
 International Journal of 

Molecular Sciences

Review

Role of Transforming Growth Factor β in Uterine
Fibroid Biology

Michał Ciebiera 1,* ID , Marta Włodarczyk 2, Małgorzata Wrzosek 2, Błażej Męczekalski 3,
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Abstract: Uterine fibroids (UFs) are benign tumors of the female genital tract made of the smooth
muscle of the uterus. UF growth depends mostly on the influence of the steroid hormones and
selected growth factors. Transforming growth factor β (TGF-βs) is a polypeptide that consists of
three isoforms: TGF-β1, TGF-β2, and TGF-β3. At present, TGF-β is considered to be one of the
key factors in the pathophysiology of UFs. It plays a major role in cellular migration within the
tumor, stimulates tumor growth, and enhances tumor metabolism. As a consequence of various
dependencies, the synthesis and release of TGF-β in a UF tumor is increased, which results in
excessive extracellular matrix production and storage. High concentrations or overexpression of
TGF-β mediators may be responsible for clinically symptomatic UFs. The aim of this review was
to check the available evidence for the influence of the TGF-β family on UF biology. We conducted
their search in PubMed of the National Library of Medicine with the use of the following selected
keywords: “uterine fibroid”, “leiomyoma”, and “transforming growth factor β”. After reviewing
the titles and abstracts, more than 115 full articles were evaluated. We focused on the TGF-β-related
molecular aspects and their influence on the most common symptoms that are associated with UFs.
Also, we described how the available data might implicate the current medical management of UFs.
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1. Introduction

Uterine fibroids (UFs) are benign tumors of the female genital tract that are made of the smooth
muscle of the uterus. They are a very common pathology, affecting up to 80% of women in some
populations [1,2], and may impair normal functioning and lower the quality of patient life [2,3].
The symptoms, especially in women of childbearing age, include iron deficiency anemia, abdominal
pain, pelvic pain, or gastrointestinal symptoms manifested by constipation or bloating [1,4]. UFs are
also one of the recognized factors negatively affecting fertility [5,6]. All tumors can create an
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unfavorable environment for implantation and cause various types of homeostatic disorders that
affect normal development of the embryo, whereas large tumors may disturb the anatomy of the
reproductive tract, not allowing for fertilization or pregnancy growth [5–7]. In postmenopausal women,
UFs cause compression symptoms, but abnormal spotting or bleeding are most often reported [1,2,8].

Both, direct and indirect costs that are associated with the treatment of UFs are considerable
and result in significant health care expenditures. Thus, researchers all over the world are constantly
searching for new solutions as far as UF therapies are concerned [9–11].

1.1. Transforming Growth Factor β—Signaling Pathways, Proliferation and Fibrosis

Cytokines are low-molecular-weight proteins, which are produced by the immune system, which
predominantly act in a paracrine/autocrine manner [12]. Cytokines affect tumor biology, influence the
growth and survival of UF cells, regulate angiogenesis, and shape the extracellular matrix (ECM) [13–15].
Cytokines may be responsible for UF-associated pain, infertility, or obstetric pathologies [16].

Although numerous cytokines are involved in UF biology, transforming growth factor β (TGF-β)
appears to be one of the most important myometrium-associated cytokines. It controls the proliferation
and differentiation in most types of human cells [17], and is well-known in diseases that are connected
with abnormal or uncontrolled fibrosis like myocarditis, nephropathy, bowel inflammatory diseases,
etc. [13,14,18,19]. TGF-β is a polypeptide consisting of three isoforms (TGF-β1, TGF-β2, and TGF-β3),
which have their own pathway for transmembrane receptors, TGF-βR-I and TGF-βR-II [20] (Figure 1).
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protein kinases ; PI3K: Phosphoinositide 3-kinase; Akt: Protein kinase B; mTOR: mechanistic target of 
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The TGF-β family is responsible for the modulation of paracrine and autocrine factors of 
inflammation, cell cycle, and growth [13,14,21]. TGF-β is known as a potent chemoattractant for 

Figure 1. TGF-β isoforms, TGF-β receptors; TGF-β intracellular signaling pathways. TGF-β: transforming
growth factor β; FAK: focal adhesion kinase; TAK: TGF-β-activated kinase; MKK: Mitogen-activated
protein kinase kinase; JNK: c-Jun N-terminal kinase; p38: p38 mitogen-activated protein kinases;
PI3K: Phosphoinositide 3-kinase; Akt: Protein kinase B; mTOR: mechanistic target of rapamycin;
Ras: Ras protein; Raf: Raf protein; MEK: MAPK/ERK kinase; ERK: Extracellular signal-regulated
kinases; Smad: Smad protein.

The TGF-β family is responsible for the modulation of paracrine and autocrine factors of
inflammation, cell cycle, and growth [13,14,21]. TGF-β is known as a potent chemoattractant for
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macrophages and fibroblasts [12]. It inhibits the division of some cells, induces apoptosis, and also
affects the development of ECM [13,22,23].

Various researchers have confirmed the presence of different TGF-β isoforms in the pathophysiology
of UFs [24,25], which is the key factor in cellular migration within the tumor, stimulates tumor growth,
and enhances tumor metabolism. TGF-β regulates the expression and growth of uterine smooth
muscle and UFs. TGF-β expression in the smooth muscle of the uterus, which is in direct contact
with the fibroid, is significantly increased, as has been demonstrated in laboratory studies [26,27].
It has been shown that the expression of TGF-β in UF tissue as compared to the control group (normal
smooth muscle) is almost twice as high [28]. Interestingly, the TGF-β3 isoform occurs in UF tissue at
concentrations almost five times higher than in the healthy myometrium [14,29].

The role of TGF-β signaling in the development of UFs is complex [1,2,30]. Different isoforms
of TGF-β and their receptors are expressed in the human myometrium and UF tumors [12,13,31].
In normal smooth muscle cells, TGF-β acts as a potent tumor suppressor through growth inhibition
and stimulation of apoptosis. On the other hand, overexpression of TGF-β in UFs is also observed
and appears to play an important role in their growth and symptom progression [13,24]. The role of
the TGF-β family in the pathogenesis of UF has been proven in in vitro studies. However, data on the
major sites of action of TGF-β and their impact on the risk for UFs remain limited.

1.2. Extracellular Matrix

Chronic inflammation is described as the migration of inflammatory cells to exact locations and
an increased expression of proinflammatory mediators and factors in longer periods of time [19].
The fibrotic reaction of the connective tissue is mainly characterized by an increased production of
ECM and the accumulation of the mesenchymal cell component [19]. Normal ECM undergoes a
continuous and balanced turnover process, which contributes to maintaining its proper amount and
stiffness. Matrix enzymes are regulated by special inhibitors of extracellular matrix metalloproteinases
(MMPs) (tissue inhibitor of metalloproteinases, TIMP) [32].

A uterine fibroid is in fact a mass of tumor cells embedded in a large amount of ECM [33].
The ECM building the fibroid is much more abundant than in the well-formed myometrium tissue.
It is believed that in case of a UF tumor, the ECM volume may be over twice the volume of that found
in the healthy myometrium. Collagen (especially types I and III), fibronectin, and proteoglycans are
the main components of ECM [17]. Collagen fibers that are found in the UFs have a distorted spatial
structure and differ from their counterparts in normal tissues [17,34,35].

As a consequence of various dependencies, the synthesis and release of TGF-β in a UF tumor is
increased, which results in excessive ECM production and storage [17,35] (Figure 2).
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Figure 2. Increased secretion of Wnt ligands under the influence of estrogen and progesterone (Figure 3)
from smooth muscle cells, which are placed around uterine fibroid stem cells. This pathway leads to
excessive production of the transforming growth factor β and extracellular matrix, as well asenhanced
proliferation of uterine fibroid stem cells.
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It should be emphasized that, out of all the TGF-β isoforms, the TGF-β3 isoform was found to
be one of the main inductors of the elevated production of ECM and decreased production of ECM
degradation factors in UFs [13,14,29].

1.3. Regulation by Steroids

According to the available data, UF growth depends mostly on the influence of the steroid
hormones [24,36,37] (Figure 3).
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Figure 3. Estrogen and progesterone—two main hormones influencing the metabolism and proliferation
of uterine smooth muscle cells or uterine fibroid cells. Wnt signaling is one of the most important
pathways in uterine fibroid pathophysiology. Excessive production of transforming growth factor β
depends greatly on Wnt signals. The drugs influencing the hormonal pathways and their potential site
of effect are presented. ER: Estrogen receptor; PR: Progesterone receptor.

Estrogen and progesterone concentrations vary, depending on patient age. UFs are not observed in
pre-pubescent girls, which indicates that they depend on the hormonal changes during that period [38]
(Figure 3). Estrogens play an important role in the pathophysiology of UFs. However, a large group
of researchers consider progesterone to be the main factor initiating uterine muscle differentiation
and its subsequent abnormal growth [24]. Various studies have confirmed that progesterone activates
cell division within the smooth muscle of the uterus, especially in the second phase of the cycle
when progesterone concentrations are significantly elevated [36,39]. The main mechanism of action
of progesterone in tumorigenesis of UFs is its effect on the increase in the concentration of selected
growth factors (Figure 3). These hormone-dependent factors are secreted and act directly on the
muscle, making it a self-stimulating growth process [13,24].

1.4. Genetics

The available literature reports suggest the existence of additional factors, which are a part of the
complex chain of interactions resulting in the appearance and growth of UFs [24]. Genetic studies
show that a uterine fibroid is a monoclonal neoplasm stemming from a primary cell which has
undergone specific molecular changes [40,41]. The first link in this chain of pathogenesis appears to
be the presence of a modified myometrial cell, which has the capacity for uncontrolled division and
unrestricted growth [24,40,41]. The transformed cell needs adequate stimuli to divide and produce
ECM [24]. The exact cause of the development of UFs remains unclear, but there is evidence that
they may be the result of a combination of genetic, hormonal, and environmental factors [1,24,42].
Until recently, the number of publications showing a specific location in the genome associated with
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UF occurrence has been scarce. 2011 has been heralded as a breakthrough year for UF genetics, when
Makinen and colleagues discovered the potential genetic background of UFs—mutations were detected
within the gene encoding the mediator complex subunit 12 (MED12) [43], and these molecular changes
apply also to TGF-β [24].

1.5. TGF-β and Implications for Therapy

The abovementioned observations can be translated into clinical management. Estrogen and
progesterone have been shown to upregulate the expression of multiple angiogenic factors in the
myometrial and UF tissues [13,22]. That is why application of different hormonal agents may exert
their effects through the inhibition of angiogenesis in tumors [44,91]. The main substances, which
are or may be used in the treatment of UFs, and which affect the pathways dependent on TGF-β,
are gonadotropin-releasing hormone analogs (GnRHa), aromatase inhibitors (AIs) [45], or selective
progesterone receptor modulators (SPRMs) [46]. Their exact role and pathways are explained later in
the text.

1.6. Future Ideas

Early prevention, adequate prophylaxis, and timely treatment of UFs in women from high-risk
groups continue to be our priorities. The ideal methods of prevention and early-stage therapy should
be inexpensive and relatively risk-free. Current therapies, such as myomectomy, hysterectomy,
embolization, GnRHa, and SPRMs are relatively effective as far as treatment and prevention of
the onset of symptoms are concerned, but are expensive or associated with complications or side
effects [2,46]. Clearly, all of the pathways that affect the TGF-β family, especially the TGF-β3 isoform,
will have the potential to translate into further work, particularly in the field of pharmacology.

If the development of UFs is considered as a TGF-β-dependent proliferation process, the treatment
should be sought among antiproliferative and antifibrotic therapies. The available clinical studies
demonstrated that some substances like cabergoline [47], epigallocatechin gallate [48], or vitamin
D [49,50], might be useful in the pharmacological treatment of UFs [51].

The aim of this review is to summarize the current literature reports regarding the role of the
TGF-β family in the UF biology. We focused on the TGF-β-related molecular aspects and their influence
on the most common symptoms that are associated with UFs. Also, we described how the available
data might implicate the current medical management of UFs.

We conducted the search in PubMed of the National Library of Medicine using the following
keywords: “uterine fibroid”, “leiomyoma”, and “transforming growth factor β”. The aim of this review
was to check the available evidence for the influence of the TGF-β family on UF biology. The results of
the relevant original studies and reviews published in English up to September 2017 were discussed.

2. Discussion

2.1. Transforming Growth Factor β—Signaling Pathways, Proliferation and Fibrosis

TGF-β belongs to a much larger family of proteins called the TGF-β superfamily [13,22,26].
This group includes, among others, inhibin, activin, anti-Müllerian hormone, bone morphogenetic
proteins (BMPs), and others [13,22,52]. TGF-β controls the proliferation and differentiation of most human
cell types and also has proven anti-inflammatory effects. TGF-β is a dimeric polypeptide that is considered
to be one of the most important growth factors in the pathogenesis of fibrotic diseases [12,13,22,53].

Various TGF-β isoforms are important in increasing the number of cell divisions in UF tumors
and in the overproduction of ECM [12,13,27,53,54]. According to a study by Tang et al., TGF-β induced
the proliferation of normal smooth muscle cells [55]. Various researchers found that TGF-β stimulates
not only smooth muscle cells, but also causes the proliferation of UF tumors [13,25,56] (Figure 1).
Studies on selected cell lines have shown that TGF-β is one of the few cytokines and growth factors
that significantly affect the accumulation of ECM in a fibroid tumor [25,29].
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TGF-β is secreted as a large latent complex requiring local activation for receptor binding [57].
TGF-β mediates most signals through type I and type II receptors [58]. Type III receptor is a kind of
a co-receptor for binding/presenting TGF and a regulator of TGF-β signaling [19]. The active receptor
complex phosphorylates Smad proteins, which propagates the signal further [13,14,52,59,60]. The activated
complexes will then regulate the transcriptional activity of various genes by many different
pathways [19,52,59]. The links in this chain can be as follows: Smad pathway, PI3K/Akt/mTOR, the
Ras/Raf/MEK/ERK signaling cascade, and focal adhesion kinase (FAK) [19,52]. The FAK-signaling
activated by TGF-β is required for the activation of TGF-β-activated kinase (TAK) [19,61]. The TAK
pathway can also be traced to p38 mitogen-activated protein kinases (p38) and nuclear factor
κ-light-chain-enhancer of activated B cells NF-κB signaling [62] (Figure 1).

When talking about UF, it is important to mention Wnt signaling, a group of signal transduction
pathways that are made of proteins which pass signals into a cell [63]. Wnt signaling pathways are
activated by binding a Wnt-protein ligand to a Frizzled family receptor, which passes the biological
signal to the specific protein inside the cell. This kind of signaling leads to the regulation of gene
transcription [24,63]. The Wnt–β-catenin pathway plays one of the major roles in the functioning
of the myometrium and UFs [24]. Certain studies have confirmed that β-catenin regulates and
stimulates the renewal of stem cells [64]. Wnt–β-catenin and TGF-β pathways influence the clonal
formation of UF tumors and their growth [2,65,66]. Tanwar et al., found that ovarian hormones
may accelerate tumorigenesis via the described pathways in mouse models [66]. The Wnt–β-catenin
pathway has a major influence on the stimulation of TGF-β3 expression [24,66] and TGF-β3 influences
cell proliferation and tumor growth [24] (Figure 2).

According to many researchers, TGF-β3 is considered to be the most important TGF-β3 isoform
in UF biology [25,29,56,67]. Its elevated serum levels are one of the risk factors for the occurrence of
UF tumors [67]. It has also been observed that TGF-β3 slows ECM degradation [18,29]. Latest studies
have indicated that TGF-β3 is one of the very few growth factors that are present in UF tumors
in much higher concentrations [26,29]. Despite the proven effects of TGF-β on fibrosis, it remains
unclear whether TGF-β3 can trigger this process alone or whether it is only one of the intermediate
links. Current laboratory tests have proven that TGF-β3 can directly affect the tissue of the normal
myometrium and produce the same processes that occur in UFs [27,29].

The role of TGF-β molecules in the pathophysiology of UFs is also supported by increased
expression of latent binding protein-1 and fibrillin-1 in comparison to the healthy myometrium [21,68].
Some data also suggest that TGF-β3 secreted by fibroid cells regulates BMP-2 responsiveness.
BMPs play a vital role in bone and cartilage development. These proteins are involved in the TGF-β
signaling pathway and in cytokine receptor interaction [69], and are one of the proteins that are
responsible for endometrial receptivity, e.g., BMP-2 and BMP-7 [70,71]. TGF-β3 decreases human
endometrium receptivity by decreasing the expression of BMP receptors [65]. Sinclair et al., discovered
that TGF-β3 may also affect the proliferative effect of prolonged menstruation by acting on BMP-2 [65].
In this study, TGF-β secreted in UF tumors induced BMP-2 resistance in the endometrium by the
downregulation of BMP receptor 2, causing defective endometrial decidualization. According to the
abovementioned data, this factor was also responsible for the reduced expression of plasminogen
activator inhibitor I (PAI-I), thrombomodulin, and antithrombin III, thus contributing to excessive
uterine bleeding. Some authors concluded that TGF-β as a single signaling pathway might be
responsible for UF-derived infertility and menorrhagia [65].

In a recent publication by Doherty et al., endometrial cells treated with TGF-β3 were shown to
have altered BMP-2 responsiveness [70]. This resistance is a major point in impaired decidualization
and subsequent infertility [70]. As far as TGF-β is concerned, the main point of interest for the
researchers is excessive fibrosis, but this molecule is also responsible for tumor angiogenesis and
its pathological influence, including endothelial cell proliferation, migration, and expression of
adhesion molecules [44,72].
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All of the abovementioned data support the hypothesis that the TGF-β signaling pathway,
which contains numerous ligands, receptors, and molecules, might be a potential target of
dysregulation and be involved in UF formation, growth, or symptom occurrence. These pathways
might also be the key point of future clinical investigations [65].

2.2. Extracellular Matrix

The main mechanisms of UF growth include increased ECM production, cell migration to a specific
location, stimulation of growth factor expression, and the subsequent deposition of an increased
number of abnormal ECM [13,17]. According to latest research, steroid hormones are responsible for
the expression of growth factor and cytokine genes in UF molecular pathways, resulting in an increased
number of cell divisions and ECM production, which in turn leads to further tumor growth [17,24,34].

One of the most important features of UFs is the abundance of fibrotic connective tissue and
ECM components, with excessive production of type I collagen, fibronectin, and glycosaminoglycans.
These molecules also have incorrect spatial architecture [17,34,73]. In UFs, fibronectin expression is
particularly enhanced, which is bound to the pathways that depend on TGF-β [27]. According to
Norian et al., disturbed production of disorganized ECM occurs largely due to activation of the
pathway dependent on transforming growth factors and overproduction of glycosaminoglycan-rich
versican variants [34].

MMPs are calcium-dependent endopeptidases which contain zinc cations in their structure.
They essentially serve to degrade and rebuild the ECM structure [74]. Studies have shown that
MMPs and their mRNAs are increasingly expressed in UFs [75,76]. During laboratory tests, TGF-β
has been shown to reduce the concentration of the corresponding MMPs. TGF-β also increases the
concentration of their inhibitors, which slows down the conversion of the entire ECM of the UF, and
results in excessive ECM accumulation [27,77,78]. Slowed down by high concentrations of TGF-β,
MMPs cannot degrade a sufficient amount of ECM to maintain balance in the tissue [74,78]. The TGF-β3
isoform has a particular role in this process, which has been confirmed by numerous studies [14,29].
Halder et al., found that vitamin D inhibits the expression and activities of selected MMPs in UF cells
by influencing TGF-β3 [27].

Out of all three isoforms, the TGF-β3 isoform has the greatest role in the ECM overproduction
by stimulating the expression of type I collagen, fibronectin, laminin, and proteoglycans [17,34,35,54].
UF cells in laboratory studies demonstrated an increase in TGF-β3 mRNA expression as compared
to healthy smooth muscle [29,34], which in turn induces increased ECM secretion in the uterine
myometrium [77] (Figure 2).

2.3. Regulation by Steroids

The development of UFs is multifactorial in nature. According to various studies, UF growth
depends mostly on steroid hormones [24,36,37]. The effects of estrogen and progesterone on these
tumors are numerous [24]. Most authors confirm that long-term stimulation of the myometrial cells
by estrogen and progesterone leads to the formation and growth of UFs [1,24] (Figure 3). Based on
the available data, it can be expected that progesterone, instead of estrogen, plays the key role in
the process of UF formation [14,24]. The luteal phase is the time when higher levels of progesterone
receptors are found in the tissues. In the case of UFs, this is associated with the inhibition of apoptosis
and the acceleration of growth [24,39]. An interesting observation related to TGF-β and UFs is that the
highest concentrations of TGF-β mRNA are observed in the secretory phase of the menstrual cycle [56].
It confirms that progesterone is primarily bound to this factor and affects the expression of selected
genes [56]. Thus, it can be concluded that the effect of progesterone on UF growth is determined
by the overexpression as well as increased concentrations of various growth factor genes (including
TGF-β) [24,36]. Subsequent studies have confirmed elevated growth factor levels both, peripherally as
well as in the tumors themselves [13,17,24,79]. The positive effect of progesterone on UF growth is
confirmed by the use of its antagonists in the treatment of UFs [46].
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While taking into consideration the evidence for the effect of progesterone on UF, it is advisable
to bear in mind the role of estrogens, which, despite their smaller role, are in fact preparing the tumor
to be stimulated by progesterone by upregulating progesterone receptors [14,24]. An overexpression
of the estrogen receptor in UFs is observed, as compared to normal smooth muscle tissue of the
uterus. UF cells exhibit excessive sensitivity to estrogens as compared to normal muscle [36,39,80,81].
The estrogen receptor α signaling pathway has an influence on the TGF-β signaling pathway under
the effect of estrogen and other similar molecules [82]. Studies in UF cell colonies showed that the
proliferative potential can be acquired by tumor tissue through estrogen stimulation. Under the
influence of estrogens, UFs remained more active in the subdivisions, and their apoptosis slowed
down. Despite these data, the reduced apoptotic potential, along with increased proliferative potential,
is associated more with the progesterone component than estrogen [83,84] (Figure 3).

2.4. Genetics

According to Makinen et al., specific mutations were detected within the gene encoding the
MED12 located on the X chromosome in the examined UFs [43]. The mediator complex is a 26-sub
transcript regulator that is essential for proper transcription. The mediator complex is highly conserved
in eukaryote organisms [24,85]. All of the MED12 gene mutations are located within exon 2 and
are probably responsible for the mechanism of tumorigenesis [43]. Further studies have shown
that mutations within exon 2 may occur even in 85% of UF-positive patients, depending on the
population [86–88]. Mutations in MED12 are also present in other mesenchymal tumors of the
uterus or in other tissues [89]. MED12 is linked to β-catenin and regulates Wnt signaling [24,90].
A study confirmed that Wnt expression is elevated in UFs in the case of mutations within the MED12
gene [91]. A recent study by Al-Hendy et al., suggests that the silencing of the MED12 gene reduces
the proliferation of UF tumor cells by the Wnt-β-catenin signaling pathway [92].

The reasons for our interest in that topic are numerous. MED12 deficiency activates the TGF-β
pathway, utilizing two types of signaling: Smad and mitogen-activated protein kinase (MAPK)
related [24,93]. Smads are intracellular proteins which transduce extracellular signals from TGF-β
ligands to the nucleus [20,94]. MAPK is a type of protein kinase that is involved in directing cellular
responses to different stimuli. MAPK regulates cell functions, including proliferation, gene expression,
differentiation, and apoptosis [95]. The TGF-β activation induced by this path results in further
signaling and has the effect of renewing stem cells, cell growth and division, and fibrosis [24].

2.5. TGF-β and Implications for Therapy

The description of the above relationships confirms the assumption that pathways are dependent
on estrogen and progesterone, and thus TGF-β has a tremendous effect on the way stem cells are
divided and affects their conversion into clonal cells, which create UFs [14,24].

According to Tal et al., the growth of UF tumors is dependent on steroids partly due to their
induction of local angiogenic factors for the provision of new vessels [44]. Shen et al., who investigated
how uterine artery embolization influences UF tumor blood supply, observed that tumor diameter was
significantly lower than before treatment, and that the TGF-β level was significantly decreased [96].

GnRHa (e.g., leuprolide) has been observed to effectively reduce both, UF growth and the
accompanying symptoms that are TGF-β dependent [93]. In vitro studies involving the administration of
GnRHa to cell cultures have confirmed inhibition of the synthesis of UF DNA under the influence of these
drugs [97]. There are other sources that confirm that GnRHa are effective in reducing the expression
of the TGF-β family proteins and their receptors by causing a menopause-like condition [13,98,99].
The available studies demonstrated that GnRHa treatment results in decreased expression of many
cytokines, including the TGF-β family, as well as reduced tumor volume [44,97] (Figure 3).

Similarly, AIs reduce the amount of active hormones that affect UFs. AIs are a class of drugs
that present the antiestrogenic effect. The most well-known AIs include anastrozole, letrozole, and
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fadrozole. They are mainly used in the treatment of gynecological cancers [100]. Their efficacy in UF
treatments has also been confirmed [84] (Figure 3).

The abovementioned therapies are currently not commonly used because of ulipristal acetate
(UPA), a type of SPRM that has become the primary drug in the treatment of UFs in selected
indications [46,101]. The positive influence of progesterone on UF growth is implied by the efficacy
of its antagonists in pharmacological therapy. The advantages of UPA include its large information
base, good safety profile, and good tolerance [46,102]. Numerous clinical studies have confirmed
its effectiveness [46,102–105], and ongoing studies will define new treatment regimens. UPA affects
the progesterone receptor, which may affect the reduction of TGF-β production (as described above),
followed by inhibition of fibrosis and fibroid growth, and is a likely pathway for its action (Figure 3).
Other laboratories (including our own) are currently conducting research to determine the effect of
UPA on TGF-β levels in serum and in UF tissue, but more data are required.

2.6. Future Ideas

Cell studies have shown that vitamin D reduces the expression of steroid receptors in UF
cells in laboratory conditions, which may have important clinical implications and be one of the
determinants of the pathogenesis and pathological growth of UFs [106]. Multiple studies have shown
that vitamin D induces apoptosis of UF cells, lowers the TGF-β pro-fibroid effect, and modulates the
expression of MMPs and TIMPs [27,49,77]. TGF-β3 was inhibited by increased levels of vitamin D [35].
Animal studies have shown that the administration of therapeutic doses of vitamin D3 significantly
reduces UF size [107].

As far as UF treatment is concerned, vitamin D remains the best-studied alternative substance that
affects UFs through pathways dependent on TGF-β. However, it would be prudent to remember about
paricalcitol, which is an analog of vitamin D. It has been proven that paricalcitol effectively reduces
the proliferation of human leiomyoma cell cultures, reduces fibroid tumor volumes, and induces
apoptosis in UFs [108]. This agent has great potential as an effective drug in this disease, but after
several randomized controlled trials.

SB525334, a potent and selective inhibitor of TGF-β receptor I (ALK5), is yet another interesting
substance that has been very poorly examined so far [109]. This substance has not been widely tested
in the treatment of UFs. According to the study by Laping et al., treatment with this agent decreases the
incidence, number, and size of UF tumors in a mutant rodent model [110]. More data on how SB525334
affects other diseases, such as kidney or lung fibrosis, are necessary [109]. However, due to previously
mentioned examples regarding the role of TGF-β in UF biology, SB525334 and its derivatives might
herald a new high-quality treatment in UF therapy [111].

There are studies on the use of nonsteroidal anti-inflammatory drugs, such as celecoxib,
a cyclooxygenase 2 inhibitor, as a cytokine-reducing agent that is necessary for UF growth [112].
In a study by Park et al., celecoxib decreased the gene expression of several cytokines, including
TGF-β [112]. This study suggests that celecoxib could inhibit the growth of UFs by blocking the
inflammatory pathway, but further research is needed to confirm the effects of celecoxib on UF growth.

There is also some data about the use of tranilast in UF therapy. Tranilast inhibits the rate
of cell growth, TGF-β-derived collagen biosynthesis, growth factor expression, and fibroblast
transformation [12,113]. Tranilast has a direct effect on UF cells through the altered expression of
miR-29c and genes functionally involved in cell cycle progression and tissue fibrosis and might have a
therapeutic potential as an inhibitory agent for UF growth and clinical symptom regression [114].

All of these new agents, although still under evaluation and are not available as registered
treatments, use pathways that are related to the TGF-β family to treat UFs. They provide unique
benefits for potential effectiveness alone or when used as co-drugs with drugs like SPRMs or AIs.
We hope that in the future we will be able to provide multivalent therapies that will be extremely
effective, safe, and individually tailored to patient characteristics.
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3. Conclusions

Growth factors are one of the key players in the development and proliferation of UFs.
The TGF-β family is one of the most important regulators of the fibrosis processes. A large number
of studies have confirmed that it has a significant effect on the development and growth of UFs.
Abnormal concentrations or overexpression of TGF-β mediators may also be responsible for some
of the clinical symptoms that are associated with TGF-β, especially in cases of the TGF-β3 isoform.
TGF-β and its dependent processes in UFs are mostly regulated through steroid hormones, which are
reflected in the available therapies. Currently, UPA has become the gold standard in UF therapy, but
there are also nonsteroidal substances that affect the pathways dependent on TGF-β, which may, after
extensive research, also become useful tools in the treatment of UF tumors.
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