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1  | INTRODUC TION

Microsatellites (simple sequence repeats, SSRs, i.e., tandem repeats 
of a few nucleotides) still remain popular molecular markers for 

study of neutral genetic variation. The number of tandems may vary 
significantly among different individuals due to high mutation rates 
of microsatellites, and this polymorphism makes microsatellites at‐
tractive population genetic markers. Microsatellites are also special 
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Abstract
Microsatellites (simple sequence repeats, SSRs) still remain popular molecular mark‐
ers for studying neutral genetic variation. Two alternative models outline how new 
microsatellite alleles evolve. Infinite alleles model (IAM) assumes that all possible al‐
leles are equally likely to result from a mutation, while stepwise mutation model 
(SMM) describes microsatellite evolution as stepwise adding or subtracting single 
repeat units. Genetic relationships between individuals can be analyzed in higher 
precision when assuming the SMM scenario with allele size differences as a proxy of 
genetic distance. If population structure is not predetermined in advance, an empiri‐
cal data analysis usually includes (a) estimating proximity between individual SSR pro‐
files with a selected dissimilarity measure and (b) determining putative genetic 
structure of a given set of individuals using methods of clustering and/or ordination 
for the obtained dissimilarity matrix. We developed new dissimilarity indices be‐
tween SSR profiles of haploid, diploid, or polyploid organisms assuming different mu‐
tation models and compared the performance of these indices for determining 
genetic structure with population data and with simulations. More specifically, we 
compared SMM with a constant or variable mutation rate at different SSR loci to IAM 
using data from natural populations of a freshwater bryozoan Cristatella mucedo (dip‐
loid), wheat leaf rust Puccinia triticina (dikaryon), and wheat powdery mildew Blumeria 
graminis (monokaryon). We show that inferences about population genetic structure 
are sensitive to the assumed mutation model. With simulations, we found that Bruvo's 
distance performs generally poorly, while the new metrics are capturing the differ‐
ences in the genetic structure of the populations.
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among molecular markers in that their repeat structure provides in‐
formation on the relatedness of alleles. These intrinsic properties 
of microsatellites make them very powerful for population genetic 
studies and advocate for their use in the future (Allentoft, Heller, 
Holdaway, & Bunce, 2015; Chen, Lu, Zhu, Tamaki, & Qiu, 2017; 
Dufresne, Stift, Vergilino, & Mable, 2014; Nybom, Weising, & Rotter, 
2014; Putman & Carbone, 2014) despite extensive application of 
more recent marker‐rich techniques based on next generation se‐
quencing data.

Two alternative approaches outline how new microsatellite al‐
leles evolve. Stepwise mutation model (SMM) and two‐phase model 
(TPM) describe microsatellite evolution as some combination of 
a regular stepwise change of adding or subtracting single or a few 
repeat units, while infinite alleles model (IAM) assumes a random 
process in which all possible alleles are equally likely to result from a 
mutation at a given microsatellite locus. Microsatellite evolution ac‐
cording to the simple SMM assumes that each mutation adds or sub‐
tracts (with equal probability) a single repeat unit, potentially leading 
to a new allele (Jarne & Lagoda, 1996). Assuming that this type of a 
random walk actually reflects the process of evolutionary change 
in microsatellites, the relative similarity in allele sizes of microsatel‐
lites in two individuals should be a function of the genetic distance 
between them. Therefore, assessment of similarity or dissimilarity 
between SSR genotypes of individuals might be more powerful if 
allele sizes were taken into account (SMM or TPM scenario) rather 
than just comparing numbers of loci at which the individuals have 
different alleles (IAM scenario).

In this paper, we consider between‐individual measures of ge‐
netic dissimilarity rather than among‐population measures of genetic 
differentiation. The efficiency of the among‐population differentia‐
tion measures based on allele identity (IAM) versus allele size (SMM 
or TPM) has been previously discussed (e.g., Hardy, Charbonnel, 
Freville, & Heuertz, 2003). Instead, we focus on how distance be‐
tween SSR alleles can be used to study between‐individual genetic 
dissimilarity and subdivision of individuals to groups. Importantly, 
IAM and SMM (or TPM) models differ essentially in what they as‐
sume about the distance between SSR alleles. The consequences 
of these different assumptions for utility of individual dissimilarity 
measures are largely unknown and the topic of our paper.

Population genetic studies, where no a priori information on 
ancestry of the sampled individuals is available, usually analyze the 
data in following steps.

Step 1. Estimate genetic distance among individuals using the se‐
lected measure of dissimilarity.

Step 2. Use the genetic distance estimates to determine the puta‐
tive among‐individual structure using clustering and/or ordination 
techniques.

Step 3. Evaluate if the revealed subgroups of individuals can be con‐
sidered as separate populations.

Here, we developed new tools for Step 1 and tested their per‐
formance at Step 2 using data from populations of a freshwater 

bryozoan (diploid) and two fungal pathogens of wheat (dikaryon and 
monokaryon).

Pairwise dissimilarity among individuals is the root of many infer‐
ences about structure and diversity of a given set of data. Therefore, 
selection of a proper dissimilarity measure is a key issue of most 
analysis methods (e.g., UPGMA and NJ dendrograms, NMDS ordina‐
tion). The first methods applying dissimilarity between SSR profiles 
required conversion of the microsatellite data to presence–absence 
data (markers were genotyped as dominant instead of codominant 
markers). Each allele of a particular size was considered as an in‐
dependent locus, and an individual binary profile included 1 in the 
corresponding position in the case of presence of that allele or 0 
otherwise. The dissimilarity between the obtained binary profiles 
was then measured with either the simple mismatch, Jaccard, or 
Dice index. Application of these indices to profiles with codominant 
markers is not generally valid even assuming IAM scenario (for de‐
tails see Kosman & Leonard, 2005). In such analysis, only identity 
of the alleles at the same SSR locus is considered and mutational 
processes are ignored. Such treatment leads to loss of potentially 
important information about the extent of similarity between alleles 
of different sizes.

The next generation of methods used microsatellite allele 
size for measuring genetic distances between and differentiation 
among populations (Goldstein, Linares, Cavalli‐Sforza, & Feldman, 
1995a, 1995b; Shriver et al., 1995; Slatkin, 1995). These distances 
were then also applied for comparison among individuals (e.g., 
Udupa, Robertson, Weigand, Baum, & Kahl, 1999; Otter, Murray, 
& Holschuh, 2003). However, when applied to a pair of individuals, 
they do not seem to work properly because some of them do not 
distinguish between individuals with different SSR genotypes, while 
others may discriminate between identical multilocus profiles (see 
“Discussion”).

The most recently published method was suggested by Bruvo, 
Michiels, D'Souza, and Schulenburg (2004), and since then it has 
been the most commonly and increasingly used approach for mea‐
suring dissimilarity between multilocus microsatellite genotypes. 
More specifically, the study received 74 citations in the first 9 years 
after publication (2013–2004), and 93 citations during the last two 
years (2017–2018). At present, the method is adopted in number of 
software packages (e.g., GenoDive, POLYSAT and Poppr) and is one 
of the recommended measures for dissimilarity analyses, especially 
when there is variation in ploidy in the study species. Bruvo's method 
has been applied assuming generalized SMM (Slatkin, 2002) or the 
two‐phase model (TPM) of DiRienzo et al. (1994). Their method re‐
lies on assuming a nonlinear dependence of distance between SSR 
alleles and size difference between those alleles. We will critically 
discuss this method in detail demonstrating its inappropriateness 
for most analyses it is used for (see “Discussion”). Further critique 
toward Bruvo's distance can be found in Meirmans, Liu, and van 
Tienderen (2018).

It is still rare that analyses of dissimilarities between individuals 
with codominant SSR data use information about allele sizes. In most 
cases, such analyses rely on identity of alleles. Our main objective 
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was to develop new indices of dissimilarity for comparison between 
SSR genotypes of haploid, diploid, and polyploid individuals. Ideally, 
these indices reflect true genetic differences between individuals. 
Analysis of genetic differences between individuals gives more ac‐
curate information of the population history, connectedness, mating 
system, and relatedness of individuals in the population. For exam‐
ple, using allele sizes instead of identity makes it easier to evaluate 
the proportion of migrants (gene flow), assess the ancestral popu‐
lation size and population recovery from bottlenecks. It is common 
in population genetic studies to use IAM scenario as it is difficult 
to know exactly what the accurate mutation models are for the 
used SSR loci. In that sense, using IAM is considered as a robust and 
conservative application. We believe that applying IAM scenario to 
analysis of genetic structure is not always conservative, as it may 
miss important and useful information and can even be misleading in 
some cases. Here, we study new indices of dissimilarity in two sce‐
narios, assuming a stepwise mutational process with a constant or 
variable mutation rate among SSR loci. We compared these indices 
by analyzing data from individuals of a motile bryozoan Cristatella 
mucedo (diploid) living in lakes of Switzerland, isolates of wheat rust 
Puccinia triticina Eriks. (dikaryon) collected from wheat in seven re‐
gions of Russia, and wheat powdery mildew Blumeria graminis f. sp. 
tritici (monokaryon) originating from wild and domesticated Triticum 
species in Israel. As it is usually not possible to assume that sam‐
ples from natural populations conform to one specific mutation 
model, we compared the topology of UPGMA trees derived using 
the same data, but based on dissimilarity matrices obtained assum‐
ing different mutation models. We expected that if genetic struc‐
ture of the given populations (relationships between individuals) is 
robust to mutation model assumptions, these different dissimilarity 
measures should yield topologically similar UPGMA trees. This was 
not the case. We discovered that large differences are possible be‐
tween UPGMA trees generated either by assuming IAM (all alleles 
are equally distant) or by assuming SMM (distance between alleles 
depends on their sizes). We also simulated populations of individual 
genotypes to compare the different kinds of dissimilarity measures.

2  | MATERIAL S AND METHODS

2.1 | Mathematical methods

Most mutations at microsatellite loci increase or decrease repeat 
score by a single repeat unit. Therefore, a simple one‐step muta‐
tion model is usually assumed, although more complicated models 
have also been proposed (DiRienzo et al., 1994; Slatkin, 2002). The 
overall genetic dissimilarity between two individuals also depends 
on how similar the mutation process is between the SSR loci. In the 
first scenario, we assume a fixed mutation rate for all loci. Under 
such scenario, it is sufficient to explain allele size variation across loci 
by random distribution of mutational events among loci. However, 
a more realistic assumption is that mutation rate among loci is not 
fixed. Consequently, in the second scenario we assume the mutation 
rates to be variable. Under this scenario, the difference in the range 

of allele sizes is an intrinsic property of the locus, predetermined 
by locus‐specific mutation rates. We further consider and compare 
both scenarios.

Following steps are needed in developing metrics of dissimilarity 
between multilocus microsatellite genotypes for organisms of any 
ploidy:

1.	 Assess allelic dissimilarity between any two SSR alleles using 
an appropriate method.

2.	 Determine differences between SSR genotypes in a given locus 
(for di‐ and polyploids).

3.	 Determine dissimilarity between any two multilocus microsatel‐
lite genotypes by assuming constant and variable mutation rate at 
different SSR loci.

2.1.1 | Assessing allelic dissimilarity between 
SSR alleles

Given the SMM scenario, the first step is to measure differences 
between any two SSR alleles. Let asij = as(Ai) and askj = as(Ak) be 
allele sizes of two alleles Ai and Ak at the polymorphic locus j, re‐
spectively, and ltrj be the length of the tandem repeat unit at the 
locus j; then the difference between alleles Ai and Ak at that locus 

is calculated as Δj

(
Ai,Ak

)
=
|||asij−askj

||| ∕ltrj, which is the difference in 

the number of tandem repeats between the two alleles. For exam‐
ple, if microsatellite consists of three nucleotides, ltrj = 3, and the 
recorded sizes of two alleles are asij = 197 bp and askj = 203 bp, 
then difference between these alleles equals 2. This can be con‐
sidered an approximation of the number of mutation events (tan‐
dem repeat insertions or deletions that are not reversed) that 
result in transition of allele Ai into allele Ak. Even bearing in mind 
the reversed mutations (both increasing and decreasing in allele 
size), which of course may happen, the suggested difference be‐
tween alleles increases with the actual number of mutations under 
assumption that the reversed mutations are randomly and evenly 
distributed across loci. In fact, when mutations that increase or 
decrease the size of the allele by one unit are equally likely, the 
stepwise mutation process can be described as a simple “random 
walk.” In a simple random walk, the distance travelled is propor‐
tional to the square root of steps (Codling, Plank, & S. Benhamou, 
2008). In other words, in this case our approximation of number of 
mutation events becomes the squared difference in the number of 
tandem repeats. However, the theory of “random walk” refers to 
the expected value (average value of large number of repetitions), 
which works for a sample (population) as statistical estimation, but 
is not necessarily correct for each possible value (difference be‐
tween two specific alleles). Moreover, the expected difference 
between alleles after n mutations should be of the order 

√
n for 

relatively large n (as n approaches infinity), although in study of 
closely related (recently diverged) populations small differences 
between SSR alleles may result from just a few mutation events. In 
addition, the TPM scenario of SSR evolution assumes that muta‐
tions of a few repeat units may occur, so that squaring difference 



     |  4041KOSMAN and JOKELA

in the number of tandem repeats may result in overestimating ac‐
tual genetic distance between the corresponding SSR alleles. 
While using the squared differences between SSR alleles maybe 
well justified in phylogenetic analyses that are based on popula‐
tion estimates of allele differences with large number of mutations 
occurring over a long time interval with large number of repeti‐
tions, it is not clear whether squaring differences between alleles 
are a suitable for comparison of individual profiles. For example, it 
does not properly work in examples presented in “discussion.” 
Therefore, we will consider both the absolute and squared differ‐
ences between SSR alleles.

Another question is whether the same difference between two 
pairs of SSR alleles at different loci contributes equally to dissimilar‐
ity between individuals. If the maximum number of tandem repeats 
(mutation events) varies from locus to locus, one can assume that the 
mutation rate is also variable and locus‐specific. For example, strong 
positive correlation between mutation rate and allele sizes has been 
shown by Xu, Peng, Fang, and Xu (2000) and Anmarkrud, Kleven, 
Bachmann, and Lifjeld (2008). Therefore, a particular difference 
Δj

(
Ai,Ak

)
 between two SSR alleles should have a greater impact on 

dissimilarity between individuals at loci where changes happen more 
slowly. In other words, when comparing to other loci, a larger maxi‐
mum number of tandem repeats between alleles in locus j, Δmax(j), sug‐
gests a higher mutation rate in that locus given the same evolutionary 
time among the compared loci. Assuming T is the time of divergence 
for a set of individuals (population) from a single common ancestor, the 
relative average time for one mutation in locus j equals Tj=T∕Δmax(j). 
For simplicity, we ignore back mutations here assuming that the num‐
ber of such events is proportional to the number of insertions at each 
locus. Therefore, Tj is actually proportional to the absolute average 
time for one mutation and can be used for measuring dissimilarity be‐
tween SSR profiles. Using the term “time” below we mean “relative 
time.” Following these notions, a time difference between the two 
events of generating alleles Ai and Ak can be expressed as

 for Δmax(j)=
(
maxj−minj

)
∕ltrj, where maxj and minj are the maxi‐

mum and minimum allele sizes, respectively, detected at locus j. 
Therefore, since the time of divergence, T, is the same for all loci, the 
relative difference between two SSR alleles Ai and Ak at locus j can 
be estimated as

with range 0≤�j
(
Ai,Ak

)
≤1. If back mutations are taken into account, 

then it would be reasonable also to consider the squared version of 
this difference between two SSR alleles:

2.1.2 | Determining differences between SSR 
genotypes in a given locus

The second step is to measure dissimilarity between two individuals 
at any given locus. This can be done using the approach suggested 
empirically by Bruvo et al. (2004, p. 2102, Equations 3 and 4) and 
in general algorithmic form by Kosman and Leonard (2005; p. 420, 
Equation 2) with regard to ρ‐ or ρ2‐distance (Equation 2) or (Equation 
2′), respectively, between SSR alleles. The following explanations 
for ρ‐distances (Equation 2) can be easily reformulated for ρ2‐dis‐
tances (Equation 2′). Dissimilarity between two q‐ploid organisms A 
and B with alleles < A1A2…Aq > and <B1B2…Bq > at locus j is defined 
as follows. To each allele Ai from one genotype, an allele Bk from the 
second genotype is matched so as (a) to generate q different pairs of 
alleles where all alleles Ai and Bk are involved and each allele appears 
in just one pair and (b) to minimize the sum of ρ‐distances �j

(
Ai,Bk

)
 

between q corresponding pairs of alleles. There are q!=1 ∙2 ∙3 ∙⋯ ∙q 
possibilities of the matching between alleles (for instance, for tetra‐
ploid q = 4 and q! = 24). Finding the “best matches” (that delivers 
minimum of the sum of ρ‐distances in our case) is known as the “as‐
signment problem” in operation research (Bellman, Cooke, & Lockett, 
1970; Munkres, 1957). The distance between individuals A and B 
within the locus is determined as the minimum sum of ρ‐distances 
�min(A,B;j) derived for the best matches. This distance meets the par‐
simony principle, that is it expresses the minimum relative number of 
mutations (deletions or insertions of a tandem repeat) needed to get 
one genotype from another at locus j for A and B, which is propor‐
tional to the minimum time required for evolution of one individual 
into another. The normalized version of �min(A,B;j) (obtained by divi‐
sion by ploidy q, i.e., number of chromosome copies) is considered as 
the measure of dissimilarity between individuals A and B at locus j:

so that it. ranges from 0 to 1 and determines the minimum relative 
number of mutations per each copy of haploid genome at locus j for 
generating A from B—a kind of parsimony.

The following is dissimilarity between individuals A and B at 
locus j in the case of ρ2‐distances:

where 
−
�
min

(
A,B;j

)
 is derived for ρ2‐distances (Equation 2′) as �min(A,B;j) 

for ρ‐distances (Equation 2); 0≤
−

dAB (j)≤1.

2.1.3 | Determining dissimilarity between any two 
multilocus microsatellite genotypes

Finally, the dissimilarities between two q‐ploid individuals A and B 
represented by their patterns at n microsatellite loci with regard to 
ρ‐ and ρ2‐distance are determined as follows:

(1)�j
(
Ai,Ak

)
=Δj

(
Ai,Ak

)
∙Tj=T ∙

Δj

(
Ai,Ak

)

Δmax (j)

(2)�j
(
Ai,Ak

)
=
�j
(
Ai,Ak

)

T
=
Δj

(
Ai,Ak

)

Δmax(j)
=

|||asij−askj
||| ∕ltrj(

maxj−minj
)
∕ltrj

=

|||asij−askj
|||

maxj−minj

(2′)�2
j

(
Ai,Ak

)
=

[
Δj

(
Ai,Ak

)

Δmax(j)

]2

=

[
asij−askj

maxj−minj

]2
.

(3)dAB (j)=
�min

(
A,B;j

)

q
,

(3′)−

dAB (j)=

−
�
min

(
A,B;j

)

q
,
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with values in 
[
0,1

]
 interval, where v designates variable rates of mu‐

tations at different loci. dv
AB

 dissimilarity generalizes the measure of 
dissimilarity for haploid organisms (q=1) with SSR markers suggested 
by Ben‐David et al. (2016). Importantly, dissimilarities dv

AB
 (Equation 

4) and 
−

d
v

AB
 (Equation 4′) are obtained by assuming the parsimony prin‐

ciple and the stepwise mutation model with variable rates of muta‐
tions at different loci; scenario of these models is designated SMMv.

Assuming a constant rate of mutations at all loci and ρ‐distances 
(Equation 2) between SSR alleles, another measure of dissimilarity 
dc
AB

 between individuals A and B can be derived, where c designates 
a constant rate. In this case Tj in Equation 1 is the same for all loci, so 
that the divergence time between two alleles Ai and Ak is propor‐
tional to Δj

(
Ai,Ak

)
 independently of locus j. Then Δmin

(
A,B;j

)
 is ob‐

tained as a solution of the corresponding “assignment problem” for 

differences Δj

(
Ai,Ak

)
=
|||asij−askj

||| ∕ltrj exactly the same way as 

�min(A,B;j) was derived for differences �j
(
Ai,Ak

)
 from Equation 2, and 

0≤Δmin

(
A,B;j

)
≤qΔmax(j). Then

with values in 
[
0,1

]
 interval.

Correspondingly, dissimilarity between individuals A and B can 
be determined assuming a constant rate of mutations at all loci and 
ρ2‐distances (Equation 2′) between SSR alleles:

with values in 
[
0,1

]
 interval, where 

−

Δmin

(
A,B;j

)
 is calculated for 

squared values of Δj

(
Ai,Ak

)
 as Δmin

(
A,B;j

)
 for Δj

(
Ai,Ak

)
. Dissimilarities 

dc
AB

 and 
−

d
c

AB
 are obtained by assuming the parsimony principle and the 

stepwise mutation model with a constant rate of mutations at all loci; 
we designate scenario of these models SMMc.

The suggested measures of dissimilarity between individuals 
can be interpreted as the minimum average time needed for transi‐
tion of one randomly selected SSR allele at any locus of one individ‐
ual into an arbitrary SSR allele of the second individual at the same 
locus under the assumption of variable and constant mutation rates 
at different loci. These metrics were developed using the stepwise 
mutation models under SMMv and SMMc scenarios, respectively, 
where dissimilarity between microsatellite alleles was calculated 
based on the allele sizes (ρ‐ or ρ2‐distance). This differs conceptu‐
ally from the infinite alleles model IAM, where the binary difference 
is used, that is all different alleles are equally distant (see equation 
2 in Kosman & Leonard, 2005). If all loci are polymorphic, then IAM 
dissimilarity of SSR genotypes between individuals A and B can be 
estimated as

where �min

(
A,B;j

)
 is obtained as a solution of the corresponding “as‐

signment problem” with regard to differences �j
(
Ai,Ak

)
=1 for any 

two different alleles Ai≠Ak (i≠k), and �j
(
Ai,Ai

)
=0 for all identical 

alleles.
Dissimilarities dc

AB
 and 

−

d
c

AB
 (Equations 5 and 5′) are closely related 

to different measures

respectively, that simply equals minimum average number of muta‐
tions per each copy of haploid genome (MANMC) needed for gen‐
eration of individual (A) from another individual (B) and vice versa.

Dissimilarity‐based approaches allow for effective data analy‐
ses in a case of missing records. Modifying equations for calculating 
dissimilarities between microsatellite genotypes with missing data 
are straightforward. One only needs to sum across all nAB loci with 
available data for both individuals and substitute total number of loci 
n with nAB (nAB≤n) in Equations 4–7.

2.2 | Software

User‐friendly software LOCUS is freely available for computing 
dissimilarities between genotypes of haploid or diploid organisms 
obtained with dominant and codominant (including SSRs under 
assumption of IAM) molecular markers according to Kosman and 
Leonard (2005). The software can be downloaded at https://en-
lifesci.tau.ac.il/profile/kosman. LOCUS also includes computational 
tools for calculating dissimilarities between microsatellite profiles 
developed in this paper (Equations 4, 4′, 5, 5′, 7, 7′) assuming SMM 
scenario. Data with missing records are permitted, and the corre‐
sponding dissimilarities can be calculated. In addition, the output 
includes basic information about a given data set with a number of 
descriptive parameters. LOCUS needs a programming environment 
of the Microsoft.NET Framework, which is an integral Windows 
component.

2.3 | Simulations

We simulated populations of individual genotypes to compare 
the different kinds of dissimilarity measures when the mutation 
model, number of mutations differing between individuals, and 
time from ancestral state for each locus were known exactly. 
All simulations had a similar basic structure. We assigned an 
ancestral allele size to a locus (200 repeats) and simulated the 
evolution of the allele over time using a random walk process. 
For each generation, each locus had a probability to mutate to 
one step longer or to one step shorter drawn from a distribution 

(4)dv
AB

=
1

n
∙

n∑

j=1

dAB (j)=
1

n ∙q
∙

n∑

j=1

�min

(
A,B;j

)
,

(4′)
−

d
v

AB
=
1

n
∙

n∑

j=1

−

dAB (j)=
1

n ∙q
∙

n∑

j=1

−
�
min

(
A,B;j

)
,

(5)dc
AB

=
1

q
∙

∑n

j=1
Δmin

�
A,B;j

�

∑n

j=1
Δmax (j)

(5′)
−

d
c

AB
=
1

q
∙

∑n

j=1

−

Δmin

�
A,B;j

�

∑n

j=1

�
Δmax (j)

�2

(6)�AB=
1

q
∙

∑n

j=1
�min

�
A,B;j

�

n
,

(7)dm
AB

=
1

n ∙q
∙

n∑

j=1

Δmin

(
A,B;j

)
,

(7′)
−

d
m

AB
=

1

n ∙q
∙

n∑

j=1

−

Δmin

(
A,B;j

)
,

https://en-lifesci.tau.ac.il/profile/kosman
https://en-lifesci.tau.ac.il/profile/kosman
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with mean probability 0.25 and variance 0.02. Maximum prob‐
ability for mutation event was 0.5. The simulation kept track of 
the present allele size, number of mutation events, and number 
of generations from the ancestor. For simulations with variable 
mutation rate per locus, we assigned each locus separately a 
mutation probability for each generation from the same random 
distribution as above.

We simulated both haploid clonal and haploid sexual gen‐
otypes. For haploid clonal lineages, eight loci were started si‐
multaneously as a linked set of loci. Each had their independent 
mutation process over a same number of generations that was de‐
cided by the specific simulation. Sexual haploid lineages were as‐
sembled independently from eight single locus lineages that were 
each evolving a simulation specific, and usually a different number 
of generations from the ancestor.

All simulations were written with the R‐software (version 3.4.2). 
Code for the simulations is available in the supplement. The gener‐
ated populations of genotypes were then further analyzed with 
LOCUS to compute alternative dissimilarity measures. We used the 
simulated data to evaluate goodness of fit of predicted genetic dis‐
tances between genotypes using each dissimilarity measure (dc

AB
, dv

AB
, 

their “squared” versions 
−

d
c

AB
=
(
dc
AB

)2

 and 
−

d
v

AB
=
(
dv
AB

)2

 for haploids, 

and Bruvo's distance) to the known values of differences in number 
of generations and mutations. We estimated the fit using the root‐
mean‐square error (RMSE), the coefficient of variation of the RMSE 
[CV(RMSE)], the mean absolute error (MAE), and the R2 criteria 

(Table 1). RMSE and MAE are absolute measures of fit, while 
CV(RMSE) and R2 are relative measures of fit.

2.4 | Empirical data

We analyzed the following three data sets.

1.	 Bryozoans

Cristatella mucedo is a diploid freshwater bryozoan. For this 
study, we used data on eight microsatellite loci (Table 2) that 
were used to describe the genetic structure of Cristatella popula‐
tions in Switzerland (Dünner, ETH‐Zurich, MSc‐thesis). Data were 
collected in 2012 hierarchically at different spatial scales. The 
data set consists of 197 Cristatella colonies from six large lakes. 
Collections were replicated within‐lakes by sampling several lo‐
cations and within local patches by sampling several colonies per 
patch (Dünner, ETH‐Zurich, MSc‐thesis). Five of the used loci are 
described in Freeland, Jones, Noble, and Okamura (1999) (loci 1.1, 
2.2, 2.9, 6.7, 9.4) the remaining three are unpublished.

2.	 Wheat leaf rust

The data that we use consist of genotypes of single‐uredinial iso‐
lates of Puccinia triticina Eriks. (wheat leaf rust) collected from wheat in 
Russia in 2006–2014. Data analysis is based on eighteen microsatellite 

Simulation attributes Goodness of fit estimates

Scenario

Difference between alleles

RMSEc  CV(RMSE)d  MAEe  R2f Predicted Actual number of

SMMc_1 dc
AB

a  Generations 0.092 0.304 0.075 0.925
−

d

c

AB

a  0.041 0.366 0.030 0.921

dc
AB

Mutations 0.094 0.311 0.077 0.921
−

d

c

AB

0.043 0.377 0.031 0.915

SMMc_2 dc
AB

Generations 0.093 0.326 0.077 0.914
−

d

c

AB

0.040 0.404 0.029 0.903

SMMvb  dv
AB

b  Generations 0.107 0.364 0.089 0.889
−

d

v

AB

b  0.043 0.423 0.032 0.885

dv
AB

Mutations 0.110 0.376 0.091 0.882
−

d

v

AB

0.045 0.441 0.034 0.874

Note. Models were forced through zero intercept. SMMc_1 describes a stepwise mutation model 
simulation with constant mutation rate across loci after on average 691 generations of evolution 
(max = 1,362, min = 5); SMMc_2 respectively describes a stepwise mutation model simulation with 
constant rate of mutations across loci after on average 456 generations of evolution (max = 891, 
min = 2); SMMv describes a stepwise mutation model simulation with variable rate of mutations 
across loci after on average 254 generations of evolution (max = 518, min = 1). In each simulation a 
population of 100 individuals was sampled from a single haploid pedigree.
aDissimilarities for the SMMc (Equations 5 and 5′). bDissimilarities for the SMMv (Equations 4 and 
4′). cRoot‐mean‐square error (RMSE). dCoefficient of variation of the RMSE. eMean absolute error 
(MAE). fR‐square criterion. 

TA B L E  1   Summary of linear models 
where known relatedness between pairs 
of genotypes (either in mutation or 
generation number) is predicted with 
genetic dissimilarity measures under 
different scenarios of SSR evolution
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markers (Table 3; for details see Gultyaeva et al., 2017). In total, SSR 
genotypes of 192 isolates of wheat leaf rust were determined. P. trit-
icina fungi are dikaryons where each cell is carrying two haploid nuclei. 
For using SSR markers this is similar to having a diploid organism.

3.	 Wheat powdery mildew

A sample of Blumeria graminis f. sp. tritici (Bgt, wheat powdery 
mildew) isolates were collected from wild (Triticum dicoccoides) and 
domesticated (Triticum aestivum and Triticum durum) wheat species 
growing in Israel. Simple sequence repeats (SSR) alleles were deter‐
mined for 57 isolates (19, 24 and 14 from T. dicoccoides, T. aestivum, 

and T. durum, respectively) with seven SSR markers (Table 4; for details 
see Ben‐David et al., 2016). Bgt fungi are monokaryons i.e., haploid.

2.5 | Data analysis

Dissimilarities dv
AB

, dc
AB

, �AB, and dm
AB

 (Equations 4–7, respectively) 
between individual SSR genotypes were calculated using LOCUS 
software (see above) for each dataset. We used the Mantel test 
(Mantel, 1967) to test the correlation of dissimilarity matrixes calcu‐
lated with different measures for each pair of matrices for all three 
data sets. This allowed us to evaluate to which extent the different 
dissimilarity measures were in agreement when used on the same 

TA B L E  2   SSR allele composition of Cristatella mucedo population (197 colonies)

Locus Repeat sizea  Missing data

Allele sizea 
Max difference 
between allelesb  Number of alleles

Proportion of 
homozygotesmin max

1 2 0 197 229 16 9 0

2 2 4 242 270 14 8 0.28

3 2 1 207 309 51 7 0.08

4 2 0 102 194 46 12 0.22

5 3 0 188 221 11 7 0.06

6 2 0 194 208 7 7 0

7 2 0 244 254 5 4 0.22

8 2 0 154 208 27 11 0.02
aNumber of nucleotides. bNumber of tandem repeats. 

TA B L E  3   SSR allele composition of 192 isolates of Puccinia triticina Eriks

Locus Repeat sizea  Missing data

Allele sizea 
Max difference 
between allelesb  Number of alleles

Proportion of 
homozygotesmin max

1 2 0 127 131 2 3 0.90

2 2 0 365 369 2 3 0.86

3 2 0 306 310 2 3 0.99

4 2 0 296 302 3 3 0.31

5 2 0 391 395 2 3 0.99

6 2 0 383 387 2 3 0.87

7 2 0 245 247 1 2 0.49

8 3 0 476 479 1 2 0.79

9 2 0 392 396 2 2 0.41

10 3 0 233 242 3 4 0.20

11 2 0 216 218 1 2 0.15

12 2 0 215 217 1 2 0.36

13 2 0 211 215 2 3 0.42

14 3 0 344 350 2 3 0.73

15 3 0 150 153 1 2 0.96

16 2 0 349 351 1 2 0.93

17 2 0 244 246 1 2 0.56

18 2 0 313 333 10 4 0.59
aNumber of nucleotides. bNumber of tandem repeats. 
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dataset. Mantel tests were calculated using the MXCOMP program 
of NTSYSpc package, version 2.2 (Exeter Software, Setauket, NY).

In addition, we tested the correspondence between clustering 
solutions obtained with the UPGMA dendrograms given the different 
models for measuring dissimilarity between SSR profiles. The UPGMA 
dendrograms with regard to each dissimilarity index were calculated 
using Mega7 (MEGA7: Molecular Evolutionary Genetics Analysis ver‐
sion 7.0 for bigger datasets (Kumar, Stecher, & Tamura, 2016)). For 
each dendrogram, the cophenetic ultrametric dissimilarities were cal‐
culated for all pairs of individuals (tips in a dendrogram) with COPH 
module of NTSYSpc package, version 2.2 (Exeter Software, Setauket, 
NY). When relevant, the goodness of fit for clustering with different 
dissimilarity matrices (matching the dendrogram structures derived 
with different models for comparison of SSR genotypes) was tested 
using the Mantel test (the MXCOMP program of NTSYSpc).

We visualized the differences between the UPGMA trees that 
were calculated based on different mutation model‐specific pairwise 
dissimilarities using “cophenoplot” function in r‐package “ape.” We 
also calculated the normalized symmetric difference (Robinson–
Foulds distance) in the topology between the UMGMA trees using 
the r‐package “phangorn” (Schliep, 2011).

3  | RESULTS

3.1 | Simulations

The simulation results show that the Bruvo's distance between SSR al‐
leles (equation 2 in Bruvo et al., 2004; Equation 8) does not express 
the corresponding actual differences between alleles in number of gen‐
erations or mutations (Supporting information Figure S1). Correlations 
between the predicted distances and the actual differences between 
genotypes varied in a wide interval from 0.15 to 0.9 for the separate 
loci. Therefore, we simulated lineages assuming either variable or con‐
stant mutation rate and compared the average values of the predicted 
genetic distances across eight loci to the actual differences between the 
genotypes measured in number of generations or number of mutations.

Table 1 summarizes how well different dissimilarity measures 

(dc
AB

, dv
AB

 and their “squared” values 
−

d
c

AB
=
(
dc
AB

)2

 and 
−

d
v

AB
=
(
dv
AB

)2

, re‐

spectively) predict true distance between genotypes. We compared 
the relative performance of squared dissimilarity values to non‐
squared ones in two scenarios where one hundred individuals were 
separated for a large number of generations (SSMc_1 average pair‐
wise difference = 460 generations, max = 1,357, min = 1) or a fewer 
number of generations (SMMc_2 average pairwise difference = 286 
generations, max = 892, min = 1). Qualitatively, the effect of “squar‐
ing” the dissimilarity measures was small. Root‐mean‐square error 
(RMSE) and mean absolute error (MAE) was always higher for non‐
squared measures, suggesting poorer fit, but relative measures of fit 
CV(RMSE) and R2 indicated better performance for the nonsquared 
measures (Table 1).

Using simulations, we also found that when we calculate the 
predicted distance of genotypes first assuming constant mutation 
rate and then use the same data assuming variable mutation rate, 
the two estimates are highly correlated. Interestingly, this was 
independent of the type of actual mutation rate used in the sim‐
ulation. In other words, the two measures were highly correlated 
both when dc

AB
 dissimilarity for constant mutation rate was applied 

to data where loci had a variable mutation rate, and vice versa 
when dv

AB
 was applied to simulated data where loci had a constant 

mutation rate.
Genetic distance between the simulated haploid sexual SSR 

genotypes and difference in average age of those genotypes did 
not correlate. Age of the genotype was measured as the average 
number of generations the alleles of the loci were from the an‐
cestor. We tested the correlation using a simulation where mu‐
tation rate of the loci was kept constant. We also considered a 
scenario where alleles of a genotype were nearly the same age. 
We simulated this by producing genotypes where the difference 
in number of generations from a common ancestor did not ex‐
ceed nine. However, we found the same result—no correlation 
between genetic distance and difference in average age of the 
genotypes. We then generated groups of genotypes of nearly 
the same age with a fixed average difference in age between 
the groups. More specifically, we generated 100 groups with 20 
genotypes at each, setting the age difference to 15 generations 
between the successive groups. We then calculated pairwise dis‐
tances of average differences between groups (DAD; Kosman & 

TA B L E  4   SSR allele composition of 57 isolates of Blumeria graminis f. sp. tritici

Locus Repeat sizea  Missing data

Allele sizea 
Max difference between 
allelesb  Number of allelesmin max

1 3 14 155 509 118 28

2 4 5 276 284 2 3

3 2 1 180 202 11 11

4 3 4 243 303 20 10

5 4 1 153 165 3 4

6 4 3 192 260 17 10

7 3 4 266 560 98 27
aNumber of nucleotides. bNumber of tandem repeats. 
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Leonard, 2007; Kosman, 2014) using dc
AB

 and 
−

d
c

AB
 dissimilarities and 

compared with the corresponding differences in the age of the 
groups (multiples of 15). The predicted relatedness of genotypes 
based on the dc

AB
 distance was much stronger than that for the 

−

d
c

AB
 

distance (R2 = 0.873 vs. 0.403, and CV(RMSE) = 0.399 vs. 0.973; 
Supporting information Figure S2).

We discovered a similar relationships between genetic distance 
and age for haploid clonal genotypes with the dc

AB
 and dm

AB
 dissimilar‐

ities, which is rather expected due to resemblance of the definitions 
(Equations 5 and 7). This result was independent of whether the sim‐
ulation scenario was based on either constant (SMMc) or variable 
(SMMv) mutation rates at different loci.

3.2 | Bryozoans

We genotyped 197 colonies of Cristatella mucedo for 8 microsatellite 
loci (see Table 2 for overview of loci). Allele differences were large 
across the loci varying from 5 to 51 repeat units (Table 2). Two loci 
had less variation in allele differences (five and seven repeat units), 
four loci were in the moderate range (11–27 repeat unit differ‐
ences), and two loci had large difference in repeat numbers (46 and 
51). Only 0.3% of genotype data were missing (five individuals had 
a genotype where data for one locus was missing). We calculated 
the dissimilarities dv

AB
, dc

AB
, �AB, and dm

AB
 between individual genotypes 

using Equations 4–7, respectively and adjusted for missing data (see 
Discussion) with n≤8 (number of loci with available data for both 
genotypes in each pairwise comparison) and q=2 because Cristatella 
is diploid.

Correlations between different dissimilarity matrixes varied 
from low to high (0.374–0.931) (Mantel tests, Table 5a, below diag‐
onal). We also found statistically significant correlations between 
cophenetic ultrametric distance matrixes generated from the cor‐
responding UPGMA dendrograms (Table 5a, above diagonal val‐
ues). Nearly absolute correlation between dissimilarities obtained 
with dc

AB
 and dm

AB
 is expected from their definitions (Equations 5 and 

7) when just a few data are missing. Except for this, we found the 
highest correlation between dissimilarities �AB and dv

AB
 for IAM and 

SMM with variable mutation rate (0.896) and the corresponding 
cophenetic ultrametric distances (0.931). Correlation between 
dissimilarities dv

AB
 and dc

AB
 for SMMv and SMMc, respectively, was 

also relatively high (0.814), though association between the cor‐
responding cophenetic distances was much weaker (0.505). Apart 
from the results for IAM and SMMv, all correlations between the 
original matrices were larger than those for the corresponding ul‐
trametric distances.

Comparison of the topology of UPGMA trees revealed large 
differences between trees that were derived assuming different 
mutation models (Figure 1). Differences in the topology generated 
assuming the IAM scenario versus those for SMM with constant 
and variable mutation rate were 25% and 24%, respectively, while 
the difference between topologies of the two SMM trees was 15% 
(Figure 1).

3.3 | Wheat leaf rust

We had genotype data for 192 P. triticina isolates covering 18 mi‐
crosatellite loci (see Table 3 for overview of data). Differences be‐
tween the SSR alleles were generally very small (1–3 repeat units) 
with the exception at one locus where the alleles were 10 repeat 
units apart. There were no missing data. We calculated four differ‐
ent types of dissimilarities dv

AB
, dc

AB
, �AB, and dm

AB
 between individual 

genotypes using Equations 4–7, respectively, for n=18 (number of 
loci) and q=2.

Comparison of the resulting dissimilarity matrixes using Mantel's 
tests showed that the matrixes correlated statistically significantly, 
but the correlations differed in magnitude (Table 5b, below diagonal 
values). Similar analysis comparing UPGMA derived cophenetic ul‐
trametric distances is presented in Table 5b (above diagonal values). 
We found a very strong correlation (r = 0.954) between dissimilarity 
matrixes calculated with �AB and dv

AB
 measures, while the correlation 

between corresponding cophenetic distances was weaker, but still 
high (r = 0.818). All other correlations were of moderate level, and 
the estimates obtained for the original matrices were larger than 
those for the corresponding ultrametric distances.

As expected from definitions (Equations 5 and 7) in the case of 
no missing data, the dissimilarities obtained with dc

AB
 and dm

AB
 were 

TA B L E  5   Association between original dissimilarity matrixes 
(below diagonal) and cophenetic ultrametric distances for UPGMA 
dendrograms obtained with the corresponding dissimilarities (above 
diagonal) measured with Mantel tests for (a) Cristatella mucedo 
population; (b) collection of Puccinia triticina isolates; and (c) 
collection of Blumeria graminis isolates

IAM MANMC SMMc SMMv

(a)

IAM 0.374 0.375 0.931

MANMC 0.59 0.999 0.504

SMMc 0.591 0.999 0.505

SMMv 0.896 0.814 0.814

(b)

IAM 0.729 0.728 0.818

MANMC 0.766 1 0.665

SMMc 0.766 1 0.665

SMMv 0.954 0.805 0.805

(c)

IAM 0.229 0.253 0.508

MANMC 0.401 0.847 0.641

SMMc 0.309 0.876 0.718

SMMv 0.616 0.698 0.765

Note. IAM: �AB dissimilarity for the infinite alleles model (Equation 6); 
MANMC: dm

AB
 dissimilarity (minimum average number of mutations per a 

copy of haploid genome; Equation 7); SMMc: dc
AB

 dissimilarity for the 
stepwise mutation model with a constant rate of mutations (Equation 5); 
SMMv: dv

AB
 dissimilarity for the stepwise mutation model with a variable 

rate of mutations (Equation 4).
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IAMSMM with constant mutation rate(a)

SMM with constant mutation rate SMM with variable mutation rate(b)

IAM SMM with variable mutation rate(c)
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absolutely correlated. Consequently, the corresponding matrices of 
cophenetic distances are also in total agreement.

Comparison of the topology of UPGMA trees revealed large dif‐
ferences between trees derived assuming different mutation models 
(Figure 2). Differences between IAM and SMM with constant and 
variable mutation rate based UPGMA topologies were 23% for both 
comparisons, while the difference between topologies of the two 
SMM trees was 27% (Figure 2).

3.4 | Wheat powdery mildew

We had genotype data of 57 B. graminis isolates from wild and 
domesticated wheats in 7 microsatellite loci (see Table 4 for over‐
view). Differences between the SSR alleles were very large (2–118 
repeat units). Two loci had small differences between alleles (2 and 
3 repeat units), three loci had moderate differences (11–20 repeat 
units), and two loci had very large differences in repeat numbers 
(98, and 118). Missing data were common (among 8% of genotypes 
in total, about 40% were in locus #1). We calculated the differ‐
ent types of dissimilarities dv

AB
, dc

AB
, �AB, and dm

AB
 between individual 

genotypes using Equations 4–7, respectively, adjusting for missing 
data (see Discussion) with n≤7 (number of loci with available data 
for both genotypes in each pairwise comparison) and q=1 because 
B. graminis is monokaryotic fungi (equivalent to haploid).

Correlations between all dissimilarity matrixes were statistically 
significant (Table 5c). The strength of correlation coefficients varied 
from low to moderate (0.229–0.765). Only the correlation between 
dc
AB

 and dm
AB

 dissimilarities was high (r = 0.876) as was for the corre‐
sponding cophenetic distances (0.847). Except for this, the results 
obtained with SMM for variable and constant mutation rates were 
the most qualitatively similar with correlations 0.765 and 0.718 for 
original dissimilarities dv

AB
 and dc

AB
 and cophenetic distances, respec‐

tively. All estimates of association between the original matrices 
were larger than those for the corresponding ultrametric distances.

The resulting UPGMA topologies were highly affected by the as‐
sumed mutation model (Figure 3). Topology of IAM‐based UPGMA 
tree differed from both SMM trees by >75% (Figure 3). Also, the two 
SMM‐based trees differed by 69% (Figure 3), indicating how profound 
effect the choice of dissimilarity metric had on the resulting topology.

Our results using empirical data sets (Supporting information 
Table S1) demonstrate that the mode of SSR evolution (constant 
or variable mutation rate) has a much larger influence on inferred 
relationship between individuals than the way of measuring the 
evolutionary difference between SSR alleles (absolute vs. squared 
difference). We found that the two dissimilarity measures assuming 
either constant or variable mutation rates differed by a large effect 

when analyzing real data, while for the simulated data the difference 
was minor (see above).

4  | DISCUSSION

We propose new metrics for measuring dissimilarity between SSR 
genotypes because the existing ones do not seem to work properly 
as explained in the next two sections. We compare and discuss the 
utility of the newly suggested approaches for analyzing variation 
within and among populations.

4.1 | Allele size‐based distance measures developed 
for populations of diploid organisms do not properly 
work when adjusted to individuals

Two distance measures for comparison between diploid populations 
on the basis of microsatellite data were developed by Goldstein, 
Linares, Cavalli‐Sforza, and Feldman (1995a), Goldstein, Linares, 
Cavalli‐Sforza, and Feldman (1995b): the average squared distance 
D1 (ASD method) and the squared difference between the means of 
allele size in two populations (δμ)2 (SMD method). Slatkin (1995) sug‐
gested a measure of differentiation among populations, RST. Since 
a single individual can formally be considered as population that 
consists of one entity, these indices were also mechanistically used 
for comparison of individuals (for instance, see Udupa et al., 1999). 
The following example demonstrates shortcomings of applications 
D1, (δμ)2, and RST to measuring dissimilarity between SSR genotypes.

Let us consider profiles of four diploid individuals at a single 
SSR locus with a repeating motif consisting of two nucleotide 
bases and primer length of 19 nucleotides: i1= (41,53); i2= (43,51)

; i3= (45,49); and i4= (43,51). Then, in terms of numbers of repeat 
motifs (actual allele sizes): i1= (11,17); i2= (12,16); i3= (13,15); and 
i4= (12,16). The mean allele sizes for all individuals are equal: 
�1= (11+17)∕2=14, �2= (12+16)∕2=14, �3= (13+15)∕2=14, and 
�4= (12+16)∕2=14. Therefore, according to (δμ)2, these individu‐
als are interpreted as “identical” because 

(
�k−�j

)2
=
(
14−14

)2
=0 

for k, j = 1,2,3,4. Slatkin's differentiation coefficient RST does not 
distinguish between the second and third individuals because 
RST

(
i2,i3

)
=0 either. On the other hand,

that is two individuals i2 and i4 with identical profiles are interpreted 
as different according to D1. Thus, neither (δμ)2 and D1 distances nor 

D1

(
i2,i4

)
=
(
12−12

)2
∙
1

2
∙
1

2
+
(
12−16

)2
∙
1

2
∙
1

2
+
(
16−12

)2
∙
1

2
∙
1

2
+

(
16−16

)2
∙
1

2
∙
1

2
=8,

F I G U R E  1   Comparison of UPGMA trees calculated for the Cristatella mucedo dataset using different pairwise dissimilarity matrices. 
Normalized symmetric difference (Robinson–Foulds distance) reports the proportion of partitions that are not shared between the trees, 
while the Branch Score Difference is a measure of branch length differences between the two trees (Steel & Penny, 1993). (a) Comparison 
between UPGMA trees calculated assuming SSM with constant mutation rate (dc

AB
) and IAM (�AB). (b) Comparison between UPGMA trees 

calculated assuming SSM with constant mutation rate (dc
AB

) and SSM with variable mutation rate (dv
AB

). (c) Comparison between UPGMA trees 
calculated assuming SSM with variable mutation rate (dv

AB
) and IAM (�AB)
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RST coefficient of differentiation are relevant since they distort ac‐
tual relationships between individuals.

4.2 | Bruvo's distance is not suitable for measuring 
difference between SSR alleles

New measures of dissimilarity between microsatellite genotypes 
were developed assuming that distance between microsatellite al‐
leles is associated with the difference between sizes (number of tan‐
dem repeats) of those alleles (Equations 2 and 2′). This idea was first 
realized by Bruvo et al. (2004), although they did not raise it directly 
or address in detail in their study.

Bruvo's distance between SSR alleles (Bruvo et al., 2004) was 
suggested as a consequence of the generalized stepwise mutation 
model (SMM), in which mutations may result in an increase or de‐
crease by any finite number of repeat units (Slatkin, 2002). The 
Bruvo's distance between two SSR alleles with differences k in the 
number of repeat units was determined as

(equation 2 in Bruvo et al., 2004; see Appendix S1 for details). The idea 
of measuring dissimilarity between microsatellite alleles with nonlin‐
ear functions of the corresponding differences in allele sizes can be 
further developed (see Appendix S1). However, Bruvo's distance does 
not properly express actual differences between SSR loci (shown by 
simulations; Supporting information Figure S1) mainly because it al‐
most immediately approaches its maximum value even for relatively 
small differences between alleles. Effectively, differences in four and 
more repeat sizes make the alleles “absolutely” different. Moreover, 
this means that any two alleles with differences of more than five re‐
peat sizes from a given allele are nearly equally maximally distant from 
the latter one, that is sensitivity of the Bruvo's distance is very low.

4.3 | Model comparisons—simulations

Simulation results under the SMM scenario clearly demonstrated 
that the commonly used Bruvo's distance between SSR alleles is 
inappropriate when differences between allele sizes exceed five 
tandem repeats (Supporting information Figure S1). Simulations in 
general proved powerful for examining the sensitivity of the pro‐
posed metrics and their interpretation with respect to different 
evolutionary scenarios of SSR loci. Especially, valuable is the op‐
portunity to relate the differences in allele sizes to variation in true 
relatedness among individuals. Since comparison of populations is 
usually based on the squared differences between alleles, we also 
analyzed the same metrics with regard to the squared differences. 

The results of our simulations suggest that the predictive power of 
the dissimilarity measures that are based on the absolute differences 
between allele sizes is generally stronger or equal to that based on 
the squared differences.

4.4 | Model comparisons—experimental data

Following the results of simulations, only the newly developed 
metrics that base on the absolute differences between allele sizes 
(Equation 2) were compared with real data. The four different types 
of dissimilarities dv

AB
, dc

AB
, �AB, and dm

AB
 between individual SSR geno‐

types (Equations 4–7, respectively) correspond to the three models 
of microsatellite evolution: IAM (�AB), SMMc (dc

AB
 and dm

AB
), and SMMv 

(dv
AB

). In the case of no missing data, two dissimilarities dc
AB

 and dm
AB

 
are totally correlated providing absolutely congruent solutions of 
all research problems based on manipulations with dissimilarity ma‐
trices (e.g., clustering, ordination, diversity analyses etc.). However, 
increasing amount of missing identifications of SSR alleles may lead 
to discrepancy in results obtained with the two dissimilarities related 
to SMMc (see analysis of wheat powdery mildew isolates, Table 5c). 
Therefore, assuming SMMc scenario, we would recommend using 
dc
AB

 dissimilarity, which is less sensitive for missing data. So, we will 
further compare only three dissimilarities dv

AB
, dc

AB
, and �AB, one for 

each of the three models of microsatellite evolution.
In our analysis of the three empirical data sets, we found that 

different model‐dependent approaches to measuring dissimilarity 
may generally lead to inconsistent description of the relationships 
between SSR genotypes in both the original measures and those de‐
rived from the UPGMA dendrograms (Table 5). Except for one case 
(bryozoans with dissimilarities related to IAM and SMMv), correla‐
tions were usually lower for cophenetic ultrametric distances than 
for corresponding original dissimilarities based on each of the con‐
sidered models. This means that absence of absolute correlation be‐
tween original dissimilarities for different models has probably even 
stronger effect on disagreement in relationships between genotypes 
as displayed in the corresponding structured forms shaped by a clus‐
tering method (e.g., UPGMA dendrogram in our case).

Even if two original dissimilarity matrices correlate from mod‐
erate to high extent, further analyses based on those dissimilarities 
may describe the system in question incongruently and result in 
contradictory conclusions. The empirical data we analyzed did not 
provide any clear indication on which models and dissimilarities 
deliver the most compatible outcomes with matching conclusions. 
For example, the most correlated dissimilarities for bryozoan and 
leaf rust genotypes were dv

AB
 and �AB for SMMv and IAM scenarios 

of microsatellite evolution. On the other hand, for powdery mildew 

(8)da=1−2−|k|

F I G U R E  2   Comparison of UPGMA trees calculated for the leaf rust (Puccinia triticina) dataset using different pairwise dissimilarity 
matrices. Normalized symmetric difference (Robinson–Foulds distance) reports the proportion of partitions that are not shared between 
the trees, while the Branch Score Difference is a measure of branch length differences between the two trees (Steel & Penny, 1993). (a) 
Comparison between UPGMA trees calculated assuming SSM with constant mutation rate (dc

AB
) and IAM (�AB). (b) Comparison between 

UPGMA trees calculated assuming SSM with constant mutation rate (dc
AB

) and SSM with variable mutation rate (dv
AB

). (c) Comparison between 
UPGMA trees calculated assuming SSM with variable mutation rate (dv

AB
) and IAM (�AB)
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F I G U R E  3   Comparison of UPGMA 
trees calculated for the powdery mildew 
(Blumeria graminis) dataset using different 
pairwise dissimilarity matrices. Normalized 
symmetric difference (Robinson–Foulds 
distance) reports the proportion of 
partitions that are not shared between the 
trees, while the Branch Score Difference 
is a measure of branch length differences 
between the two trees (Steel & Penny, 
1993). (a) Comparison between UPGMA 
trees calculated assuming SSM with 
constant mutation rate (dc

AB
) and IAM (�AB).  

(b) Comparison between UPGMA trees 
calculated assuming SSM with constant 
mutation rate (dc

AB
) and SSM with variable 

mutation rate (dv
AB

). (c) Comparison 
between UPGMA trees calculated 
assuming SSM with variable mutation rate 
(dv

AB
) and IAM (�AB)
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SSR genotypes the highest association was between dv
AB

 and dc
AB

 
dissimilarities for two stepwise mutation models with variable and 
constant mutation rate. We found relatively large topological dif‐
ferences in the UPGMA trees calculated using different dissimi‐
larity measures for SSR genotypes (Figures 1‒3), suggesting that 
assumptions of the underlying mutation model have significant 
consequences for inferences on genetic structure within sampled 
individuals. This is a somewhat problematic finding as such use of 
SSR markers is common in ecological population genetics. Since 
results and inferences obtained with different models are not gen‐
erally consistent, selection of a theoretically suitable dissimilarity 
measure becomes a key issue in performing adequate and valid 
dissimilarity‐based analyses. However, simple solution does not 
seem possible because mode of SSRs evolution and hidden sub‐
division of individuals into groups within natural populations are 
generally unknown. Therefore, we suggest exploratory analyses of 
genetic relationships between sampled individuals using a few rel‐
evant methods for SSR profiles (e.g., dissimilarities for IAM, SMMc, 
and SMMv mutation models, and SMM with Bruvo's distance be‐
tween SSR alleles) to formulate hypotheses about the structure 
of individuals within the sample on the basis of each method. The 
suggested hypotheses can be further tested either with logically 
consistent tools of population genetics (e.g., differentiation among 
putative groups of individuals), or biological experiments to deter‐
mine and justify well interpretable population subdivision.

4.5 | Relationship among populations

Despite comparison of populations is beyond the main objective of 
our study, we comment on the possibility for a hidden link between 
diversity within and among populations, and dissimilarity between 
individuals.

Both microsatellite mutation models are relevant for the two dif‐
ferent approaches that are commonly used for analyzing genetic diver‐
sity and structure of populations with SSR markers. The first common 
use of SSR data is to simply count alleles and their frequencies at each 
locus, calculating within locus statistics independently of other loci, 
usually averaging the corresponding statistics across all loci. The 
second common use of SSR data is to measure dissimilarity between 
SSR profiles of individuals across loci, and use the attained matrix of 
pairwise dissimilarities for exploratory analysis (e.g., clustering, ordi‐
nation) and/or assessment of population characteristics (Excoffier, 
Smouse, & Quattro, 1992; Kosman, 2014; Kosman & Leonard, 2007). 
Dealing with the entire multilocus, individual patterns for calculating 
dissimilarities between individuals presumes that associations among 
alleles at different loci are taken into account, in contrast to the allele 
frequency approach. We call these two approaches “allele frequency” 
and “dissimilarity” methods, respectively. The latter methods can be 
subdivided into two different groups—those based on “averaging” 
and those based on “assignment” (Kosman, 2014; Kosman & Leonard, 
2007). Remarkably, some allele frequency and average‐based dissim‐
ilarity methods can be identical (e.g., Kosman, 2003), so there is no 
absolute separation between them.

One important distinction between the allele frequency versus 
dissimilarity methods is the use of information about proximity be‐
tween different SSR alleles determined in terms of allele sizes. With 
the allele frequency methods, all alleles are implicitly considered as 
equally distant. This means that the data are analyzed assuming in‐
finite alleles model (IAM), that is any mutation of one allele into any 
other one is equally probable. The stepwise mutation model (SMM) 
and two‐phase model (TPM) assumes that mutations are more likely 
between SSR alleles that are closer in size. Therefore, considering 
degree of difference between alleles (proximity of the correspond‐
ing allele sizes) in dissimilarity‐based approaches may improve 
resolution and accuracy of data analysis. Yet, dissimilarity‐based 
approaches can also be implemented when only identity of alleles 
is considered. Thus, a suitable dissimilarity measure may yield valid 
applications under assumptions of SSR evolution scenarios.

Dissimilarity‐based approaches can be effectively used in a case 
of missing data, which is a common problem when using multilo‐
cus genotyping with molecular markers (Schluter & Harris, 2006). 
Missing data are usually dealt with either by eliminating loci or in‐
dividuals with missing data, or by imputing values to replace the 
missing ones. Imputing is done according to a special algorithms and 
statistical properties of the given data set. Cutting loci or individuals 
leads to loss of data, which can be significant, while in the case of 
imputing data the issue of valid interpretation of the results neces‐
sarily raises because of some uncertainty in analyzing the partially 
fictive data. Fortunately, dissimilarity‐based approaches avoid such 
problems. If dissimilarity between genotypes is defined as “average” 
across loci (that is always possible), then for a given pair of individ‐
uals it can be calculated using the data that are available for those 
individuals. One needs to omit records only for affected loci of one 
of the individuals compared and just for the considered pair of gen‐
otypes. This effectively uses almost all the available information in 
the original data and analyses with simulated data are not necessary.

5  | CONCLUSIONS

We derived new dissimilarity measures for microsatellite profiles of 
haploid, diploid, and polyploid organisms assuming different basic 
models of SSR allele evolution. Goodness of fit of these measures 
for determining actual relatedness among SSR genotypes versus 
their squared versions and the most commonly used Bruvo's dis‐
tance was evaluated using simulations. It was shown that (a) the 
Bruvo's distance is not generally suitable for proper analyses of 
SSR genotypes under assumption of the SMM scenario; (b) the 
newly developed measures based on simple differences between 
allele sizes provide more accurate assessments of relationships 
between SSR genotypes as compared with the measures based on 
the squared differences between alleles. We also demonstrated 
that commonly used measures of distance between populations 
assuming SSR evolution according to the SMM cannot be applied 
to comparison between genotypes because they distort actual re‐
lationships among them. We then evaluated the performance of 
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the new measures using data from real populations. We conclude 
that these measures facilitate discovery of initial structure within 
a set of individuals and seem the only way to provide reasonable 
alternatives for establishing putative relationships among indi‐
viduals in natural populations using microsatellite data. The new 
dissimilarity‐based metrics are also suitable for analyzing diversity 
within and among originally predetermined populations.
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