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Abstract: Periprostatic adipose tissue (PPAT) has emerged as a key player in the prostate cancer (PCa)
microenvironment. In this study, we evaluated the ability of PPAT to promote PCa cell migration,
as well as the molecular mechanisms involved. Methods: We collected conditioned mediums
from in vitro differentiated adipocytes isolated from PPAT taken from PCa patients during radical
prostatectomy. Migration was studied by scratch assay. Results: Culture with CM of human PPAT
(AdipoCM) promotes migration in two different human androgen-independent (AI) PCa cell lines
(DU145 and PC3) and upregulated the expression of CTGF. SB431542, a well-known TGFβ receptor
inhibitor, counteracts the increased migration observed in presence of AdipoCM and decreased
CTGF expression, suggesting that a paracrine secretion of TGFβ by PPAT affects motility of PCa
cells. Conclusions: Collectively, our study showed that factors secreted by PPAT enhanced migration
through CTGF upregulation in AI PCa cell lines. These findings reveal the potential of novel
therapeutic strategies targeting adipocyte-released factors and TGFβ/CTGF axis to fight advanced
PCa dissemination.

Keywords: adipocytes; prostate cancer; TGFβ1; peri-prostatic adipose tissue; cell migration

1. Introduction

Prostate cancer (PCa) is the most common tumor in male patients in Western coun-
tries [1]. Epidemiological data suggest a positive association between body mass index and
advanced prostate cancer [2]. Excessive visceral adiposity corresponded to major probabili-
ties of higher grade diagnosed PCa and poor clinical outcomes [3–7]. There is evidence
that crosstalk with adipose tissue (AT) could affect PCa progression [8–11]. The prostate is
encircled by periprostatic adipose tissue (PPAT). This fat layer is contiguous to the gland
capsule [12], making it plausible that PPAT affects the prostate cancer malignant pheno-
type [13,14]. Accordingly, we recently demonstrated that a paracrine secretion of IGF-1 by
PPAT reduced the docetaxel response of androgen-independent (AI) PCa cell lines [15].
Ribeiro et al. [14] showed that PPAT collected from obese patients was able to enhance
migration of androgen-dependent (AD) and castration-resistant PCa cell lines.

Laurent et al. showed that PPAT stimulated extravasation of PCa cells by CCL7
release and extracapsular extension is a well-known predictor of PCa aggressiveness [16].
Accordingly, Sasaki et al. [17] demonstrated that the pre-therapy ratio between periprostatic
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and subcutaneous fat thickness can be useful as predictor of survival in men with advanced
PCa treated with androgen deprivation therapy (ADT).

Thus, the molecular crosstalk between PPAT and PCa cells plays a crucial role in
the prostate tumor microenvironment (TME) and might be the basis for more aggressive
disease behavior.

In the present study we investigated the effects of adipocyte-released factors on PCa
cell migration.

Clarifying the tumor-promoting factors secreted by PPAT and the underlying mecha-
nisms of migration enhancement in PCa cells may allow the identification of prognostic
biomarkers and therapeutic targets in patients with PCa.

2. Materials and Methods
2.1. Materials

Media, sera and antibiotics for cell culture were obtained from GIBCO (Thermo Fisher
Scientific, Waltham, MA, USA). Antibodies against CTGF and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) were obtained from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). Antibody against pSMAD2/3 (Ser 423/425) were obtained from Cell signaling
Technology (Cell Signaling Technology, Danvers, MA, USA). Sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE) reagents were obtained from Bio-Rad
(Hercules, CA, USA). All other chemicals were from Sigma-Aldrich (St Louis, MO, USA).
Recombinant human TGFβ1 was purchased from R&D (R&D Systems Inc., Minneapolis,
MN, USA), and SB431542 was purchased from MCE (MedChem Express, Monmouth
Junction, NJ, USA).

2.2. Cell Cultures

LnCaP, DU145 and PC3 human prostate cancer cells were cultured in RPMI and
DMEM, respectively, supplemented with 10% fetal bovine serum (FBS) and 2 mmol/L glu-
tamine, 100 IU/mL penicillin and 100 IU/mL streptomycin. Cultures were maintained in a
humidified atmosphere of 95% air and 5% CO2 at 37 ◦C. Human periprostatic adipose tis-
sue (PPAT) samples were obtained from 14 men who had undergone radical prostatectomy
at the Division of Urology of the University Federico II (Naples, Italy) from September 2020
to January 2021. All men were free from metabolic or endocrine diseases. Informed written
consent was obtained from every study participant before the surgical procedure. This pro-
cedure was approved by the ethical committee of the University of Naples “Federico
II” (protocol number 118/20). Periprostatic adipose-derived Mesenchymal Stem Cells
(Ad-MSCs) were isolated from the Stromal Vascular Fraction and differentiated in mature
adipocytes as previously described [18].

2.3. Conditioned Media System

Mature adipocytes were washed two times with sterile phosphate-buffered saline
(PBS) and incubated with serum-free media supplemented with 0.25% albumin bovine
serum (BSA). After 24 h, adipocyte-conditioned media (PPAT AdipoCM) were collected,
centrifuged to remove cellular debris, and placed onto recipient cells.

2.4. Scratch Assays

LnCaP, DU145 and PC3 prostate cancer cell lines were seeded (5 × 105 per well) in
12-well plates and allowed to adhere for 24 h. Confluent monolayer cells were scratched
by a 200 µL pipette tip, washed three times with PBS to clear cell debris and suspension
cells and a fresh medium was added. Cells were treated with the indicated stimuli and the
cells were allowed to close the wound for 48 h. Photographs were taken at 0 and 48 h at
the same position of the wound and the distance between the edges was measured.
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2.5. Cell Transfection

DU145 and PC3 were transfected with Dicer-substrate RNAs (DsiRNAs, IDT Coralville,
Coralville, IA, USA) by using Lipofectamine 3000 (Life Technologies, Carlsbad, CA, USA),
in DMEM without antibiotics and serum, according to manufacturer’s instructions. After
6 h, the cells were feed with DMEM 10% FBS.

2.6. Real-Time RT-PCR Analysis

Total cellular RNA was isolated from DU145 and PC3 using QIazol reagent (QIAGEN
Sciences, Hilden, Germany), according to manufacturer instructions. 1 µg of cell RNA
was reverse-transcribed using Superscript III Reverse Transcriptase (Life Technologies,
Carlsbad, CA, USA). PCR reactions were analyzed using IQTM SYBR Green Supermix
(Bio-Rad, Hercules, CA, USA). Reactions were performed using Platinum SYBR Green
qPCR Super-UDG using an iCycler IQ multicolor Real Time PCR Detection System (Biorad,
Hercules, CA, USA). All reactions were performed in triplicate and PPIA was used as an
internal standard. Primer sequences: human CTGF F: 5′ GGGAAATGCTGCGAGGAGT 3′,
R: 5′ GATAGGCTTGGAGATTTTGG 3′; human PPIA F: 5′ TACGGGTCCTGGCATCTTGT
3′, R: 5′ GGTGATCTTCTTGCTGGTC 3′.

2.7. Western Blot

For Western blot assays, cells were washed with ice-cold phosphate-buffered saline
(PBS) and harvested in a Laemmli buffer (with β-mercaptoethanol) containing a mixture of
phosphatase inhibitors (0.5 mM sodium vanadate, 2 mM sodium pyrophosphate, 5 mM
β-glycerolphosphate, and 50 mM sodium fluoride) and the protease inhibitor phenyl-
methylsulfonyl fluoride (Sigma–Aldrich). Western blots were carried out as previously
reported [15].

2.8. TGFβ1 Elisa

AdipoCM levels of human TGFβ1 were evaluated using ELISA assay (Invitrogen,
Carlsbad, CA, USA) according to manufacturers’ instructions.

2.9. Statistical Analyses

Statistical analyses were carried out using the GraphPad Prism software (version 9.0,
C San Diego, CA, USA). Student’s t-test was used to compare the means of two groups,
while a one-way ANOVA test was used to compare the means of more than two groups.
All data are presented as the mean ± SD from at least three independent experiments.
A two-sided p-value of less than 0.05 was considered statistically significant.

3. Results
3.1. PPAT Adipocyte-Conditioned Media-Induced Migration of Androgen-Independent PCa
Cell Lines

PPAT samples were obtained from 14 men who underwent radical prostatectomy:
3 adenomas; 3 low-grade PCa [Gs ≤ 7(3 + 4)]; and 7 high-grade PCa [Gs ≥ 7(4 + 3)].

To investigate whether PPAT AdipoCM can influence cell motility in Pca cells, a series
of wound-healing scratch assays were conducted on three different cell lines (LnCaP, DU145
and PC3). PCa cells were serum-starved and then incubated with AdipoCM from PPAT.
As shown in Figure 1, AdipoCM incubation significantly enhanced migration in DU145
and PC3 androgen-independent cell lines, but not in hormone sensitive cell line LnCaP.
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Figure 1. Adipocyte-conditioned media-induced PCa cell lines migration. LnCaP (A), DU145; (B) 
and PC3; (C) cells were seeded (5 × 105 cells/well) in 12-well plates and allowed to form a confluent 
cell monolayer. Cell layers were wounded with a micropipette tip and then incubated with medium 
containing 10% FBS, 0.25% BSA or conditioned medium obtained from adipocytes. The images were 
acquired at 0 and 48 h using a camera connected to the microscope. Cell migration toward the 
wounded area was observed, photographed and measured (magnification 10×). Graphs show the 
percentage of wound healing rate. * Indicates a p-value < 0.05, ** indicates a p-value < 0.01 and **** 
a p-value ≤ 0.0001. 

  

Figure 1. Adipocyte-conditioned media-induced PCa cell lines migration. LnCaP (A), DU145; (B) and
PC3; (C) cells were seeded (5 × 105 cells/well) in 12-well plates and allowed to form a confluent
cell monolayer. Cell layers were wounded with a micropipette tip and then incubated with medium
containing 10% FBS, 0.25% BSA or conditioned medium obtained from adipocytes. The images
were acquired at 0 and 48 h using a camera connected to the microscope. Cell migration toward
the wounded area was observed, photographed and measured (magnification 10×). Graphs show
the percentage of wound healing rate. * Indicates a p-value < 0.05, ** indicates a p-value < 0.01 and
**** a p-value ≤ 0.0001.
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3.2. PPAT Mature Adipocyte-Released TGFβ1 Increased Cell Motility

We speculated that TGFβ1 present in AdipoCM from PPAT could be the driver of
increased migration capacity in DU145 and PC3 cell lines. To test our hypothesis, we
performed scratch assays using SB431542, a potent and selective TGFβ1 receptor inhibitor
(Figure 2). Interestingly, TGFβ1 receptor inhibitor reduced AdipoCM capacity to induce
PCa cell migration (Figure 2A,B). Then, we measured the concentration of TGFβ1 in
AdipoCM. As shown in Table 1, we found that mature adipocytes secreted TGFβ1 at
a medium concentration of 336,4 ± 108,9 pg/mL. Accordingly, we stimulated PCa cell
lines with human recombinant TGFβ1 at a concentration of 400 pg/mL, finding an effect
comparable to AdipoCM. Our results suggest that TGFβ1 was the mediator of the motility-
promoting effect on the PCa cells of PPAT adipoCM.
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Figure 2. TGFβ1 receptor inhibitor counteracted the effect of AdipoCM on PCa cell lines migration.
(A,B) DU145 and PC3 cells were seeded (5 x105 cells/well) in 12-well plates and allowed to form
a confluent cell monolayer. Cell layers were wounded with a micropipette tip and then incubated
with medium containing 10% FBS, 0.25% BSA or conditioned medium obtained from adipocytes,
human recombinant TGFβ1 (400 pg/mL) and SB431542 (10µM) alone or in combination. The images
were acquired at 0 and 48 h using a camera connected to the microscope. Cell migration toward
the wounded area was observed, photographed and measured (magnification 10×). Graphs show
the percentage of wound healing rate. * Indicates a p-value <0.05, ** indicates a p-value < 0.01,
*** indicates a p-value < 0.001 and **** a p-value ≤ 0.0001.
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Table 1. Clinicopathological characteristics of patients.

Low Grade Patients

Patient Code Age (Years) BMI (kg/m2)
Grading

(Gleason Score)
Adipo-CM

TGFβ1 (pg/mL)

1 67 25 6 (3 + 3) 262.9
2 66 31 7 (3 + 4) 303.4
3 65 32 7 (3 + 4) 250.8

High grade patients

Patient Code Age (years) BMI (kg/m2)
Grading

(Gleason Score)
Adipo-CM

TGFβ1 (pg/mL)

4 75 25 7 (4 + 3) 406.9
5 77 23 8 (4 + 4) 396.9
6 72 23 8 (4 + 4) 259.0
7 77 26 8 (4 + 4) 376.2
8 58 26 8 (4 + 4) 501.9
9 69 24 8 (4 + 4) 382.6
10 73 29 9 (4 + 5) 465.7
11 74 28 9 (4 + 5) 478.0

BH patients (controls)

Patient code Age (years) BMI (kg/m2)
Adipo-CM

TGFβ1 (pg/mL)

12 71 27 - 158.8
13 66 37 - 284.1
14 70 25 - 183.1

3.3. AdipoCM-Increased CTGF Expression

Thereafter, we investigated the downstream signal transductors of adipocyte-released
TGFβ1. We began to consider AdipoCM’s ability to increase the expression of the connec-
tive tissue growth factor (CTGF). To investigate this, we incubated DU145 and PC3 cells
with AdipoCM of four different patients, finding an increased CTGF protein expression
(Figure 3). In addition, time course experiments showed that CTGF protein and mRNA
expression was dynamically changed by AdipoCM incubation at different time points
(Figure 3C,D), revealing a trend suitable for its involvement in migration.

1 
 

 

Figure 3. Cont.
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Figure 3. CTGF protein expression was upregulated by PPAT AdipoCM incubation. (A,B) DU145
and PC3 cells were seeded (2× 105 cells/well) in 12-well plates and incubated with serum-free media
or AdipoCM from five different PCa patients. Cells were solubilized, and protein samples analyzed
by Western blot with CTGF antibody. GAPDH antibody was used for normalization. Blot results
were revealed by ECL and the autoradiograph is representative of three independent experiments.
(C,D) DU145 and PC3 cells were incubated with PPAT AdipoCM at different time points, as indicated.
Protein expression of CTGF was analyzed by Western blot using GAPDH antibody for normalization.
(E,F) mRNA abundance of CTGF was measured by real-time RT–PCR analysis of total RNA using
PPIA as internal standard with CTGF antibody. GAPDH antibody was used for normalization.
* Indicates a p-value < 0.05, ** indicates a p-value < 0.01 and *** indicates a p-value < 0.001.

3.4. CTGF Was the Intracellular Transductor of Adipocyte-Released TGFβ1

To test the hypothesis that CTGF could be the intracellular driver of adipocyte-released
TGFβ1′s effect on PCa migration, we evaluated its protein expression after SB431542
pretreatment, in DU145 and PC3 cells. As shown in Figure 4, the incubation with SB431542
reduced the increase of CTGF induced by AdipoCM as well as by human recombinant
TGFβ1 400 pg/mL.

The activation of TGFβ1 signaling was analyzed. Western blot analysis showed that
AdipoCM incubation as well as human recombinant TGFβ1 increased phosphorylation of
SMAD2/3. Accordingly, SMAD2/3 activation was decreased by SB431542 pretreatment
(Figure 4A,B).
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Figure 4. CTGF protein expression is reduced by TGFβ1 receptor inhibitor. (A,B) PCa cell lines
were seeded (2 × 105 cells/well) in multi-well plates and incubated with a medium containing
0.25% BSA or AdipoCM, human recombinant TGFβ1 (400 pg/mL) and SB431542 (10µM) alone or in
combination. Cells were solubilized and protein samples analyzed by Western blot with CTGF and
pSMAD2/3 antibodies. GAPDH antibody was used for normalization. Blot results were revealed by
ECL and autoradiograph.

To further verify our hypothesis, we performed scratch assays silencing CTGF. Firstly,
we checked CTGF knockdown by Western blot (Figure S1), confirming that CTGF siRNA
blocked its protein expression in both PCa cell lines. Secondly, we demonstrated that CTGF
silencing significantly blocked the wound closure induced by AdipoCM in both PCa cell
lines (Figure 5).
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Figure 5. CTGF silencing counteracted the effect of AdipoCM on PCa cell migration. DU145 (A) and
PC3 (B) cells were transfected with three different siRNAs recognizing CTGF (40 nM for DU145 and
10 nM for PC3; siRNA CTGF) or with a control siRNA (40–10 nM; CTR siRNA). After 6 h, the cells
were fed with a complete medium. Then, the cells were allowed to form a confluent monolayer.
Cell layers were wounded with a micropipette tip and then incubated with medium containing
0.25% BSA, conditioned medium obtained from adipocytes and TGFβ1 400 pg/mL. The images
were acquired at 0 and 48 h using a camera connected to the microscope. Cell migration toward
the wounded area was observed, photographed and measured (magnification 10×). Graphs show
the percentage of wound healing rate. * Indicates a p-value <0.05, ** indicates a p-value < 0.01,
*** indicates a p-value < 0.001 and **** a p-value ≤ 0.0001.

4. Discussion

The molecular mechanism linking PCa and AT is not completely clarified [19]. As there
is a rising prevalence of obesity, understanding the underlying mechanisms of this biologi-
cal connection is urgently needed. At present, obese and lean subjects receive the same
treatment. However, obese patients had a poorer clinical outcome [20]. Thus, personalized
therapeutic strategies based on patients’ BMI or AT-associated measures may ameliorate
their survival. To address this issue, it could be informative to investigate the effect of
PPAT-released factors on the PCa cell aggressive phenotype. We previously demonstrated
that adipose tissue-released IGF-1 contributed to docetaxel resistance of PCa cells [15].
In addition, the ability of adipocyte secretome to promote metastatic expansion has been
clearly demonstrated in breast cancer [21]. There is growing evidence that adipocytes
promote the malignant behavior of cancer cells [22]. Here, we show that AdipoCM from
PPAT promotes migration in AI PCa cells through TGF-β upregulation of CTGF (Figure 6).
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Figure 6. Schematic representation of the proposed role of PPAT in promoting migration in PCa cells.
Periprostatic mature adipocytes released TGFβ1 upregulated CTGF expression in PCa cells favouring
migration. CTGF, connective tissue growth factor; PCa, prostate cancer; PPAT, periprostatic adipose
tissue; TGFβ, tissue growth factor β.

This finding was consistent with previous research, since the role of TGF-β in PCa is
well-known and dual: it functions as anti-proliferative stimulus in the early stages, and
then becomes a pro-metastatic factor in the advanced stage [23–26].

For this feature, TGF-β was defined as the molecular “Jekyll and Hyde” of cancer [27]
and, despite TGFβ signalling complexity in the tumor microenvironment, it can be targeted
for therapeutic intervention.

Several studies showed that TGF-β promoted migration of PCa cells, suggesting
a strong association between TGF-β signalling and PCa progression [28–31]. Ribeiro
et al. [14] previously demonstrated that factors produced by AT explants significantly
increased the migration of both hormone-refractory PC-3 and hormone-sensitive LNCaP
cells. Contrarily to Ribeiro et al. [14], we used isolated adipocytes rather than whole
ATs and we did not find effects on LNCaP cell migration. Our model allowed us to
isolate the role of factors secreted from adipocytes, whereas the ex vivo method using
explants revealed the effects of all the cellular components included in AT, including mature
adipocytes, pre-adipocytes, fibroblasts and immune cells. It seems that adipocyte-released
factors enhanced androgen-independent but not androgen-dependent motility. Conversely,
whole adipose tissue secretion promoted the migration of both cells. It is plausible that
the effect on androgen-sensitive cells is mediated by a different driver from TGF-β and
released by cellular components other than adipocytes. The lack of a migration-promoting
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effect of Adipo-CM on LNCaP was in agreement with the anti-oncogenic role played by
TGFβ signalling in epithelial, but not in mesenchymal, cells [27]. Accordingly, higher
expression of TGF-β was reported in tumor tissues with higher Gleason score [32]. It is well
accepted that TGF-β affects the expression of several stromal derived factors involved in
tumor progression, including CTGF through Smads [33,34]. Several authors reported that
CTGF interacts with various integrins (α2β1, α5β1, αvβ6, αvβ1) in normal cells [35–37].
In breast cancer cells, CTGF increased cell viability and migration via an integrin-αvβ3
pathway [38,39]. Interestingly, upregulation of integrin-αvβ3 has been reported in bone
metastatic cancer [40]. In addition, the role of CTGF in promoting the ability of breast
and prostate cancer cells to establish bone metastasis has been recently demonstrated [41].
Moreover, protein interacting with PRKCA 1 (PICK1), a negative regulator of the TGF-β
pathway, can repress prostate cancer metastasis to bone [42]. In human PCa tissues, CTGF is
upregulated in the advanced stage [43], highlighting the clinical relevance of our findings.

Here, we show, for the first time, that PCa cell migration was enhanced by CTGF-
increased expression induced by adipocyte-released TGF-β, providing insights to the
hypothesis that the TGF-β/CTGF axis is a relevant mediator of the crosstalk between PCa
and AT.

TGF-β in PPAT may act in a paracrine manner, regulating function of the neighbor
cells, including PCa cells. Accordingly, we showed that inhibition of the TGF-β receptor by
SB431542 decreased the effect of adipocyte-released factors on migration, thereby indicating
that TGF-β is a pivotal factor in the adipocyte regulation of PCa cell motility.

Our results are limited to an in vitro interaction model between PCa cells and adipocytes.
Further studies are needed to assess the relevance of TGF-β released by PPAT in the regulation
of migration in PCa. However, our study strengthens the hypothesis that distinct AT (e.g.,
PPAT) may promote cancer dissemination [44] more than BMI. Accordingly, there is growing
evidence that BMI did not mirror the role played by each type of AT [45]. Our findings
reinforce the utility of the model measuring PPAT thickness rather than calculating the BMI
to obtain clinically relevant information on PCa prognosis [17,44]. It could be valuable to
combine PPAT-associated measures with PCa risk calculator to further improve PCa prognosis
evaluation and to choose an individualized therapeutic strategy. Our results provided insight
into molecular basis on the relationship between PPAT and PCa progression and envisioned
the potential use of CTGF as a prognostic biomarker and the TGF-β receptor as potential
therapeutic target in patients with metastatic PCa. CTGF could be a reliable biomarker that
will enable clinicians to choose the best therapeutic strategy for each individual PCa patient.
Notably, there are several anti-cancer pharmacological agents that target the TGF-β pathway
that have already been tested in clinical trials for advanced PCa [46].

5. Conclusions

Increased migratory capacity is undoubtedly a hallmark of an unfavourable prognosis.
Our results demonstrated for the first time in PCa that tumor-surrounding adipocytes
promote migration through a CTGF-dependent mechanism, highlighting the relevant role
played by PPAT on PCa clinical outcome and offering new chances to develop personalised
treatment for patients with advanced PCa.
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