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Abstract

Sparse MRI has been introduced to reduce the acquisition time and raw data size by undersampling the k-space data.
However, the image quality, particularly the contrast to noise ratio (CNR), decreases with the undersampling rate. In this
work, we proposed an interpolated Compressed Sensing (iCS) method to further enhance the imaging speed or reduce data
size without significant sacrifice of image quality and CNR for multi-slice two-dimensional sparse MR imaging in humans.
This method utilizes the k-space data of the neighboring slice in the multi-slice acquisition. The missing k-space data of a
highly undersampled slice are estimated by using the raw data of its neighboring slice multiplied by a weighting function
generated from low resolution full k-space reference images. In-vivo MR imaging in human feet has been used to
investigate the feasibility and the performance of the proposed iCS method. The results show that by using the proposed
iCS reconstruction method, the average image error can be reduced and the average CNR can be improved, compared with
the conventional sparse MRI reconstruction at the same undersampling rate.
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Introduction

Compressed Sensing [1,2] technique has been applied to MRI

to significantly reduce the raw data required for image

reconstruction by undersampling the k-space using an incoherent

sampling strategy [3]. With compressed sensing, it is possible to

shorten the acquisition time or enhance the image resolution by

designing specific MRI sequences, and therefore improve the

quality of MR images [4–20] and MR spectroscopy [21–25]. The

sampling strategy and reconstruction method are key elements to

achieve high quality images from significantly undersampled k-

space data in compressed sensing MRI. Over the past few years,

various sampling strategies and reconstruction methods based on

compressed sensing have been developed to enhance the MR

image and spectroscopy quality [26–41].

In this work, we propose an interpolation method to further

improve imaging speed or reduce raw data size while preserve the

image fidelity and contrast to noise ratio (CNR) for multi-slice two-

dimensional sparse MR imaging in humans. This method utilizes

the k-space data from the neighboring images to compensate for

the missed k-space data of the target slice. The difference of the

anatomic stricture between the adjacent slices is estimated by

dividing the neighboring slice images in image domain and the

quotient is transformed to k-space to form a weighting function.

The raw data of the neighboring slice is convolved by the

weighting function and used to estimate the missed k-space data of

the target slice. This treatment helps improve the image quality,

and especially the image CNR. In-vivo MR imaging of human feet

has been used to investigate the feasibility and the performance of

the proposed method. The experimental results show increased

image quality using the proposed interpolated Compressed

Sensing (iCS) reconstruction over the conventional compressed

sensing technique at the same undersampling rate.

Theory and Methods

In multi-slice two-dimensional MR imaging, the raw data of two

adjacent slices have structural similarity, therefore it is possible to

increase the image quality by interpolating the missed k-space data

of the target slice by using the k-space data from the neighboring

slice and a weighting function, while keep the undersampling rate

unchanged. The weighting function is estimated by taking Fourier

transform of the quotient between the adjacent slices in question.

Fig. 1 shows a flowchart describing the proposed method

interpolated Compressed Sensing (iCS). Here for convenience,

slice1 is defined as the target image with high undersampling rate

(e.g., 1/100), while slice2 is defined as the image with low

undersampling rate (e.g., 1/4). The raw data of slice2 was used to

estimate the missed data of slice1 and interpolated them into the k-

space of slice1 after convolving the weighting function.

Estimation of the weighting function in k-space
The first step is to estimate the weighting function which is

necessary to transfer the raw data of one slice to its adjacent slice.
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Theoretically, there exists a weighting function which maps the k-

space data from one slice to another. In this work, the weighting

function in image domain was first estimated by calculating the

quotient between the images of the target slice and its neighboring

slice, and then the weighting function in k-space domain was

obtained by taking Fourier Transform of its image domain

formation. Low resolution image of each slice was firstly acquired

and the quotient of the two low resolution images was taken to

obtain the weighting function in image domain:

WI~I1LowRes=I2LowRes
ð1Þ

where I1LowRes and I2LowRes denote the low resolution image of slice1

and slice2 respectively. By taking Fourier Transform of the WI, the

weighting function in k-space domain was obtained:

Wk~F(WI ) ð2Þ

where Wk is the weighting function in k-space. In the proposed

reconstruction method, the weighting function determines the

accuracy of the interpolated data and the image error.

Calculation of the interpolated raw data for slice1
To describe the reconstruction procedure in iCS multi-slice

sparse MR imaging, we assume one slice (e.g., Slice1) is

undersampled at a high undersampling rate while its adjacent

slice (e.g., Slice2) is undersampled at low undersampling rate. The

missing data of slice1 is then estimated by using the raw data of

slice2 convolved by the weighting function:

S1 new~S26Wk ð3Þ

where S2 is the raw data of the slice2 undersampled at a low rate

(1/4), while S1_new is the estimated raw data of slice1 which also

has a low undersampling rate of 1/4.

Missed k-space data interpolation for the highly
undersampled target slice (slice1)

As we already acquired the raw data S1 of slice1 undersampled

at a high undersampling rate (1/100), we kept the original raw

data S1 and interpolated the missed data from S1_new. Thus an

interpolated raw data of slice1 S1_int is obtained. By taking

nonlinear Conjugated Gradient (CG) reconstruction as that used

in conventional compressed sensing MRI, an improved image of

slice1 is then obtained.

Based on this algorithm, a multi-slice acquisition strategy to

accelerate image acquisition is developed and exemplified using 9-

slice 2D human foot images. As shown in Fig. 2, the slices were

divided into groups and thus within each group there were 3 slices

for this 9-slice 2D image example. In each group the second slice

was sampled at a low undersampling rate of 1/4, while the first

and the third slices were undersampled at a high undersampling

rate of 1/100. The raw data of the second slice could be utilized to

estimate the missing data in its neighboring two slices. In our

experiment, the healthy human foot images used for investigating

the proposed iCS image reconstruction were acquired using a

microstrip RF coil on a whole body ultrahigh field 7T MR scanner

(GE Healthcare, Milwaukee, WI) [42–45]. The 7T imaging study

procedure was approved by the Committee on Human Research

(CHR) of University of California San Francisco (UCSF). The

participants provided their written informed consent to participate

in this imaging study. The three slices, i.e. the 2nd, 5th and 8th

slices, in this acquisition were undersampled at the rate of 1/4,

while all the other slices were undersampled at the very high

undersampling rate of 1/100 as shown in Fig. 2. The other

imaging parameters were: Receiver bandwidth = 15.6 kHz, flip

angle = 30u, TE = 2.76 ms, TR = 10 ms, matrix size = 5126512,

field of view (FOV) = 14 cm, phase FOV = 1, slice thick-

ness = 2 mm, slice spacing = 2 mm, number of excitation = 1, the

phase encoding direction is Superior-Inferior, In-plane resolution

was 0.276 mm.

Image errors in the undersampled images using conventional

CS and the proposed iCS methods were calculated to evaluate the

reconstruction performance. In this calculation, the image errors

were obtained by subtracting the reconstructed images from the

full k-space reference images. Specifically, the image error

calculation used can be described as

IE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

j

I
Ref
j {Ius

j

� �2

I
Ref
j

� �2

vuuuut ð4Þ

where I
Ref
j represents the signal intensity of the jth pixel in the full

k-space reference image, and Ius
j represents the signal intensity of

Figure 1. Diagram of the proposed interpolated Compressed
Sensing (iCS) method. It contains total 3 steps: Step1, calculating the
weighting function which maps the raw data from the neighboring slice
(Slice2) to the target slice (Slice1) by acquiring low resolution full
k-space images of the two adjacent slices; Step2, estimating the missed
k-space data of the target slice (Slice1) by using the raw data of its
neighboring slice (Slice2) convolved by the weighting function; Step3,
k-space data interpolation and image reconstruction of the target slice
(Slice1).
doi:10.1371/journal.pone.0056098.g001
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the jth pixel in the undersampled image using the conventional CS

or the proposed iCS methods.

To further investigate the performance of the proposed iCS

strategy, we have compared the iCS multislice acquisition strategy

at the mixed undersampling rates of 1/100 and 1/4 and the

regular CS acquisition at equal undersampling rate of 1/11 of all

slices. These two cases, i.e. iCS at undersampling rates of 1/100

and 1/4 and CS at undersampling rate of 1/11, have the same

total acquisition time.

Results

Fig. 3 shows the foot images of 6 slices on sagittal plane (the slice

numbers are #1, #3, #4, #6, #7, #9). The first column is the

images reconstructed from full k-space data acting as the

reference; the second and third columns are the images

reconstructed using the original CS at undersampling rate of 1/

100 and 1/11 respectively; the fourth column is the images

reconstructed using the proposed iCS method at 1/100 under-

sampling rate. The experiment results show that the contrast is

greatly improved when using the iCS method to estimate the

missed k-space data for reconstruction. The contrast to noise ratio

(CNR) was calculated point by point and plotted in 2D figures as

shown in Fig. 4. For slice 1, the average CNR of the reference

image is 54.5, while that of the CS reconstructed image (1/100

undersampling rate), CS image (1/11 undersampling rate) and

iCS reconstructed image (1/100 undersampling rate) are 5.3, 9.7

and 31.5 respectively. The results of other slices are shown in

Table 1. These results show an average 4-fold CNR improvement

in iCS reconstructed images over the CS reconstructed images at

the high undersamling rate of 1/100, and an average 2-fold CNR

improvement over CS reconstructed images with the same

acquisition time.

The results of the image errors calculated by subtracting the

reference full k-space images from the CS or iCS reconstructed

images are shown in Table 2. This calculation is based on the

images shown in Fig. 3. The average image error of the iCS

constructed images was 0.0072, while that of the CS constructed

images (1/100) was 0.0100, showing approximate 40% enlarge-

ment of image error in CS images comparing with the iCS images.

The average image error of CS images at 1/11 undersampling

rate was 0.0083, showing 15% enlargement of image error

compared with the iCS images. Fig. 5 illustrates the image error

Figure 2. Multi-slice two dimensional sparse MR imaging
strategy used in the MR experiment. Total 9 slices were obtained
and were grouped into 3 groups. In each group the slice at the middle
was undersampled at low undersampling rate of 1/4, while the other
two slices were undersampled at rate of 1/100. The middle slice was
thus used to estimate the missed k-space data of the two neighboring
slices. That is, the slices of #2, #5 and #8 were undersampled at 1/4
rate and used to interpolate the missing k-space data of the slices of #1
and #3, #4 and #6, #7 and # 9, respectively.
doi:10.1371/journal.pone.0056098.g002

Figure 3. In-vivo MR images of human feet in sagittal plane.
Each slice (i.e., slice #1, #3, #4, #6, #7, and #9) was reconstructed
using the three methods: conventional full k-space reconstruction
(which served as the reference in the 1st column), conventional
Compressed Sensing at undersampling rate of 1/100 (in the 2nd

column), conventional Compressed Sensing at undersampling rate of 1/
11 (in the 3rd column), and the proposed interpolated CS methods at
the undersampling rate 1/100 (in the 4th column). In this comparison
study, image quality improvement of the iCS reconstruction method is
observed compared with the CS method, much image details being
recovered.
doi:10.1371/journal.pone.0056098.g003
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maps of the CS reconstructed image and the iCS reconstructed

image. In this comparison, the proposed iCS method shows a

much reduced image error over the conventional CS method,

demonstrating its excellent capability of preserving image fidelity

at high undersampling rate.

Conclusions and Discussion

The interpolated Compressed Sensing reconstruction method

proposed in this work provides a way to reducing acquisition time

and image data size or improving the image quality, especially

contrast to noise ration (CNR) for undersampled multi-slice, two-

dimensional MRI. In this method, the missed k-space data of the

target slice are estimated using the neighboring slice k-space data

weighted by the weighting function generated from low resolution

full k-space reference images of the target slice and its neighboring

slice. The highly undersampled k-space data of the target slice are

interpolated using these estimated data and are reconstructed

based on the conventional nonlinear Conjugant Gradient method.

In-vivo MR images of human feet are reconstructed with both the

conventional CS and the iCS methods to demonstrate the

feasibility and performance of the proposed iCS approach.

In the imaging examples demonstrated in this work, the

conventional compressed sensing shows a limitation at a high

undersampling rate, e.g., 1/100. The image quality was signifi-

cantly degraded and the reconstructed images became blurring.

The CNR of the images decreased to approximately 10% of the

reference full k-space data at the same resolution, losing most

structural details of the image. The proposed iCS method exhibits

the capability of preserving image quality, especially the CNR, at

high undersampling rate. This method allows a much faster

acquisition without significant sacrifice of imaging CNR. In this

method, due to the use of the image information from neighboring

slice, higher image fidelity can be obtained, particularly when the

gap between the two neighboring slices is small and the slice

thickness is thin. When the iCS method is used in SENSE parallel

imaging, the reference images required in SENSE imaging can be

employed for calculating the weighting function.

Figure 4. The Contrast to Noise Ratio (CNR) maps of the full k-
space reference images, CS reconstructed images at 1/100 & 1/
11 undersampling rates and the iCS reconstructed images
shown in Fig. 3. It is demonstrated that the CNR is significantly
improved by using the iCS method compared with the CS method at
the same undersampling rate of 1/100 or the same acquisition time.
doi:10.1371/journal.pone.0056098.g004

Table 1. The average CNR values of the full k-space reference
image, the CS reconstructed image at 1/100 & 1/11
undersampling rates and the iCS reconstructed image of each
slice.

Slice1 Slice3 Slice4 Slice6 Slice7 Slice9

Average
CNR

Ref 54.5 62.3 45.5 67.4 50.9 21.6

CS 1/100 5.3 6.3 4.1 5.0 6.9 6.6

CS 1/11 9.7 12.6 8.9 11 12.5 13.9

iCS 31.5 28.7 19.2 20.0 20.4 16.1

By using the iCS method, the CNR of each slice is significantly improved
compared with that of the CS method at the same undersampling rate or the
same acquisition time.
doi:10.1371/journal.pone.0056098.t001

Figure 5. Image error maps. The image error maps are calculated by
subtracting the CS constructed image (a) and the iCS constructed
image (b) from the full k-space reference image. This result shows a
much reduced image error in the iCS reconstructed image over the
conventional CS reconstructed image.
doi:10.1371/journal.pone.0056098.g005

Table 2. The average image error of the CS reconstructed
image and the iCS reconstructed image compared with the
full k-space reference image.

Slice1 Slice3 Slice4 Slice6 Slice7 Slice9

Average Image errorCS 1/100 0.0122 0.0094 0.0098 0.0100 0.0097 0.0088

CS 1/11 0.0108 0.0072 0.0075 0.0080 0.0078 0.0082

iCS 1/100 0.0090 0.0066 0.0070 0.0075 0.0076 0.0052

By using the iCS method, the image error of each slice can be reduced
compared with that of the CS method at the same undersampling rate or the
same acquisition time, resulting in better image quality.
doi:10.1371/journal.pone.0056098.t002
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