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Abstract Infection of mice with variants of mouse hepatitis virus, strain JHM (MHV-

JHM), provide models of acute and chronic viral infection of the central nervous system

(CNS). Through targeted recombination and reverse genetic manipulation, studies of

infection with MHV-JHM variants have identified phenotypic differences and examined

the effects of these differences on viral pathogenesis and anti-viral host immune responses.

Studies employing recombinant viruses with a modified spike (S) glycoprotein of MHV-

JHM have identified the S gene as a major determinant of neurovirulence. However, the

association of S gene variation and neurovirulence with host ability to generate anti-viral

CD8 T cell responses is not completely clear. Partially protective anti-viral immune

responses may result in persistent infection and chronic demyelinating disease character-

ized by myelin removal from axons of the CNS and associated with dense macrophage/

microglial infiltration. Demyelinating disease during MHV-JHM infection is immune-

mediated, as mice that lack T lymphocytes fail to develop disease despite succumbing to

encephalitis with high levels of infectious virus in the CNS. However, the presence of T

lymphocytes or anti-viral antibody can induce disease in infected immunodeficient mice.

The mechanisms by which these immune effectors induce demyelination share an ability to

activate and recruit macrophages and microglia, thus increasing the putative role of these

cells in myelin destruction.
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Introduction

In the absence of infection or injury, the resting state of the central nervous system (CNS) is

highly resistant to peripheral immune cell infiltration and activation. Access to CNS tissues

by peripheral blood leukocytes is prohibited by tight intercellular junctions and low

expression of adhesion molecules by endothelial cells of the blood brain barrier (BBB).

Within the CNS, immune activation is further diminished through downregulation of MHC

molecules by resident CNS cells, and through constitutive expression of immunoregulatory

molecules such as TGF-b. Furthermore, secreted factors which regulate normal brain

function and development exhibit immunosuppressive activity. When CNS infection or

injury occurs, these barriers to immune infiltration and activation are altered to allow access

to circulating leukocytes and protective antibody. During CNS immune responses, however,

a balance between immune activation and suppression is maintained. This conserves

integrity and function of non-regenerative CNS tissue, while permitting immune responses

against invading pathogens. Tilting the balance toward immune suppression could result in

persistent or chronic infection, whereas excessive immune activation could result in au-

toimmunity or bystander destruction and loss of function of vital CNS tissue [1–3].

One pathogen that infects the CNS of mice and thus challenges the local balance

between immune activation and suppression is Mouse Hepatitis Virus, strain JHM (MHV-

JHM). Contrary to its name, MHV-JHM is a neurotropic, not a hepatotropic, single

stranded RNA virus of the family coronaviridae. Human coronaviruses related to MHV-

JHM cause a variety of infection and disease ranging from the common cold to severe

acute respiratory syndrome (SARS) [1, 4]. Naı̈ve susceptible mice infected with virulent

variants of MHV-JHM develop lethal acute encephalitis. However, other variants of MHV-

JHM provide tools for studying both acute and chronic infection of the CNS [5]. Studies of

CNS infection with these variants have identified distinct mutations in virus structure, and

have compared the effect of these structural differences on viral pathogenesis and host

immune responses to infection. Differences between these variants are often reflected by

changes in cell tropism, neurovirulence, and in the quality of host anti-viral immune

responses in the infected CNS. In order to more closely compare virus structure and

function with associated pathogenesis, additional MHV-JHM variants are generated

through targeted recombination, with methods similar to those originally used to create

MHV strain A59 recombinant viruses [6–9]. Initially, mutations or introduced coding

sequences are generated by PCR from MHV-JHM, or from host genes encoded on plas-

mids, respectively. The site used for expression of non-MHV sequences is within gene 4,

which is not essential for virus replication or infection [10, 11]. RNA is generated from the

final linearized plasmid, containing the MHV-JHM S and gene 4 sequences, by in vitro

transcription. Donor RNA is then transfected into cells infected with a homologous

recipient virus. Desired recombinants are selected by host cell specificity, which is altered

by donor/recipient recombination. In this manner, recombinant MHV have been generated

for functional studies of MHV-JHM structural proteins, or for the production of immune

effectors, and for functional studies of non-structural proteins of the human coronavirus

SARS-CoV [12–14].

While acute infection is characterized by rapid virus spread and CNS inflammation,

chronic disease during MHV-JHM infection is characterized by incomplete clearance of

infectious virus and concomitant development of demyelinating disease [5]. MHV-JHM

infected mice with demyelinating disease serve as a relevant animal model of the human

autoimmune disease multiple sclerosis (MS) [15, 16]. As in MS, demyelination induced
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during MHV-JHM infection is characterized by macrophage infiltration into the white

matter of the CNS, with subsequent destruction of the protective myelin sheath sur-

rounding the axons of CNS neuronal cells. Demyelination may be induced in mice through

persistent infection with attenuated MHV-JHM strains, or by partial protection from vir-

ulent MHV-JHM by MHV-specific antibody [5, 17, 18]. Demyelinating disease induced

during MHV-JHM infection is partly immune mediated, as mice lacking the ability to

generate T cell responses fail to develop demyelination, despite high viral loads and

widespread inflammation in the CNS of infected mice [19, 20]. To examine this rela-

tionship between virus infection and demyelination, immunodeficient mice infected with

MHV-JHM receive adoptively transferred enriched populations of T cells or other immune

effectors [21, 22]. These models of MHV-JHM infection provide excellent tools for

investigating both acute and chronic viral infection of the CNS. However, the factors that

mediate the initiation of host anti-viral immune responses, virus-induced pathology, and

the regulation of these events by the specialized local environment of the CNS, are only

partly understood.

Virulence and antiviral immune responses in acute infection of mice with
variants of MHV-JHM

Susceptible mice infected intracerebrally with the MHV-JHM variant MHV.SD (also

termed MHV-4) develop fatal acute encephalitis with a 50% mortality after inoculation

with 1 plaque forming unit (pfu) [9]. In highly virulent variants of MHV-JHM, intranasal

inoculation also results in uniformly fatal encephalitis in susceptible mice. The resulting

pathology is generally attributed to sequence variation in the spike (S) glycoprotein. The

contributions of non-S versus S genes to enhanced MHV.SD neurovirulence were deter-

mined by infection with recombinant viruses comprised of either the non-S genes of the

less virulent MHV strain A59 with the S gene of neurovirulent MHV.SD, or the non-S

genes of MHV-JHM with the S gene of MHV-A59 [9, 23–25]. These studies demonstrate

that recombinant viruses expressing the MHV.SD S protein are more neurovirulent than

MHV-A59 S glycoprotein expressing viruses.

In addition to differences in mortality between MHV.SD and MHV-A59 infected mice,

host immune responses also differ. Mice infected with MHV.SD exhibit a prolonged innate

response characterized by IFN-b production in the CNS beyond 5 days post infection with

decreased IL-12p40 and IFN-c transcription [24]. In MHV-A59 infected mice, IFN-b
transcripts decrease after 5 days post infection, with increasing IFN-c mRNA coincident

with increasing T cell infiltration. Proinflammatory cytokines and chemokines such as

IL-1, IL-6, MIP-1a, MIP-1b, and MIP-2 are upregulated in the CNS of MHV.SD mice in

comparison to relatively low CNS expression during MHV-A59 infection. Adaptive

immunity is suppressed during MHV.SD infection. Antigen specificity of adaptive immune

responses of both CD4 and CD8 T cells are determined by recognition of defined

immunodominant and subdominant epitopes within MHV strains [26, 27]. The immuno-

dominant CD8 T cell epitope recognized in MHV-JHM infected C57BL/6 mice is pre-

sented on the H-2Db class I molecule and is located in the MHV-JHM spike glycoprotein

from (amino acids 510–518 (S510)). An H-2Kb CD8 T cell epitope is located in the S

protein of both MHV-JHM and MHV-A59 spanning amino acids 598–605 (S598). MHV-

A59 infected mice mount a robust CD8 T cell response to the shared S598 epitope, while

MHV.SD infected mice mount a weak response to both S598 and S510 epitopes [23, 24].
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Total T cell infiltration (antigen specific and non-specific) is also reduced in the CNS of

MHV.SD infected mice. Consistent with increased inflammation in virulent MHV.SD

infection, mononuclear cells expressing CD11b and FccRI/III are significantly increased in

the CNS of MHV.SD infected mice. These results demonstrate that MHV.SD infection of

the CNS results in a greater inflammatory response and a weakened CD8 T cell response

when compared to MHV-A59.

To evaluate the contribution of the spike (S) glycoprotein to the pathogenesis of

MHV.SD infection, targeted recombination and reverse genetic techniques were used by

Phillips et al. to generate MHV.SD and MHV-A59 viruses that express the S glycoprotein

of the other strain [9]. Rempel et al. further characterized the immune responses to these

viruses, using recombinant MHV-A59 viruses with the S glycoprotein of either MHV-A59

(WTR13) or MHV.SD (S4R22) [25]. Infection of mice with S4R22 results in increased

virulence compared to the MHV-A59 wild type recombinant WTR13. However, this

increased virulence is not accompanied by a suppressed CD8 T cell response or prolonged

IFN-b production, which were observed in the highly virulent MHV.SD infection.

Increased virulence in S4R22 infection is associated with increased CNS macrophage

infiltration and increased MIP-1a and MIP-1b transcription, while infection with either

S4R22 or WTR13 results in a robust CD8 T cell response and increased CNS IFN-c
transcription. These results were repeated and confirmed by Iacono et al., who further

explored the role of background (non-S) genes by generating an MHV-JHM virus that

expressed the MHV-A59 S glycoprotein. Mice infected with this virus (SA59/RJHM)

display an attenuated neurovirulence compared to wild type recombinant MHV-A59

(rA59). However, these mice mount a diminished antigen specific CD8 T cell response to

infection similar to the suppressed response to rJHM infection. From these results, the

authors concluded that although the S glycoprotein determines the neurovirulence of MHV

strains, the background genes determine the extent of the CD8 T cell response.

This conclusion conflicts with results obtained from infection of mice with a slightly

attenuated, yet closely related MHV-JHM variant, MHV.IA [13]. Similar to the neuro-

virulent MHV.SD, 50% of mice infected intracerebrally with 1 pfu of MHV.IA succumb to

fatal encephalitis. However, in contrast to the weak response to MHV.SD infection,

MHV.IA infected mice mount a robust MHV specific CD8 T cell response [28]. Fur-

thermore, attenuation in neurovirulence in mice infected with MHV.IA is attributed solely

to a single amino acid change in the spike glycoprotein [13]. As with studies comparing

MHV.SD and MHV-A59 virulence, examining the association of the MHV S glycoprotein

with neurovirulence in MHV.IA and MHV.SD infection was performed through generation

of recombinant rJHM.IA virus via targeted recombination. With this strategy, a back-

ground rJHM.IA virus expressing the spike glycoprotein of MHV.SD was generated

(rJHM.SD). Comparison of rJHM.IA and rJHM.SD infection revealed that the MHV.SD S

expressed by rJHM.IA increases neurovirulence with accompanied increases in viral titers

and lateral spread throughout the CNS of infected mice. Furthermore, the spike glyco-

protein of rJHM.SD was shown to mediate increased receptor independent spread in

infection of tissue culture cells lacking the carcinoembryonic antigen cell adhesion mol-

ecule 1 (CEACAM-1, the cellular receptor for MHV-JHM entry). Sequencing of these

viruses indicated that the structures of the spike proteins of rJHM.IA and rJHM.SD differ

by four amino acids. Targeted mutation of the S protein of rJHM.IA resulting in a single

change in the amino acid 310 from a serine to a glycine generated a virus (rJIA.S310G)

that exhibited increased neurovirulence in infected mice when compared to rJHM.IA

infection.
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Although these studies have identified structural determinants of virulence, the

importance of the spike protein in the generation of contrasting immune responses to

MHV.SD and MHV.IA infection is not fully understood. Prolonged production of IFN-b in

the CNS of MHV.SD infected mice may provide one clue [24, 25]. Stimulation of IFN-b
production in the CNS through toll like receptor 3 (TLR3) suppresses EAE [29]. In certain

conditions, IFN-b induces the upregulation of numerous effectors that ultimately limit T

cell responses. In cultured CNS cells, IFN-b production limits the capacity of antigen

presenting cells to activate T cells [30]. In addition, mice deficient in IFN-b have increased

antigen-specific CD8 T cell responses to peptide or DNA vaccination, with decreased

IL-10 producing T regulatory cells (Treg) [31]. Both Treg cells and IL-10 have been

implicated in regulating immune responses to viral infection as well as autoimmunity [32–

34]. By controlling the magnitude of anti-viral immune responses, the activity of Treg cells

and IL-10 effectively limit immune-mediated pathology while providing a potential

opening to chronic viral infection. Determining the source of IFN-b in the CNS of

MHV.SD infected mice is important for understanding the mechanism of MHV.SD

mediated immune suppression. Neurons are a major source of type I IFN in mice infected

with Theiler’s murine encephalitis virus (TMEV) [35]. Furthermore, neurons inhibit T cell

responses and ameliorate disease in the CNS of mice with experimental autoimmune

encephalomyelitis (EAE), via conversion of encephalitogenic T cells into regulatory

T cells [36]. Determining the source of type I IFN and important associated factors in

MHV.SD mediated immune suppression are the focus of current investigation.

In addition to providing a model for examining structural components and determinants

of virulence, targeted recombination of MHV-JHM has provided insight into the role of

immunodominant epitopes in both CD4 and CD8 T cell responses to infection. Persistent

infection with viruses like HIV-1 or Hepatitis B or C viruses may select viral mutants that

evade the host CD8 T cell response [37]. These mutations are commonly selected in the

immunodominant CD8 epitopes recognized by a large portion of virus-specific cytotoxic T

cells, thus directly diminishing their ability to clear viral infection. These CD8 T cell

epitope, or CTL escape, mutations also occur during MHV-JHM infection, allowing for

viral persistence and chronic demyelinating disease [38]. MHV-JHM CTL escape muta-

tions are selected in the immunodominant S510, but not the subdominant S598 epitope.

Through targeted recombination, a second high avidity CD8 T cell immunodominant

epitope from lymphocytic choriomeningitis virus (LCMV gp33) [39] was added to

recombinant JHM [40]. In the presence of both S510 and gp33 high avidity epitopes,

demyelinating disease associated with CTL escape is prevented. In contrast to the per-

sistent infection associated with elimination of the immunodominant MHV-JHM CD8

T cell epitope, mice infected with recombinant MHV-JHM with a single mutation in the

immunodominant CD4 T cell epitope M133-147 (rJ.MY135Q) exhibit milder disease with

no mortality [41]. Virus is ultimately cleared in rJ.MY135Q-infected mice and antigen

specific CD8 T cell responses are equivalent to those detected in mice infected with wild

type recombinant JHM. The absence of disease in rJ.MY135Q-infected mice is not attributed

to decreases in either TNF-a or to increased Th2 cytokine production in the CNS. These

results are striking, particularly because numerous studies have reported decreased viral

clearance and increased mortality in the absence of a CD4 T cell response [19, 42–44].

Future studies will be aimed at further characterizing the roles of these specific epitopes in

MHV-JHM pathogenesis, the role of other epitopes such as the subdominant Kb S598

epitope in CTL escape selection, and the mechanism by which the loss of the immuno-

dominant CD4 epitope attenuates disease in infected animals.
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In addition to studies of acute MHV-JHM infection using the MHV.SD and MHV.IA

variants, infection of mice with an attenuated variant of MHV.SD, MHV-J2.2-v1, provides

a model for studying acute and chronic infection of mice with subsequent development of

demyelinating disease [5, 45]. J2.2v-1 differs from MHV.SD in structure by a single amino

acid in the MHV S glycoprotein. Early responses to J2.2v-1 infection are similar to those in

MHV-JHM-infected mice. CNS inflammation allows breakdown of the BBB, permitting

peripheral blood neutrophil and monocyte infiltration. Concomitant with a T cell response,

infectious virus is mostly cleared from the CNS by 2 weeks post-infection [46], but may

remain detectable by low levels of viral RNA well after viral clearance [47]. However,

macrophage recruitment into areas of white matter within the CNS continues in the

absence of infectious virus, and mice develop plaques of demyelination in associated areas

of macrophage infiltration. Thus, infection of mice with MHV-J2.2v-1 provides a model

for the study of persistent viral infection and chronic demyelination.

Viral clearance and demyelinating disease in persistent MHV-JHM infection

MS is a debilitating human disease with a worldwide distribution, and is characterized by

immune-mediated destruction of the myelin sheaths surrounding neuronal axons and, in

some cases, degeneration of the axons themselves [15, 16]. MS patients can exhibit disease

with several different, yet potentially overlapping, clinical and pathological profiles. Due to

this diversity, the etiology of MS is likely diverse as well. Although not completely

understood, both genetic and environmental factors play a role in disease development and

progression. MS patients in remission often experience relapses after common viral

infections, indicating an environmental component may be necessary to trigger disease in

susceptible individuals.

Due to the multiple factors that promote and affect MS in humans, numerous animals

models of demyelinating disease have been developed to examine particular aspects of its

pathogenesis [15]. The well-established model experimental EAE examines immune

responses to myelin antigens in rodents. Viral demyelination induced during infections

with Semliki Forest virus (SFV), Theiler’s murine encephalomyelitis virus (TMEV), or

MHV-JHM provide models of pathogen associated demyelinating disease [15, 48].

A hallmark of MS and associated animal models of the disease is the presence of

infiltrating macrophages and resident microglia in demyelinating plaques located in the

white matter of the CNS. Both cell types are able to phagocytose myelin, and therefore are

potential contributors to autoimmune tissue destruction. Specific contributions of macro-

phages and microglia to demyelinating disease within each animal model are less clear. In

models of demyelinating disease in which CNS inflammation results in a breakdown of the

BBB, other peripheral blood leukocytes are also present in the CNS. Myelin-specific

T cells are present in EAE lesions, while during MHV-JHM infection, T cells are pre-

dominantly specific for viral antigens. B cells play a role in demyelinating disease, as the

presence of myelin specific antibody exacerbates disease in EAE. Professional antigen

presenting cells such as DCs are also present in the CNS in mice in both the EAE and

TMEV models, and are able to prime naı̈ve T cells in situ [49].

Demyelination during MHV-JHM infection has been studied in several contexts. One

particular model relies on infection of mice partially protected by nursing on MHV-JHM

immune dams (suckling mouse model) [18]. In this scenario, maternal MHV-specific

antibody facilitates partial viral clearance. Thus, these mice survive the acute infection, but
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subsequently develop demyelinating disease accompanied by clinical signs of hind limb

paresis. In this model, development of chronic disease is associated with mutations in the

S510 CD8 T cell epitope [38]. These CTL escape mutations allow for viral persistence and

chronic demyelination. Emergence of CTL escape in MHV-JHM infected animals is strain

dependent but MHC independent, as C57BL/6 mice allow CTL escape while Balb/c or

Balb/b mice do not [50]. Subsequent studies indicate that this difference is due to increased

endogenous anti-viral antibody production, specifically due to an increase in the amount of

antibody secreting, or plasma cells, in the CNS of Balb mice. Despite the clear link

between prevention of CTL escape and anti-viral antibody production in the CNS of MHV-

JHM infected mice, important questions remain. One important facet of CTL escape is the

selection of mutations in the immunodominant Db S510, but not the subdominant Kb S598

epitope. An explanation for this selection is likely found in the differences between

functional avidity of the two epitopes, with the S510 epitope exhibiting higher functional

avidity than the subdominant S598 epitope [26]. Current studies are aimed at examining

these differences by alteration of epitope avidity in recombinant MHV-JHM.

A second model of demyelinating disease during MHV-JHM infection involves

infection of adult mice with the attenuated MHV-J.2.2v-1 variant [45]. Although generally

resistant to intranasal infection, C57BL/6 mice infected intracerebrally with J2.2v-1

develop mild acute encephalitis, followed by viral clearance mediated by an anti-viral

T cell response. Demyelination with clinical signs of hindlimb weakness occurs during the

process of virus clearance. As in other animal models of demyelinating disease, plaques of

demyelination in J2.2v-1 infection are characterized by dense macrophage/microglial

infiltration [15]. Due to their similar function and surface marker expression, specific

contributions of macrophages and microglia to demyelination during MHV-JHM infection

are not well understood. Chemical depletion of blood borne macrophages prior to infection

does not affect disease, suggesting that microglia and/or perivascular macrophages are

sufficient for demyelination to occur [51].

Induction of demyelinating disease in J2.2v-1 infected mice is usually T cell or antibody

mediated, as mice lacking the recombinase activating gene 1 (RAG1) or severe combined

immunodeficient (SCID) mice do not clear virus and ultimately succumb to encephalitis

with little or no demyelination [20, 52, 53]. Infection of RAG1-/- or SCID mice, which

completely lack T or B lymphocytes, provides a basis to determine the role of adaptive

immune components in the development of demyelinating disease (Table 1). J2.2v-1

infected RAG1-/- mice that receive adoptively transferred splenocytes from immuno-

competent MHV-JHM immunized mice regain the demyelinating phenotype [21].

Depletion of both CD4 and CD8 T cells from the donor splenocyte population abrogates

demyelination, while depletion of a single population does not. However, demyelination

mediated by each T cell population is characterized by a distinct disease profile. Infected

RAG1-/- mice that receive CD4 T cell-enriched splenocytes develop severe acute

Table 1 Mediators of demyelination in MHV-J2.2v-1 infected immunodeficient mice

Mediator Mice Mechanism Reference

CD4 T cells RAG1-/- ? [21], [54]

CD8 T cells RAG1-/- CD8 IFN-c production [21], [55]

cd T cells Nude, TCRb-/- IFN-c, NKG2D [61], [62]

Anti-MHV ab RAG1-/- FccRI/III, C activation [22]

vCCL2 (J2.2.CCL2) RAG1-/- Mac recruitment [12]
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encephalitis with moderate amounts of demyelination. Mice that receive CD8 T cell-

enriched splenocytes exhibit less encephalitis and a prolonged disease course that is

characterized by high levels of demyelination. Furthermore, CD8, but not CD4, mediated

demyelination and associated macrophage infiltration into the spinal cord white matter is

significantly reduced when donor mice lack the ability to produce IFN-c [54, 55]. Perforin,

an essential component of CTL cytolytic activity, is not required. How IFN-c produced by

CD8 T cells contributes to demyelination in MHV-JHM-infected mice is unclear. Potent

activation of macrophages/microglia by IFN-c likely plays a role in cell recruitment and

demyelination. For example, IFN-c treatment of macrophages results in increased pro-

duction of nitric oxide and increased phagocytosis. Since IFN-c is required for clearance of

J2.2v-1 from oligodendroglia [56], it is possible that IFN-c produced by CD8 T cells as part

of the anti-viral response results in increased activation and recruitment of myelin-

destroying macrophages/microglia. IFN-c also plays a role in autoimmune destruction of

myelin, by enhancing CD8 T cell-mediated EAE [57]. Interestingly, IFN-c produced in the

CNS in mice with EAE induces upregulation of CCL2 (MCP-1) [58], a macrophage

recruiting chemokine that also promotes infiltration into the CNS during MHV-JHM

infection [59]. Furthermore, in a CD8 T-cell mediated model of spontaneous demyelina-

tion utilizing transgenic mice that constitutively express the costimulatory ligand CD86 on

microglial cells within the CNS, IFN-c receptor deficient mice exhibited no disease [60].

These studies suggest that IFN-c responsiveness by macrophages/microglia may be critical

for CD8 T cell-mediated demyelination in MHV-J2.2v-1 infected mice.

Although transfer of CD4 or CD8 T cells induces demyelination in RAG1-/- mice, J2.2

infected athymic nude mice, also lacking CD4 or CD8 T cells, develop demyelination in

the absence of adoptive cell transfer [19]. However, nude mice lack only conventional ab T

cells, but still retain functional cd T cells. Depletion of cd T cells from infected nude mice

significantly reduces demyelination [61]. Demyelination in infected mice lacking the

TCRb gene, which also lack conventional ab T cells, provides further proof that cd T cells

can mediate demyelination [62]. Furthermore, antibody depletion of IFN-c in J2.2 infected

TCRb-/- mice significantly reduces demyelination, showing that IFN-c is critical for

demyelination induced by cd T cells, as it is in CD8+ T cell-mediated myelin destruction.

In addition to the requirement for IFN-c, recognition of NKG2D is also important for cd T

cell mediated demyelination [62]. Antibody blockade of NKG2D, a classic activating

receptor of NK cells also expressed on a subset of mouse cd T cells, abrogates demye-

lination in TCRb deficient mice. Therefore, cd T cells are capable of mediating demye-

lination during viral infection through the action of two critical effector molecules. In

contrast, the role of cd T cells in EAE is still controversial. Depletion of cd T cells in EAE

results in either milder or more severe disease, depending on whether cells are depleted

early or late in the inflammatory process [63–67].

In addition to cell-mediated demyelination, anti-MHV antibody is also capable of

induction of disease. MHV-J2.2v-1 infected RAG1-/- mice treated with anti-MHV anti-

bodies develop demyelinating disease with associated white matter infiltration of macro-

phages/microglia [22]. Although the precise role of humoral immunity in MS is not

completely understood, B cells and antibody production are believed to be involved in

myelin destruction [68–70]. Oligoclonally expanded B cells and high levels of immuno-

globulin are detected in the cerebrospinal fluid of MS patients [71], some of which are

directed against myelin components, or against common viruses such as Epstein–Barr [72]

or Varicella-Zoster [73]. Antibody mediated demyelination during MHV-J2.2v-1 infection

requires the activating Fcc receptors I and III, since anti-MHV antibody treated infected

RAG1-/- mice deficient in these receptors fail to develop disease [22]. Furthermore, the
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complement pathway may play a role in antibody-mediated demyelination, as depletion of

complement by treatment of mice with cobra venom factor (CVF) results in a significant

decrease in demyelination. FccR and complement may function together to activate

macrophages with subsequent demyelination. Adoptively transferred antibody is detectable

in the CNS of infected RAG1-/- mice, supporting the idea of direct interaction with

activating Fcc receptors on macrophages. In the EAE model of demyelination, mice

lacking the macrophage activating FccRI/III exhibit attenuated disease, while mice lacking

the inhibitory FccRII display increased disease [74]. Furthermore, C3 derived complement

products play a critical role in the pathogenesis of EAE [75]. In addition to liver production

of serum components of complement, many resident CNS cells are capable of producing

complement proteins. Through the classical pathway, these proteins may be activated on

the surface of antibody bound MHV infected cells or in MHV/antibody immune com-

plexes, thus enhancing the recruitment and effector functions of CNS macrophages/mi-

croglia. Of note, RAG1-/- mice also deficient in C3, the central component of the

complement pathway, develop antibody-mediated demyelination (Templeton and Perlman,

unpublished). Contrasting results between C3 deficiency and CVF depletion of comple-

ment are not surprising, since CVF exhibits considerable toxicity [76]. Furthermore, recent

evidence indicates that C5a may be produced independently of C3, providing a possibility

that complement products downstream of C3 may play a role in demyelination in MHV-

JHM infected C3-/-RAG1-/- mice [77]. Current studies are focused on examination of the

role of complement in CNS disease and in induction of immune responses to MHV-JHM

infection in both immunocompetent and immunodeficient mice.

Inflammatory chemokines such as the macrophage chemoattractant protein CCL2 also

play a role in demyelinating disease. Expression of CCL2 during EAE follows T cell entry

into the CNS [78], and may be induced by T cell-associated increases in IFN-c [58]. CCL2

and the CCL2 receptor CCR2 are both important for recruitment of immune cells and in

increased pathogenesis in EAE [79]. CCL2/CCR2 also promote monocyte recruitment and

viral clearance during MHV-JHM infection [59, 80]. Introduction of the mouse CCL2 gene

into a recombinant J2.2 (rJ2.2.CCL2) virus results in an infectious virus capable of pro-

ducing secreted CCL2 in infected cells in vitro [12]. RAG1-/- mice infected with

rJ2.2.CCL2 develop demyelinating disease, whereas RAG1-/- mice infected with a control

virus that lacks a functional CCL2 protein (rJ2.2.DCCL2) do not. Therefore, T cells or anti-

MHV antibody are not required for demyelination in MHV-JHM-infected mice. Rather, it

is likely that factors induced by adaptive immune responses result in the recruitment and/or

activation of macrophages/microglia into white matter areas of the CNS. Therefore, these

cells are the final effectors in the demyelinating process and any intervention that induces

their migration and activation will likely result in demyelination. Further studies involve

introduction of other chemoattractants into recombinant MHV-JHM, to evaluate their role

in demyelinating disease, cell recruitment, generation of immune responses, and clearance

of infectious virus in MHV-JHM-infected mice.

Summary/conclusions

Studies of MHV-JHM infection of mice have provided insights into the relationship of

virus phenotype to CNS neurovirulence and anti-viral immune responses. The differences

in infection with variants of MHV-JHM allow for examination of pathogenic mechanisms

associated with both acute and chronic CNS disease. Recombinant virus technology has

been employed to study both loss and gain of function in MHV-JHM structure, as well as
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the effects of host immune factors on anti-viral immune responses. Using these techniques,

the S gene has been identified as a primary determinant of neurovirulence in MHV-JHM

infection [9, 13, 25, 79]. However, the role that virus phenotype and neurovirulence plays

in the hosts’ ability to generate anti-viral immune responses is less clear. Some MHV-JHM

variants, like MHV.IA or MHV-J2.2v-1. elicit robust anti-viral CD8 T cell responses in

infected mice, while, in contrast, the highly neurovirulent MHV.SD does not [23, 24, 28].

Mice which survive acute MHV-JHM infection develop demyelinating disease with

associated macrophage/microglial infiltration [5]. Many of the factors that mediate

demyelination are capable of activating and/or recruiting macrophages (Table 1), sug-

gesting a pathogenic role for macrophage recruitment via adaptive immune responses.

Future studies will aim to further understand how changes in MHV-JHM gene expression

affect the pathogenesis of acute infection and demyelinating disease in the CNS of infected

mice.
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