaliana and 23.7%
for humans when considering the entire
PST, whereas the increase is larger when
considering the finest-scale clustering at
the PST leaves, with NMI increases of
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11.1% for A. thaliana and 77.1% for hu-
mans (Fig. 6).

Figure 6. Normalized mutual information (NMI) between the PST inferred using the entire genome

and PSTs inferred from subsampled fractions of the genome. The NMI values evaluate the amount of in-
formation gained on hierarchical population structure by sampling a fraction of the data set. The mean

Discussion

NMI across 100 random subsamples for each SNP coverage value considering the entire PST topology is

shown in purple; mean NMI considering only the finest-scale leaf clusters is shown in orange. Shaded
regions show standard deviations across 100 sampling replicates. (A) A. thaliana data set. Inset shows

Population structure inference using
networks

NMI for subsamples below 200,000 SNPs. (B) Human data set. NMI values saturate at values below 1

because cluster assignments often switch at fine scales (e.g., between PST leaves) when PSTs are inferred

from subsampled data.

The evolutionary processes shaping
genetic variation are often complex,
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occurring at multiple spatial levels and over multiple time
periods. Network-based methods are well-suited for population
structure inference because they enable a natural hierarchical
perspective. Our approach is data-driven and does not require as-
sumptions or prespecified models regarding the biological process-
es responsible for shaping the genetic patterns. The visualization
technique presented here, with PST diagrams and corresponding
map colorings, is useful for summarizing information on popula-
tion structure while preserving information at both broad and
fine scales.

We showed the applicability of the NMI measure for compar-
ing PSTs to understand the information gained by an increased
number of genetic markers. This measure can also be useful for
other types of analyses, such as for comparing PSTs inferred from
different genomic regions or different types of genetic markers.

Comparison to other approaches

In Table 1, we summarize the features of our network approach in
relation to those of popular classes of population structure infer-
ence approaches.

The network-based approach, unlike F-statistics or some com-
monly used tree-based methods, does not require an assumption
of putative populations, and it clusters individuals into groups in
a data-driven manner. Unlike in multivariate analysis methods
such as PCA, in the network method, clustering is naturally
conducted using community-detection procedures. Unlike in
STRUCTURE-like methods, the PST generated by the network
method depicts hierarchical levels of structure without the need
to predefine the number of clusters or to run the analysis at differ-
ent values for this quantity. Detection of multiple hierarchical lev-
els of structure is integral to the network approach, without
assumptions on the number of clusters, the hierarchical topology
of population structure, or putative groupings of individuals; all
these characteristics are generated from the data. Such features of
the method are beneficial particularly when little information is
available for specifying models or for defining putative groups,
and when the hierarchical level of interest is unclear.

We showed the features of our approach in two data sets. In
our application to A. thaliana and humans, the PSTs distinguish
between groups on a fine scale. The method uncovers clusters
that have not been straightforward to distinguish in PCA or
STRUCTURE-like analyses in previous studies (Li et al. 2008;
Durvasula et al. 2017).

Ideally, inference of population structure should be conducted
using more than one approach, toshow robustness and to capitalize
on the different features of the different approaches (Table 1). For
example, in some cases, we observe in a PST a split between a large
group and several smaller groups. These splits are sometimes
difficult to interpret, because it is unclear whether they represent
genetic similarity between the smaller groups, or strong genetic
similarity between individuals in the larger group. For example,
the A. thaliana split between a branch with African/Asian/north
Sweden groups and alarge European branch (Fig. 2), and the human
split between the Oceanian/Cambodian/Yakut/North American
groups and a large mainly Eurasian branch (Fig. 4A), might be driv-
en by genetic similarities between the groupsin the same finer-scale
branch, or by strong between-individual genetic similarities in
the coarser branch. The distinction of these two scenarios can be ex-
amined by leveraging advantages of different classes of methods.
For example, once clusters and groups of interest have been ascer-
tained by an approach that does not require definition of putative
populations, genetic similarities between the identified groups
can be computed using methods that rely on putative group assign-
ments (Table 1); network methods can also aid in investigating the
cohesiveness of different clusters, for example, using strength-of-
association distribution (SAD) analysis (Greenbaum et al. 2016).

We have presented a network-based approach for revealing
population structure at multiple hierarchical levels. This structure
is summarized in a novel form, the PST, and can be visualized on
geographic maps. The method is applicable to whole-genome
data. The approach is data-driven and computationally efficient,
allowing analysis of large genomic data sets. Our method for com-
paring PSTs using the NMI measure is potentially useful for con-
ducting studies that investigate population structure inferred
from subsamples of the data.

Table 1. Comparison of features of selected population structure inference approaches representing the major families of methods

Putative Clustering of Hierarchical Requires
predefinition of  individuals into representation of predefinition of
groups used in groups integral population structure biological

Inference approach Reference analysis? to method? integral to method? model?
F-statistics (e.g., Fst) Excoffier et al. (1992); Yes No Yes Yes
Holsinger and Weir (2009)
Dimension reduction Menozzi et al. (1978); No No, but possible ~ No No
visualization Jombart et al. (2009) with post-
(e.g., PCA, MDS, UMAP) analysis
methods, e.g.,
K-means
Tree-based (e.g., TreeMix) Pickrell and Pritchard (2012) Yes No Yes Yes
Tree-based (e.g., Neighbor- Bowcock et al. (1994) No No Yes No
joining)
Model-based (e.g., Pritchard et al. (2000); No (optional) Yes No, but multiple models Yes
STRUCTURE, ADMIXTURE) Alexander et al. (2009) with different
numbers of clusters
can inform
hierarchical structure
Network-based This paper No Yes Yes No

(NetStruct_Hierarchy)
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Methods

Constructing genetic-similarity networks

The first step of network-based population structure detection is to
use genomic data to generate a genetic-similarity network, with in-
dividuals treated as nodes and inter-individual genetic similarities as
edges (Fig. 1). Here, we use a frequency-weighted allele-sharing sim-
ilarity measure. Allele-sharing measures count the number of shared
alleles between each pair of individuals over all loci. Because indi-
viduals that share rare alleles are more likely to belong to the same
subpopulation than are those that share common alleles, we assign
more weight to shared rare alleles than to shared common alleles.
There are different ways to design weighting schemes to generate ge-
netic-similarity networks (Greenbaum et al. 2016); here, we adopt a
linear weighting scheme for its simplicity, but this weighting
scheme can in principle be replaced by other weighting schemes
if there is reason to tailor weights such that different weights are as-
signed to different allele frequency classes.

Considering a locus ¢, for individual i with alleles a and b and
individual j with alleles ¢ and d, the frequency-weighted allele-
sharing similarity is defined as follows (Greenbaum et al. 2016):

Ao = 310 = f)ac + Taa) + (0~ )l + o), i)
where I, = 1if x and y are identical and I,, = 0 otherwise, and f, and
f» are the frequencies of alleles a and b in the entire sample. The ge-
netic-similarity edge connecting individuals i and j is weighted by
the mean genetic similarity over all L loci available for this pair of
individuals, A; = (1/L) ), Ajj.. When some data are missing, A;; is
computed based on all those loci for which both individuals i and j
are scored. This measure is symmetric (4;=A;;) and defines an in-
ter-individual genetic-similarity network, where A;; is the adjacen-
cy matrix of the network.

Community detection

By a subpopulation in a structured population, we mean a group of
individuals that share a common genetic history, and that are
therefore more related to one another on average than they are to
individuals outside the group. Individuals are then expected to
share more genetic-similarity edges within subpopulations than
between subpopulations. In network science, groups of nodes
that are strongly connected within the group, forming dense sub-
networks, are termed “communities” (Newman 2002). By detect-
ing the community structure of genetic-similarity networks, the
genetic population structure can be revealed (Greenbaum et al.
2016).

Many algorithms for community detection have been devel-
oped, including for weighted networks for which weights are as-
signed to the edges (Fortunato 2010; Yang et al. 2016). Many of
these methods are based on a quality function that evaluates com-
munity partitions and that is termed “modularity” (Newman
2006). This function, given a network and a partition of the net-
work, returns a value between —1 and 1. Modularity is computed
by analytically comparing the intra-community densities of a par-
tition of the network with the expectation of intra-community
densities over an implicit distribution of “random networks”
that preserve the node-weighted degrees (Newman 2006;
Greenbaum et al. 2016, Eq. 1). Therefore, high modularity scores
reflect a community partition in which within-community con-
nections are more frequent and more highly weighted than would
be expected in a random network with the same degree distribu-
tion. Many community-detection algorithms aim to efficiently
identify a community partition that maximizes the modularity
score. Here, we use a particularly time-efficient weighted commu-

nity-detection method, the Louvain method (Blondel et al. 2008),
which attempts to maximize modularity through a greedy search
using a deterministic iterative process.

Edge pruning

In structured populations, genetic variants are more likely to be
shared within subpopulations than between subpopulations.
Different genetic processes might have occurred over different spa-
tial scales, either at different points in time or simultaneously, and
therefore, the genetic signature is a complex aggregate of structure
at several scales. Fine-scale population structure is characterized by
groups of individuals that are strongly related and that therefore
are expected to be represented in subnetworks that contain only
the strongest genetic-similarity edges. Coarse-scale population
structure, in contrast, is characterized by both strong and weak ge-
netic similarities.

To detect population structure at multiple hierarchical levels,
we perform an iterative edge-pruning process, in which we sequen-
tially remove edges below a genetic-similarity threshold. Here, we
start at threshold O (i.e., all edges are included), and calculate the
community structure. If only a single community is detected (no
community structure), then we increment the threshold, remove
the edges below the threshold, and again apply community detec-
tion. Once community structure is detected, the network is split,
and the process is repeated for each community independently.
This process of subdividing communities forms a PST, where clus-
ters closer to the root represent coarse-scale structure and clusters
at the leaves represent fine-scale structure.

We selected a threshold increment of 10~ for the analysis of
the A. thaliana data set and 1072 for the human data set, such that
the final output, the PST, does not substantially change with each
increment. For other data sets, we recommend inspecting the typ-
ical differences between the sorted weights of the edges, selecting a
threshold larger than the typical gaps between consecutive edge
weights, and testing several threshold increments, at different or-
ders of magnitudes, to identify stable outputs. Higher threshold in-
crements are expected to result in fewer hierarchical levels in the
PST, because removal of many edges between applications of the
community-detection procedure may result in hierarchical levels
being skipped over.

The PST generated in this way is entirely data driven, with the
number of fine-scale and coarse-scale clusters determined only
from the genetic data. Note that the population structure could in-
clude small clusters containing relatively few individuals. In some
cases, even clusters containing only a few individuals might be in-
formative, because they might represent sparsely sampled popula-
tion fragments or familial groups. In other cases, such small groups
may not be of interest. We therefore impose a condition on the
process by specifying the minimum number of individuals in a
cluster, so that communities below that size are not considered
clusters and do not induce a splitin the PST. Because large genomic
data sets can potentially generate a fine-scale level of structure, we
kept these minimum sizes small and ignored clusters smaller than
five individuals for both data sets. In other data sets, keeping small
clusters may reveal fine-scale structure, but this high-resolution
structure could be less reliable because of potentially nonrepresen-
tative individuals; we recommend testing several minimum cluster
sizes and keeping in mind the minimal group sizes for which
meaningful interpretation can be given (e.g., the smallest prede-
fined group in the human data set includes five individuals).

Generating geographical PST maps

We use a coloring scheme to visualize population structure. This
scheme represents fine-scale structure while accounting for the
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hierarchical topology of population structure, and it allows
identification of relevant differentiation patterns (Figs. 2-95).
For each coloring, we select a root cluster from the PST. This
cluster defines the scale and focus of the coloring; the coloring is
intended to visualize the branch leading from this root cluster to
the leaves.

We start with an interval [0, 1] representing a color gradient.
Here, we use the “Rainbow” color gradient, with each number in
the interval representing a color on the gradient; see Supplemental
Figure S4 for an explicit representation of this color scheme func-
tion. We assign the starting interval to the root cluster. We then
evenly split the interval among all immediate daughter clusters
of the selected root cluster. We repeat this process, so that in
each step, a subinterval of the parental interval is inherited by
daughter clusters. In other words, if a cluster C is assigned the in-
terval [a, b], and it has n daughter clusters Cy, ...,C,, then the
daughter cluster C; is assigned the interval

[a_i_(b—a)(i—l)’a_i_(b—a)i]
n n

This method assigns smaller intervals to clusters as we ad-
vance toward the leaves.

The process is terminated when leaves have been reached on
all subbranches. We then assign a single color to each cluster, by
taking the color associated with the midpoint of the interval as-
signed to that cluster. In other words, if cluster Cis assigned the in-
terval [d, e], then C is assigned the color corresponding to (d+e)/2.
In this way, fine-scale clusters that are far from the root cluster and
that share a common parent cluster one level above will tend to be
assigned “closer” colors than will clusters that share a parent clus-
ter nearer to the root cluster.

Each individual can be assigned to multiple clusters in differ-
ent hierarchical levels, and we assign a color to an individual based
on the finest-scale cluster to which it is assigned (i.e., the cluster
closest to a leaf). This color assignment of individuals is then
used for plotting geographic maps, so that for each individual, a
point is plotted at its sampling location, colored in its assigned
color.

In this way, the many fine-scale clusters that are detected in
large genomic data sets can be represented simultaneously, while
allowing the broader genetic patterns to be clear on each map
and at each scale by the coloring scheme. For example, although
Figures 2 and 3 use many colors, some of which are visually indis-
tinguishable, the broad patterns of genetic differentiation can be
easily comprehended. When structure at a fine scale is of interest,
the coloring scheme can be repeated while selecting different root
clusters, thus focusing on different subbranches of the PST. This
method makes it possible to rescale the coloring scheme to the ap-
propriate geographic scale, and finer-resolution genetic differenti-
ation patterns become apparent (e.g., Fig. 3). A caveat of our
coloring scheme is that when the number of daughter nodes is
odd, one of the daughter nodes and the parent node are assigned
the same color; this may limit visual interpretation, particularly
when a parent cluster and its daughter clusters are visualized
near the leaves of the tree. In such cases, we suggest assigning col-
ors manually (e.g., Fig. 5B,G). It is important to note that the PST
holds information on all hierarchical levels; the coloring strategy
we suggest only aids with visualizing the relationship of genetic
differentiation patterns to geography.

All maps were plotted using Mathematica GeoGraphics (www
.wolfram.com/mathematica), which imports maps from Wolfram|
Alpha (www.wolframalpha.com).

Preprocessing of the data sets

For A. thaliana, we used data from the 1001 Genomes project, ex-
tracted from www.mpipz.mpg.de/hancock/downloads, which
stores a unified data set of the 1001 Genomes database (also found
at 1001genomes.org) and the data from Durvasula et al. (2017).
The data set includes whole-genome SNP data of 1135 A. thaliana
diploid individuals (accessions) from Eurasia and North America
(The 1001 Genomes Consortium 2016), and data from
Durvasula et al. (2017) on 79 individuals from Africa. For the com-
bined data set of 1214 individuals, we considered only biallelic
SNPs, and filtering included removal of all SNPs with more than
10% missing data and all SNPs with minor allele frequencies
<0.01. After filtering, the combined data set included 1214 individ-
uals and 2,367,560 SNPs. Geographic locations of the A. thaliana
samples were extracted from the 1001 Genomes database at
1001genomes.org and from Durvasula et al. (2017).

For humans, we used 938 individuals from the HGDP data set,
downloaded from the HGDP website hagsc.org/hgdp. This subset
of individuals contain those that remain after removing low-qual-
ity samples, replicated samples, and closely related individuals
(Rosenberg 2006; Li et al. 2008). We used the same data filtering
as for the A. thaliana data set for the purpose of tractability, that
is, only biallelic SNPs were considered, and SNPs with >10% miss-
ing data were removed, as were loci with minor allele frequencies
<0.01. After filtering, the data set included 938 individuals and
647,976 SNPs (of the 660,918 SNPs in the initial HGDP data set).

Comparing PSTs using NMI

To compare two PSTs derived from the same set of individuals I, we
compute the normalized mutual information (NMI) between rep-
resentations of the two PSTs as sets of partitions of I (Lancichinetti
et al. 2009; McDaid et al. 2013). NMI quantifies the amount of in-
formation shared by two random variables, or the amount of un-
certainty on one variable that is reduced by observing the other
variable, as measured in bits.

To apply this measure, we represent a PST, X, with k clusters,
as a partition X, ... X of the set of individuals I (X; UX, U ...
U Xy = I). The sets X3, ..., Xy need not be mutually disjoint, and in-
deed in PSTs, clusters can be nested within other clusters (e.g., a
daughter cluster is nested in the parent cluster). The NMI measure
computes, for two PSTs X and Y represented as partitions, a score
between 0 and 1, in which higher scores represent higher similar-
ities between the PSTs. We summarize the computation in
Supplemental Information and Supplemental Figure S5, and refer
the readers to Lancichinetti et al. (2009) and McDaid et al. (2013)
for the full details of this computation.

In some cases, it is of interest to compute NMI not for the en-
tire PST, but rather for a subset of the clusters. For example, we
computed NMI for leaf clusters of PSTs to compare the fine-scale
structure described by the PSTs. Given two PSTs, X and Y, repre-
sented as partitions X3, ... ,Xx and Yy, ... Y}, this computation is
performed by considering only a subset of the sets in the partition,
and computing NMI using only these subsets. However, because
NMI requires both PSTs to be defined on the same set of individu-
als, a problem arises when the unions of the subsets of clusters are
different. In other words, if we consider a subset of k' <k clusters
from PST X and a subset of m <m clusters from PST Y, we
might have X, UX,, U...UXp # Yy, UYp, U ... UY,. Thisprob-
lem can be addressed by removing or adding individuals to clusters
in a standardized way, so that the unions of the subsets of clusters
become equal; our analysis of information gain by increased geno-
mic density provides an example of how such a case can be
addressed.
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Information gain by increased sequencing

The NMI measure quantifies the information shared between two
PSTs. If one of the PSTs considered was ascertained using strictly
lower-density genetic data, then NMI can be used to evaluate the
information gained by increasing the genomic density of the
data, as we have done here for the A. thaliana and human data sets.

We calculated NMI for PSTs constructed from a subsample of
the genome to simulate different fractions of the genome se-
quenced (0% to 98% in intervals of 2% of the number of SNPs in
the data set). First, the data were randomly partitioned into
10,000 approximately evenly sized groups of SNPs, subsampled
randomly from all SNPs without replacement, regardless of posi-
tion in the genome. For each fraction of the genome, f, 100 ran-
dom subsamples of the genome, each summing up to a fraction f
of the genome, were taken without replacement (constructed us-
ing the SNP groups, for computational efficiency). For each such
subsample, the PST was derived, and the NMI between that PST
and the PST derived from the entire genome (Figs. 2A, 4A) was
computed. The mean NMI and standard deviations for each f
were then calculated.

In addition, we also considered the information gained when
considering only fine-scale structure. This step used a similar pro-
cess, only that the NMI was calculated by considering only the leaf
clusters of the PSTs. Because some individuals are possibly not be-
ing assigned to any leaf, the union of the leaf clusters does not nec-
essarily cover the entire population. To address this, each
individual not assigned to any leaf was added to all the leaves in
the branch below the finest-scale cluster to which that individual
was assigned. In other words, for PSTs X and Y, with leaf clusters
Xy, ... Xrand Yy, ... Y, respectively, we added each individual
din (i_, X{ (where X¢ is the complement of X;) to all leaf clusters
that belong to the branch emerging from the cluster (¢ x e, X; We
do the same for all individuals in N}_; ¥Y{ (see Supplemental
Information for an illustrative example). We compute NMI for
the sets Xy, ... ,X,and Yj, ... ,Y; with the added individuals, which
now cover the full set of individuals. This procedure generates a
comparison between the finest-scale structures described by
the PSTs.

Computational efficiency

A major issue with analyses of large genomic data sets is computa-
tional efficiency. The method we present requires two stages: (1)
construction of the genetic-similarity network, and (2) construc-
tion of the PST. The first stage amounts to construction of a pair-
wise matrix of size n2, where n is the number of individuals.
Each element requires ¢ calculations, where ¢ is the number of
loci. To apply Equation 1, calculation of allele frequencies for all
loci is required. The computation time for the first stage is there-
fore O(¢n”+ ¢n)=0(¢n?) time. This computation time can be re-
duced substantially by computing the elements of the matrix for
each of the loci in parallel: Given ¢ computation threads, the com-
putation time can be reduced to O(¢n?/c) time.

The computation time of the second stage depends on the to-
pology of the PST. With the community-detection Louvain algo-
rithm, each community-detection computation takes O(i log i)
time, where i is the number of individuals in the network exam-
ined (Blondel et al. 2008). Therefore, for each level of the hierar-
chy, assuming we have k clusters in that level, in which cluster
j has size i;, the computation time is O Z';:l ijlogi; ) for that hier-
archical level. Because Z’]‘-Zl ij < nand i;<n (and therefore log i; <
log n) for any j, the run time of each level is bounded above by
O(nlog n). For a PST with d levels, the overall computational
time of this step is, therefore, smaller than O(dn log n). The factor
d is not known a priori, and could differ for different data sets; d is

bounded by d <n, although in practice it would typically be much
smaller.

In practice, for whole-genome data, the first step (construct-
ing the matrix) takes substantially more time to compute than
the second stage (iterative edge-pruning and community detec-
tion); the second step does not depend on the number of loci in
the data. Using a single computation thread, the first step would
require ~82 d for the A. thaliana data set and ~14 d for the human
data set. We used 1000 computation threads, and the computation
took 2 h for the A. thaliana data set and 20 min for the human data
set. The second step, using a single computation thread, required
49 min for the A. thaliana data set and 1.5 min for the human
data set.

Software availability

The code for running the analyses (called NetStruct_Hierarchy)
can be found as Supplemental Code and at https://github.com/
amirubin87/NetStruct_Hierarchy along with a user manual and a
tool for plotting maps and coloring the clusters.
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