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Abstract: Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable
manufacturing problems due to their unique mechanical properties, including superelasticity, high
ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the
machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and
robust in-process identification of machinability conditions. An on-line sensor monitoring procedure
based on the acquisition of vibration signals was implemented during the experimental turning tests.
The detected vibration sensorial data were processed through an advanced signal processing method
in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features
were used to construct WPT pattern feature vectors to send as input to suitably configured neural
networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input
sensorial information and output machinability conditions.

Keywords: Nickel-Titanium alloy; turning; sensor monitoring; vibration; machinability; cognitive
pattern recognition

1. Introduction

Nickel-Titanium (Ni-Ti) alloys are recognized for their excellent electrical, mechanical and
damping properties, including superelasticity and shape-memory. Such attributes make these alloys
a promising material for a number of applications in different fields like automotive, aerospace and
robotics [1–3].

For instance, as Ni-Ti alloys possess high strength, strong corrosion resistance as well as excellent
thermal fatigue properties and thermal stability, they have been extensively applied for engine parts
production, such as aircraft engine compressor disks, turbine disks, bearing rings, turbine blades and
other parts working at high temperature [4].

More recently, Ni-Ti intermetallic compounds, also known with the name of Nitinol, have been
introduced in the biomedical sector for the fabrication of coronary stents and orthodontics and
orthopedic implants due to the high biocompatibility of the metal alloy [5,6].

However, due to the high temperatures and stresses generated during machining of Ni-Ti alloys,
the latter are classified as difficult-to-machine materials. A rapid tool failure and poor surface quality of
the workpiece are generated during Ni-Ti alloys machining due to excessive burr formation, adhesions
on the machined surface and microstructure alterations of the workpiece material [7]. Moreover, the
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microstructure of the bulk material subsurface is altered during machining due to plastic deformation
and white layer formation [8].

Diverse research studies discussed the challenges related to machining of Ni-Ti alloys, focusing
on process parameters optimization, tool wear identification or workpiece surface quality.

The study in [9] focused on machinability and surface integrity in milling of Nitinol alloy, with
the objective to investigate the dynamic mechanical behavior of Nitinol in cutting, as well as to explore
the tool wear mechanisms and examine the process-induced surface integrity and edge quality.

Tool wear behaviour and cutting forces in machining of Ni-Ti shape memory alloys under various
machining conditions (dry, preheated, and cryogenic cooling) and different cutting speeds were
investigated in [10].

The research study in [11] demonstrated how machining of Ni-Ti alloys under different cutting
and cooling conditions affects their resulting surface integrity characteristics, including surface quality,
topography and microstructure.

The machinability of Ni-Ti based shape memory alloys with reference to turning and drilling
processes was examined in [12] by varying process parameters such as cutting speed, feed rate or
cooling lubricant method, showing that the machinability distinctly depends on cutting speed and
feed rate, for which higher values than those mostly recommended in the literature should be selected.
A persisting problem in the case of turning is related to the poor chip breakage and burr formation
caused by the remarkably high ductility of these materials.

Turning of Ni-Ti alloys was also studied in [13], where the influence of the cutting tool material
on the machining process was evaluated. Based on the experimental tests, the metal removal rate was
significantly increased and the tool life was extended when utilizing coated cemented carbide tools.

An approach to improve the machinability of Ni-Ti alloys through the application of chilled
air was studied in [14], showing that lower cutting forces, reduced burr height and lower tool wear
can be achieved. In [15], the effects of cryogenic cooling on tool wear rate and surface quality were
investigated by comparing the new findings from cryogenic machining with the results obtained under
minimum quantity lubrication and dry machining conditions.

An overview of the machinability of aerospace engine materials with emphasis on titanium and
nickel-based alloys was presented in [16]. The enhancement of the machinability of these alloys at
high speed conditions can be achieved through a proper combination of the appropriate tool material,
machining technique and cooling technology.

To improve and optimize machining processes, a number of studies in the last decades proposed
the use of on-line sensor systems for monitoring of tool conditions [17–19], machine tool state [20,21],
chip formation [22,23], vibration control [24], chatter detection, surface integrity, process conditions,
etc. [25–27]. However, only few papers in the literature tackled the specific issue of sensor monitoring
applied to machining of Ni-Ti alloys [28].

To exploit the sensor monitoring results as a support to decision making systems for machining
processes, the development and implementation of advanced sensor monitoring procedures, based on
innovative technologies and approaches, is essential.

The sequence of activities to be performed in sensor monitoring of machining process conditions
can be summarised as follows [29]:

• detection of machining process variables through sensorial perception methods;
• sensor signals processing;
• relevant sensorial features extraction and selection;
• implementation of decision making paradigms for diagnosis on machining process conditions;
• activation of corrective actions.

Usually, the sensor signals obtained during process monitoring are subjected to signal
conditioning (filtering, amplification, A/D conversion, segmentation) and processing with the aim to
generate functional signal features [20,25–29]. The main procedures for signal features extraction which
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are typically used in sensor monitoring research can be classified as follows: time-domain methods
(e.g., principal component analysis (PCA)) [21–23]), frequency domain methods (e.g., fast Fourier
transform (FFT)) [20,30]) and time-frequency domain methods (e.g., wavelet transform (WT) [31–33]).

The signal features extracted through these methods are then supplied to and evaluated by
cognitive decision-making support systems based on approaches such as neural networks, fuzzy logic,
genetic algorithms, etc. [34,35] for the final diagnosis on the process.

In this framework, the aim of this paper is to develop an advanced sensor monitoring procedure
for turning of Ni-Ti alloys in order to realize a reliable and robust classification of the process quality
in terms of machinability conditions.

The sensor monitoring procedure implemented during experimental turning tests on Nitinol bars
is based on the on-line acquisition of vibration sensor signals, that include valuable information on the
machining process.

Specifically, vibrations occurring during metal cutting can be classified into dependent and
independent of the cutting process. The most renowned type of vibration in machining is chatter,
i.e., self-excited vibration, which is detrimental to surface finish and tool life. Vibrations dependent
on metal cutting can exhibit specific characteristics as a function of the process. In particular, tool
engagement conditions during machining play a significant role in the vibration produced [7,36].

Due to the high correlation between produced vibrations and machining process characteristics,
vibration signals have been successfully employed in the literature for tool condition monitoring
applications and in-process prediction of surface roughness during turning processes [37–39].

Accordingly, with the aim to perform process monitoring in turning of Ni-Ti alloys, a vibration
sensor system has been selected in this research work to acquire valuable sensor signals that can be
correlated to the process conditions.

The detected vibration signals are processed through an advanced signal processing method in
the time-frequency domain based on wavelet packet transform (WPT) [29,31]. The sensorial features
extracted in this way are used to construct WPT feature pattern vectors to feed neural network (NN)
based cognitive pattern recognition paradigms [40] able to find correlations between input sensorial
information and output process quality in terms of machinability conditions [29,41].

2. Experimental Setup and Vibration Sensor Signals Acquisition

The experimental tests of Ni-Ti alloy turning for machinability assessment were performed on
Nitinol (55% Ni, 45% Ti) bars of 40 mm diameter and 200 mm length. The selected cutting tools were
coated carbide inserts, Kendex TPGN160308, with PVD TiAlN coating (KC5010 grade), rake angle:
γ = 0◦, clearance angle: α = 11◦, edge length L10 = 16.5 mm, thickness S = 3.18 mm, nose angle = 60◦,
nose radius = 0.8 mm and no chip breaker. Different process conditions were tested using the following
parameters: cutting speed, vc = 40, 55, 75, 100, 130 m/min; feed rate, f = 0.10, 0.15, 0.20 mm/rev; depth
of cut, ap = 0.5 mm; coolant: KSM 950 (Hebro-Chemie, Mönchengladbach, Germany). The depth of
cut, ap, was always equal to 0.5 mm, while cutting speed, vc, and feed, f, were varied among the tests.
The experimental turning test programme with the relevant cutting parameters is reported in Table 1.
By combining the three cutting parameters (vc, f and ap), a total of 15 turning tests were performed.

Table 1. Experimental turning test programme.

Cutting Parameters Experimental Test Values

Cutting speed vc (m/min) 40 55 75 100 130
Feed rate f (mm/rev) 0.10 0.15 0.20
Depth of cut ap (mm) 0.50

A sensor monitoring system endowed with a 3-axis wireless vibration sensor (Spectra Pulse
wireless sensor by Montronix S.r.l. Vigevano (PV), Italy) was utilized to acquire the sensor signals
relative to the 3 acceleration components ax, ay, and az along the x, y, and z directions (Figure 1). The
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3-axis wireless vibration sensor is provided with a magnetic base and was mounted on the tool holder
without need for bolting. This sensor is a miniature monitoring system, utilizing MEMS technology,
which incorporates sensor, processor, amplifier, memory and A/D conversion, and directly feeds the
digitised signals to the PC via wireless network communication. During the machining tests, the ax,
ay, and az vibration acceleration components were acquired and digitised by the wireless vibration
sensor at 3 kHz sampling rate.
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3. Vibration Sensor Signal Processing

The acquired vibration signals were processed through advanced methods of signal processing for
feature extraction and cognitive pattern recognition with the aim to identify the correlations between
sensorial data and process conditions during turning of Nitinol [25,29].

The three vibration acceleration components ax, ay, and az detected by the wireless vibration
sensor were symmetric about their average value which was differently shifted for each vibration
acceleration component with respect to 0 m/s2. This phenomenon is due to the influence exerted
on the vibration acceleration components by the gravity acceleration along the x, y and z axes of
the vibration sensor, which varies depending on the sensor orientation (their sum is 9.81 m/s2).
Initially, before signal segmentation, a pre-processing procedure was applied to remove the offset
of each acquired signal with respect to the zero axis. This offset was calculated for each vibration
acceleration component as the signal average before the actual machining start; such average was
then subtracted to the corresponding signal. Then, the signals were processed by cutting off the
signal portions corresponding to the transient conditions (i.e., beginning and end of the turning test).
Figure 2 shows the ax, ay, and az vibration acceleration signals for the turning test carried out with
vc = 40 m/min, f = 0.10 mm/rev, ap = 0.5 mm, where the signal portion to be considered for further
analysis (corresponding to actual machining) is delimited by vertical red lines. An automatic cut
off procedure was carried out by calculating the square of each signal and using an experimentally
determined threshold (equal to 20 m/s2) to identify the beginning and end of the signal relative to
actual machining.
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Afterwards, all the cut signals were reduced to a common minimum length (50,000 samples) to
obtain the pre-processed vibration acceleration signals. The latter signals were subdivided into five
equal parts of 10,000 samples for further signal analysis, obtaining a total of 75 vibration acceleration
signal specimens for each ax, ay, and az component.

4. Feature Extraction through Wavelet Packet Transform

From the pre-processed vibration acceleration signal specimens, features capable of adequately
describing the signal and maintaining the relevant information about the process were extracted
utilizing the wavelet packet transform (WPT) method in the time-frequency domain (Figure 3).
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Generally, the basis function of wavelet transform (WT) are small waves (wavelets) of varying
frequency and limited duration; in this way, the signal is represented as a superposition of wavelets.
Therefore, the WT can extract information in the time domain with reference to different frequency
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bands. This simultaneous time-frequency decomposition gives the WT a special advantage over the
traditional Fourier transform in analysing non-stationary signals [31–33].

The WPT is a generalization of wavelet decomposition that provides level by level transformation
of a signal from the time domain into the frequency domain. In the decomposition procedure, high-pass
and low-pass filters are utilized to decompose an incoming signal S (Figure 3). At the first level, the
output from the low-pass filter represents the “approximation” (A) of the signal and the output from
the high-pass filter represent the “detail”, D. Proceeding to the second level, each approximation and
detail packet is split again into further approximations, AA and AD, and details, DA and DD. After
decomposition, the original signal S can be represented as the summation of the wavelet packets.
To perform WPT, a mother or basis wavelet is first selected among different wavelet filter families.
The signal is then decomposed to a set of scaled and translated versions of the mother wavelet.
The translation and scaling operations applied to the mother wavelet are performed to calculate the
wavelet packet coefficients, which represent the correlation between the wavelet and a localised section
of the signal. The wavelet packet coefficients are calculated for each wavelet segment [42]; they are
used to scale and shift the mother wavelet and are capable of relating the mother wavelet with the
original signal. These coefficients can be processed to obtain statistical features to be used for pattern
recognition procedures [31–33].

In this paper, the WPT of the ax, ay, and az vibration acceleration components was realized using
the Daubechies db3 mother wavelet. The decomposition procedure, performed separately for ax, ay,
and az, was carried out up to the third level, generating a total of 14 wavelet packets of coefficients for
each vibration acceleration component: for each packet, five statistical features, i.e., mean, variance,
skewness, kurtosis, and energy, were calculated (Figure 3). These features, combined into pattern
feature vectors, represent a useful input for the neural network based decision making algorithm aimed
at finding correlations between input pattern feature vectors and output machinability classification.

The WPT signal decomposition procedure for the first part (10,000 digital signal samples) of
the ax vibration acceleration signal acquired during the Test 1 with vc = 40 m/min, f = 0.10 mm/rev,
ap = 0.5 mm is shown in Figure 4. In the figure, all the 14 WPT packets of coefficients extracted from the
signal are reported in separate charts showing how the original signal is modified by proceeding with
the WPT processing. The signal feature extraction procedure performed on each packet of coefficients
provides five statistical features (mean, variance, skewness, kurtosis, and energy) capable of adequately
describing the signal and maintaining the relevant information about the process.
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As an example, the WPT feature extraction procedure for packet A of ax is illustrated in Figure 5.
To perform the WPT feature extraction procedure, a sensorial data table containing the n signals
(75 columns) each composed of j digital signal samples (10,000 rows) was created as shown in Figure 5a.
By applying the WPT to the 75 vibration acceleration signals, the corresponding 75 A packets (columns)
consisting of 5003 coefficients (rows) were obtained (Figure 5b). For each A packet, the five statistical
features (mean, variance, skewness, kurtosis, energy) were calculated starting from its 5003 coefficients
(Figure 5c). Overall, 14 WPT pattern feature vectors (corresponding to the 14 WPT packets) for each of
the three vibration acceleration components ax, ay, and az, were obtained.

Sensors 2017, 17, 2885  8 of 14 

 

 
Figure 5. WPT feature extraction procedure for wavelet packet A of ax vibration acceleration 
component: (a) sensorial data table; (b) calculation of packet A coefficients; (c) five statistical features 
for packet A. 

5. Machinability Classification 

With the scope to assess the machinability corresponding to each turning test, three process 
quality parameters were taken into account: crater wear, flank wear, and machine vibrations level 
during machining. These three process quality parameters were ranked within a grading scale 
between 1 (good) and 5 (bad) on the basis of the expert knowledge of a skilled turning operator. In 
particular, the machine vibrations level was evaluated by an expert operator who carried out his 
assessment on the basis of his experience as well as with the support of a portable vibration 
measurement instrumentation. The flank wear and crater wear were categorized by the operator into 
the five different wear levels by taking into account as critical flank wear value VBmax = 0.6 mm 
indicated by the standard on tool life testing with single-point turning tool (ISO 3685:1993), and as 
critical crater wear value the crater front distance KF = 0.02 mm.  

The machinability was then classified as Acceptable or Poor according to the following rule: in 
case a ranking ≥ 4 was verified for any of the three quality parameters, then the machinability was 
classified as Poor. In all the other cases, it was considered Acceptable (Table 2). The machinability 
classification was utilized as output in the cognitive neural network pattern recognition procedure. 
  

Figure 5. WPT feature extraction procedure for wavelet packet A of ax vibration acceleration
component: (a) sensorial data table; (b) calculation of packet A coefficients; (c) five statistical features
for packet A.



Sensors 2017, 17, 2885 8 of 14

5. Machinability Classification

With the scope to assess the machinability corresponding to each turning test, three process
quality parameters were taken into account: crater wear, flank wear, and machine vibrations level
during machining. These three process quality parameters were ranked within a grading scale between
1 (good) and 5 (bad) on the basis of the expert knowledge of a skilled turning operator. In particular, the
machine vibrations level was evaluated by an expert operator who carried out his assessment on the
basis of his experience as well as with the support of a portable vibration measurement instrumentation.
The flank wear and crater wear were categorized by the operator into the five different wear levels by
taking into account as critical flank wear value VBmax = 0.6 mm indicated by the standard on tool life
testing with single-point turning tool (ISO 3685:1993), and as critical crater wear value the crater front
distance KF = 0.02 mm.

The machinability was then classified as Acceptable or Poor according to the following rule: in
case a ranking ≥ 4 was verified for any of the three quality parameters, then the machinability was
classified as Poor. In all the other cases, it was considered Acceptable (Table 2). The machinability
classification was utilized as output in the cognitive neural network pattern recognition procedure.

Table 2. Machinability classification. Cutting speed is expressed in m/min and feed rate in mm/rev.
Tool wear and vibrations level are ranked between 1 (good) and 5 (bad).

Test ID Cutting Speed Feed Rate Flank Wear Crater Wear Vibrations Level Overall Classification

1 40 0.10 1 1 2 Acceptable
2 40 0.15 1 1 2 Acceptable
3 40 0.20 1 1 3 Acceptable
4 55 0.10 1 1 2 Acceptable
5 55 0.15 1 1 3 Acceptable
6 55 0.20 1 1 3 Acceptable
7 75 0.10 2 2 2 Acceptable
8 75 0.15 1 1 3 Acceptable
9 75 0.20 1 1 4 Poor

10 100 0.10 1 1 2 Acceptable
11 100 0.15 1 1 4 Poor
12 100 0.20 1 1 4 Poor
13 130 0.10 5 5 3 Poor
14 130 0.15 5 4 4 Poor
15 130 0.20 5 2 5 Poor

6. Cognitive Pattern Recognition via Neural Networks

The obtained WPT pattern feature vectors were utilised as input to diverse neural networks (NN)
for cognitive pattern recognition (Figure 3) aimed at finding correlations between input pattern feature
vectors and output machinability classification [34,41].

The NN implementation was carried out in the MatLab® environment [43] using three-layer
feed-forward back-propagation supervised network architectures for each of the 42 input pattern
feature vectors (14 pattern feature vectors for each of the three vibration components) with the
following structure:

- input layer with five nodes, according to the number of input feature vector elements (the five
statistical features for each packet);

- hidden layer with a number of nodes equal to 5, 10 or 15;
- output layer with only one node, providing a binary target value associated to machinability

condition: 0 = Acceptable; 1 = Poor.

The NN training set was built up by mating the correct binary target value to each of the
75 vibration acceleration signal specimens in order to map the input pattern feature vector to the
output machinability condition: the 75 obtained training cases included 45 Acceptable and 30 Poor
machinability cases. The NN training function was based on Levenberg–Marquardt algorithm with the
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following training parameters: the maximum number of the epochs was set at 1000, the performance
goal was fixed to 0, the minimum performance gradient was equal to 1 × 10−7, and the maximum mu
parameter value was 1 × 1010. The NN training stops as soon as one of these conditions occurs: the
maximum number of epochs is reached, the performance is minimized to the goal, the performance
gradient falls below the selected minimum, and mu exceeds its maximum.

The leave-k-out method (k = 1) was employed: one by one, each pattern feature vector was
removed in turn from the training set for testing and the remaining patterns were used for training [22].
The success of the NN machinability classification was expressed on the basis of the value of the
indicator E = (Oa − Od), where Oa is the actual output and Od the desired output. The NN classification
is considered correct if −0.5 ≤ E ≤ +0.5. The ratio of correct classifications over the total training cases
yields the NN success rate (SR).

7. Results and Discussion

The NN performance expressed as SR (%) are shown in Tables 3–5 for each vibration acceleration
component ax, ay, and az, with reference to the diverse NN configurations (5-5-1, 5-10-1, 5-15-1)
and all the 14 WPT pattern feature vectors. The NN SR was reported for the three diverse types of
machinability classification: SR for the identification of Acceptable cases, SR for the identification of
Poor cases, and overall SR corresponding to all cases (Acceptable + Poor).

Table 3 shows that, the NN SR for the ax component ranges between 77.8–93.3% in the case of
Acceptable machinability identification, 50.0–83.3% in the case of Poor machinability identification,
and 68.0–88.0% for Overall cases. The best NN SR value (93.3%) obtained in the identification of
Acceptable machinability conditions was obtained with the 5-5-1 NN configuration and the ADD WPT
packet, while the best NN SR value (83.3%) is achieved for Poor machinability conditions with the
same NN configuration (5-5-1) and WPT packet (DAD). The best NN SR value (88.0%) for Overall (all
cases) machinability classification is obtained for the 5-5-1 NN configuration and the DAD WPT packet
showing a good balance between the identification of Acceptable (SR = 91.1%) and Poor (SR = 83.3%)
machinability conditions.

Table 3. Neural network (NN) success rate (SR) (Acceptable, Poor, Overall = Acceptable + Poor) for
vibration acceleration component ax using NN configurations 5-5-1, 5-10-1, 5-15-1 and each of the 14
WPT packets.

Vibration Component—ax

NN Configuration 5-5-1 5-10-1 5-15-1

Wavelet Packet
Success Rates (%) for Features Extracted from Each WPT Packet

Acceptable Poor Overall Acceptable Poor Overall Acceptable Poor Overall

A 82.2 70.0 77.3 82.2 70.0 77.3 82.2 73.3 78.7
D 77.8 63.3 72.0 73.3 80.0 76.0 86.7 76.7 82.7

AA 84.4 73.3 80.0 80.0 63.3 73.3 84.4 60.0 74.7
DA 84.4 73.3 80.0 91.1 73.3 84.0 80.0 66.7 74.7
AD 77.8 70.0 74.7 82.2 66.7 76.0 82.2 63.3 74.7
DD 77.8 60.0 70.7 84.4 73.3 80.0 82.2 80.0 81.3

AAA 86.7 80.0 84.0 84.4 70.0 78.7 86.7 66.7 78.7
DAA 80.0 80.0 80.0 80.0 70.0 76.0 82.2 73.3 78.7
ADA 82.2 63.3 74.7 82.2 70.0 77.3 88.9 70.0 81.3
DDA 82.2 70.0 77.3 80.0 50.0 68.0 88.9 73.3 82.7
AAD 88.9 70.0 81.3 84.4 70.0 78.7 82.2 63.3 74.7
DAD 91.1 83.3 88.0 80.0 73.3 77.3 80.0 70.0 76.0
ADD 93.3 63.3 81.3 84.4 66.7 77.3 80.0 70.0 76.0
DDD 86.7 70.0 80.0 82.2 73.3 78.7 82.2 60.0 73.3
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Table 4. NN SR (Acceptable, Poor, Overall = Acceptable + Poor) for vibration acceleration component
ay using NN configurations 5-5-1, 5-10-1, 5-15-1 and each of 14 the WPT packets.

Vibration Component—ay

NN Configuration 5-5-1 5-10-1 5-15-1

Wavelet Packet
Success Rates (%) for Features Extracted from Each WPT Packet

Acceptable Poor Overall Acceptable Poor Overall Acceptable Poor Overall

A 84.4 73.3 80.0 77.8 53.3 68.8 84.4 80.0 82.7
D 86.7 50.0 72.0 93.3 50.0 76.0 88.9 60.0 77.3

AA 86.7 66.7 78.7 82.2 63.3 74.7 86.7 60.0 76.0
DA 86.7 60.0 76.0 86.7 63.3 77.3 86.7 56.7 74.7
AD 88.9 56.7 76.0 93.3 56.7 78.7 91.1 60.0 78.7
DD 86.7 60.0 76.0 84.4 70.0 78.7 91.1 63.3 80.0

AAA 84.4 60.0 74.7 80.0 66.7 74.7 80.0 60.0 72.0
DAA 77.8 70.0 74.7 97.8 63.3 84.0 88.9 63.3 78.7
ADA 86.7 63.3 77.3 88.9 63.3 78.7 84.4 70.0 78.7
DDA 97.8 66.7 85.3 95.6 70.0 85.3 88.9 60.0 77.3
AAD 91.1 53.3 76.0 91.1 60.0 78.7 91.1 66.7 81.3
DAD 86.7 56.7 74.7 82.2 56.7 72.0 88.9 60.0 77.3
ADD 88.9 60.0 77.3 91.1 56.7 77.3 75.6 70.0 77.3
DDD 88.9 66.7 80.0 88.9 63.3 78.7 93.3 70.0 84.0

Table 5. NN SR (Acceptable, Poor, Overall = Acceptable + Poor) for vibration acceleration component
az using NN configurations 5-5-1, 5-10-1, 5-15-1 and each of the 14 WPT packets.

Vibration Component—az

NN Configuration 5-5-1 5-10-1 5-15-1

Wavelet Packet
Success Rates (%) for Features Extracted from Each WPT Packet

Acceptable Poor Overall Acceptable Poor Overall Acceptable Poor Overall

A 88.9 73.3 82.7 93.3 66.7 82.7 88.9 63.3 78.7
D 86.7 66.7 78.7 86.7 63.3 77.3 88.9 63.3 78.7

AA 86.7 76.7 82.7 88.9 63.3 81.3 91.1 66.7 81.3
DA 95.6 73.3 86.7 91.1 70.0 84.0 95.6 76.7 88.0
AD 86.7 60.0 76.0 86.7 73.3 78.7 86.7 63.3 77.3
DD 88.9 70.0 81.3 93.3 66.7 85.3 93.3 80.0 88.0

AAA 84.4 76.7 81.3 86.7 73.3 78.7 77.8 66.7 73.3
DAA 86.7 60.0 76.0 84.4 66.7 76.0 93.3 63.3 81.3
ADA 95.6 66.7 84.0 93.3 63.3 88.0 88.9 66.7 80.0
DDA 82.2 70.0 77.3 88.9 80.0 76.0 84.4 66.7 77.3
AAD 88.9 60.0 77.3 84.4 56.7 73.3 86.7 56.7 74.7
DAD 91.1 63.3 80.0 93.3 66.7 82.7 84.4 63.3 76.0
ADD 88.9 76.7 84.0 97.8 70.0 86.7 88.9 76.7 84.0
DDD 88.9 56.7 76.0 88.9 60.0 77.3 80.0 70.0 76.0

As regards the ay vibration acceleration component (Table 4), the NN SR ranges between
75.6–97.8% in the case of Acceptable machinability, 50.0–80.0% in the case of Poor machinability
identification, and 68.8–85.3% in the case of Overall machinability. The best NN SR value (85.3%) in
terms of Overall classification is obtained for two NN configurations: 5-5-1 and 5-10-1. For both NN
configurations, the WPT packet that performs best is the DDA. For the 5-5-1 NN configuration, a SR
value equal to 97.8% is obtained in the identification of Acceptable machinability conditions, while a
SR value equal to 66.7% is achieved in Poor machinability conditions. For the 5-10-1 NN configuration,
the identification of Acceptable machinability conditions gives a SR value equal to 95.6%, while for
Poor machinability conditions a SR value equal to 70.0% is achieved, showing a better performance
than the 5-5-1 NN in the identification of Poor machinability conditions.

Table 5 shows that, the NN SR for the az component ranges between 77.8–97.8% for Acceptable
machinability identification, 56.7–80.0% for Poor machinability identification, and 73.3–88.0% for
Overall machinability identification. The best NN SR value (88.0%) in terms of Overall classification
is obtained for two NN configurations: 5-10-1 and 5-15-1. For the 5-10-1 NN, the WPT packet that
performs best is the ADA, giving a SR = 93.3% for Acceptable machinability and a SR = 80.0% for Poor
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machinability. For the 5-15-1 NN, the best performing WPT packets are the DA, giving a SR = 95.6%
for Acceptable machinability and a SR = 76.7% for Poor machinability, and the DD with SR = 93.3% for
Acceptable machinability and SR = 80.0% for Poor machinability. Thus, the 5-15-1 NN displays a better
performance in the identification of Poor machinability conditions using the DD than when using the
DA packet.

Summarizing, Tables 3–5 show that the NN SR values are always notably higher for the
identification of Acceptable machinability conditions than for the Poor machinability conditions.

In Figure 6, the best NN SR is reported for each vibration acceleration component and for the
three diverse NN configurations. By comparing the performance of the three vibration acceleration
components, ax, and az display the same behaviour with a maximum Overall SR equal to 88.0%.
However, ax exhibits a better balance in the identification of Acceptable and Poor machinability.
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8. Conclusions

An on-line sensor monitoring procedure based on the acquisition of vibration sensor signals
during turning of Ni-Ti alloys was implemented to achieve the in-process assessment of machinability
conditions. The three vibration acceleration components ax, ay, and az were detected through a sensor
monitoring system endowed with a three-axis wireless vibration sensor mounted on the tool holder in
proximity of the tool insert.

An advanced signal processing method in the time-frequency domain, wavelet packet transform
(WPT), was applied to the pre-processed vibration acceleration signals with the aim to extract relevant
features able to maintain the relevant information about the process. These extracted features were used
to construct WPT pattern feature vectors to feed to suitably configured supervised neural networks
(NN) for the identification of machinability conditions.

The NN performance was classified in terms of the NN success rate (SR), i.e., the ratio of correct
classifications over the total training cases.

As regards the NN SR for each vibration acceleration component, it was shown that ax and az

give the same maximum overall SR = 88.0%, against the ay maximum overall SR = 85.3%. Moreover,
ax showed the best balance in the identification of Acceptable (SR = 93.3%) and Poor (SR = 83.3%)
machinability conditions.

As regards the performance of the 14 WPT pattern feature vectors used as input to the NN, the
best results were obtained with the DAD pattern feature vectors for ax, the DDA pattern feature vectors
for ay, and the ADA and DD pattern feature vectors for az.

The obtained results showed that the NN SR for Acceptable machinability identification were
always higher than for Poor machinability. As shown in Table 2, the number of NN training cases for
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Poor machinability is significantly lower than for Acceptable machinability (30 Poor machinability
cases versus 45 Acceptable machinability cases). The lower success rate obtained in the case of the
Poor machinability is related to the mentioned unbalanced training test cases. For this reason, as future
developments of this paper, a new turning tests campaign will be considered in order to increase the
number of training cases to be inputted to the NN. Moreover, future developments could involve the
application of sensor fusion technology whereby the sensorial features are jointly extracted from the
three ax, ay, and az vibration acceleration components and included together in sensor fusion pattern
feature vectors to feed to the NN with enhanced synergical input information.
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